• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    铁基阴离子黏土改性材料在地热水处理中的应用

    曹耀武 唐保春

    曹耀武, 唐保春, 2023. 铁基阴离子黏土改性材料在地热水处理中的应用. 地球科学, 48(3): 1146-1155. doi: 10.3799/dqkx.2022.342
    引用本文: 曹耀武, 唐保春, 2023. 铁基阴离子黏土改性材料在地热水处理中的应用. 地球科学, 48(3): 1146-1155. doi: 10.3799/dqkx.2022.342
    Cao Yaowu, Tang Baochun, 2023. Application of Modified Iron-Based LDH Materials in Geothermal Water Treatment. Earth Science, 48(3): 1146-1155. doi: 10.3799/dqkx.2022.342
    Citation: Cao Yaowu, Tang Baochun, 2023. Application of Modified Iron-Based LDH Materials in Geothermal Water Treatment. Earth Science, 48(3): 1146-1155. doi: 10.3799/dqkx.2022.342

    铁基阴离子黏土改性材料在地热水处理中的应用

    doi: 10.3799/dqkx.2022.342
    基金项目: 

    青海省基础研究计划项目 2021⁃ZJ⁃740

    详细信息
      作者简介:

      曹耀武(1991-),女,博士,主要从事地热水有害组分去除的研究工作. ORCID:0000-0003-2089-0816. E-mail:caoyaowu0105@126.com

      通讯作者:

      唐保春, E-mail: 158823317@qq.com

    • 中图分类号: P314

    Application of Modified Iron-Based LDH Materials in Geothermal Water Treatment

    • 摘要: 地热水常富集多种有害组分,以热泉形式非集中排泄时将威胁周边居民饮用水安全.本文制备了5种铁基阴离子黏土(Fe-LDH)改性材料,用于云南典型地热区热泉的处理中.结果显示Fe-LDH对砷的去除最佳,氟、钨次之,对锑、硼的去除受共存离子影响较大;而改性材料可有效缩小不同有害组分间的竞争吸附差距,表现为乳酸根插层的Fe-LDH能显著提高离子交换能力,对氟、硼的去除提升较大,而分层的Fe-LDH因暴露更多活性位点、增加层间接触面积,对与铁络合为主的砷、钨去除和离子交换为主的氟、硼去除均有明显提升;最后静态吸附表现最佳的吸附剂——L-天冬酰胺分层的Fe-LDH,作为小型水处理装置填充材料能动态、有效地去除热泉中多种有害组分.为地热水污染修复提供了切实可行的方法.

       

    • 图  1  阴离子黏土纳米片结构

      Fig.  1.  Structure of LDH nanosheets

      图  2  铁基阴离子黏土改性材料的XRD图谱

      Fig.  2.  XRD patterns of modified iron-based LDH materials

      图  3  五种铁基阴离子黏土改性材料对YJQ热泉中有害组分的去除结果

      Fig.  3.  Removal of harmful components from YJQ hot spring by five modified iron-based LDH materials

      图  4  五种铁基阴离子黏土改性材料对DFQ热泉中有害组分的去除结果

      Fig.  4.  Removal of harmful components from DFQ hot spring by five modified iron-based LDH materials

      图  5  五种铁基阴离子黏土改性材料对GJZ热泉中有害组分的去除结果

      Fig.  5.  Removal of harmful components from GJZ hot spring by five modified iron-based LDH materials

      图  6  分层的铁基阴离子黏土(Fe-LDH5)吸附柱同时吸附YJQ(a)、DFQ(b)、GJZ(c)热泉中砷、锑、钨、氟和硼的穿透曲线

      点表示实验结果;线为Thomas模型拟合结果

      Fig.  6.  Penetration curves for simultaneous sorption of arsenic, antimony, tungsten, fluoride and boron from YJQ (a), DFQ (b) and GJZ (c) hot springs by delaminated iron-based LDH (Fe-LDH5) sorption columns

      表  1  三种地热水的地球化学性质和主要有害成分特征

      Table  1.   Geochemical properties and characteristics of the main harmful components of three geothermal waters

      编号 采样位置 地热区 热源 温度(℃) pH EC (μs/cm) F (mg/L) B (mg/L)
      YJQ 眼镜泉 热海 岩浆 72.5 8.81 3 231 16.25 9.551
      DFQ 大沸泉 邦腊掌 非岩浆 96 8.48 1 040 19.40 3.661
      GJZ 郭家寨 酒房 非岩浆 77 7.08 1 557 3.109 1.899
      编号 As (μg/L) Sb (μg/L) W (μg/L) Cl (mg/L) SO42‒ (mg/L) HCO3 (mg/L) CO32‒ (mg/L)
      YJQ 998.9 70.8 100.6 814.2 30.29 1 069 5.28
      DFQ 164.6 5.678 383.6 16.6 73.0 414 24.8
      GJZ 0.435 7.236 139.4 6.07 33.1 849 0.624
      下载: 导出CSV

      表  2  五种铁基阴离子黏土改性材料的比表面积

      Table  2.   Specific surface areas of five modified iron-based LDH materials

      参数 样品编号
      Fe-LDH1 Fe-LDH2 Fe-LDH3 Fe-LDH4 Fe-LDH5
      BET比表面积(m2/g) 80.35 38.59 88.32 90.72 199.90
      孔容(cm3/g) 0.137 7 0.296 9 0.262 8 0.265 8 0.129 4
      孔径(Å) 68.53 307.80 97.03 115.3 25.88
      下载: 导出CSV

      表  3  铁基阴离子黏土对有害组分的去除机理

      Table  3.   Removal mechanism of harmful components by iron-based LDH

      典型有害组分 As W Sb(V) F B
      吸附机理 Fe-As络合 Fe-W络合 以离子交换作用为主,高温下可能形成Fe-O-Sb键 离子交换作用 离子交换作用
      注:据Cao et al. (2019, 2020)、Guo et al. (2017)和Luo et al. (2019).
      下载: 导出CSV

      表  4  动态吸附柱实验数据与Thomas模型的拟合参数

      Table  4.   Fitting parameters of dynamic sorption column experimental data to Thomas model

      地热水样品 有害组分 Thomas模型参数
      R2 q0(μg/g) kTh((mL/(μg·min))
      YJQ As 0.982 2 385.50 0.012 010
      Sb 0.985 7 14.30 0.083 330
      W 0.991 1 22.43 0.075 550
      F 0.995 7 4 042.00 0.000 424
      B 0.963 2 1 720.00 0.001 267
      DFQ As 0.980 7 74.57 0.072 900
      W 0.985 7 128.90 0.035 190
      F 0.966 1 5 492.00 0.000 928
      B 0.978 6 608.80 0.002 622
      GJZ W 0.989 9 57.73 0.052 370
      F 0.990 3 1 014.00 0.001 994
      B 0.979 4 433.70 0.005 055
      下载: 导出CSV
    • Aksoy, N., Şimşek, C., Gunduz, O., 2009. Groundwater Contamination Mechanism in a Geothermal Field: A Case Study of Balcova, Turkey. Journal of Contaminant Hydrology, 103(1-2): 13-28. https://doi.org/10.1016/j.jconhyd.2008.08.006
      Ashekuzzaman, S. M., Jiang, J. Q., 2017. Strategic Phosphate Removal/Recovery by a Re-Usable Mg-Fe-Cl Layered Double Hydroxide. Process Safety and Environmental Protection, 107: 454-462. https://doi.org/10.1016/j.psep.2017.03.009
      Abdelkader, N. B. H., Bentouami, A., Derriche, Z., et al., 2011. Synthesis and Characterization of Mg-Fe Layer Double Hydroxides and Its Application on Adsorption of Orange G from Aqueous Solution. Chemical Engineering Journal, 169(1-3): 231-238. https://doi.org/10.1016/j.cej.2011.03.019
      Brown, K. L., Simmons, S. F., 2003. Precious Metals in High-Temperature Geothermal Systems in New Zealand. Geothermics, 32(4-6): 619-625. https://doi.org/10.1016/S0375-6505(03)00049-X
      Bunani, S., Arda, M., Kabay, N., 2018. Effect of Operational Conditions on Post-Treatment of RO Permeate of Geothermal Water by Using Electrodeionization (EDI) Method. Desalination, 431: 100-105. https://doi.org/10.1016/j.desal.2017.10.032
      Cao, Y. W., Guo, Q. H., Liang, M. S., et al., 2020. Sb(Ⅲ) and Sb(Ⅴ) Removal from Water by a Hydroxyl-Intercalated, Mechanochemically Synthesized Mg-Fe-LDH. Applied Clay Science, 196: 105766. https://doi.org/10.1016/j.clay.2020.105766
      Cao, Y. W., Guo, Q. H., Shu, Z., et al., 2019. Tungstate Removal from Aqueous Solution by Nanocrystalline Iowaite: An Iron-Bearing Layered Double Hydroxide. Environmental Pollution, 247: 118-127. https://doi.org/10.1016/j.envpol.2019.01.021
      Cao, Y. W., Guo, Q. H., Shu, Z., et al., 2016. Application of Calcined Iowaite in Arsenic Removal from Aqueous Solution. Applied Clay Science, 126: 313-321. https://doi.org/10.1016/j.clay.2016.04.002
      Cao, Y. W., Guo, Q. H., Sun, W. H., et al., 2021. Simultaneous Removal of Harmful Anions from Geothermal Waters Using OH- Intercalated Mg-Fe-LDH: Batch and Field Column Studies. Environmental Science and Pollution Research, 28(29): 39345-39356. https://doi.org/10.1007/s11356-021-12939-1
      Chen, S. H., Yue, Q. Y., Gao, B. Y., et al., 2012. Adsorption of Hexavalent Chromium from Aqueous Solution by Modified Corn Stalk: A Fixed-Bed Column Study. Bioresource Technology, 113: 114-120. https://doi.org/10.1016/j.biortech.2011.11.110
      Das, J., Sairam, P. B., Baliarsingh, N., et al., 2007. Calcined Mg-Fe-CO(3) LDH as an Adsorbent for the Removal of Selenite. Journal of Colloid and Interface Science, 316(2): 216-223. https://doi.org/10.1016/j.jcis.2007.07.082
      Guo, Q. H., 2022. Environmental Effects of Harmful Constituents Derived from Geothermal Systems and Their Treatments. Acta Geologica Sinica, 96(5): 1767-1773 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.05.016
      Guo, Q. H., Cao, Y. W., Yin, Z. W., et al., 2017. Enhanced Removal of Arsenic from Water by Synthetic Nanocrystalline Iowaite. Scientific Reports, 7: 17546. https://doi.org/10.1038/s41598-017-17903-z
      Guo, Q. H., Li, Y. M., Luo, L., 2019. Tungsten from Typical Magmatic Hydrothermal Systems in China and Its Environmental Transport. Science of the Total Environment, 657: 1523-1534. https://doi.org/10.1016/j.scitotenv.2018.12.146
      Hudcová, B., Veselská, V., Filip, J., et al., 2017. Sorption Mechanisms of Arsenate on Mg-Fe Layered Double Hydroxides: A Combination of Adsorption Modeling and Solid State Analysis. Chemosphere, 168: 539-548. https://doi.org/10.1016/j.chemosphere.2016.11.031
      Jarma, Y. A., Karaoğlu, A., Tekin, Ö., et al., 2022. Integrated Pressure-Driven Membrane Separation Processes for the Production of Agricultural Irrigation Water from Spent Geothermal Water. Desalination, 523: 115428. https://doi.org/10.1016/j.desal.2021.115428
      Jiang, J. Q., Ashekuzzaman, S. M., Hargreaves, J. S. J., et al., 2015. Removal of Arsenic (Ⅲ) from Groundwater Applying a Reusable Mg-Fe-Cl Layered Double Hydroxide. Journal of Chemical Technology & Biotechnology, 90(6): 1160-1166. https://doi.org/10.1002/jctb.4607
      Kang, D. J., Yu, X. L., Tong, S. R., et al., 2013. Performance and Mechanism of Mg/Fe Layered Double Hydroxides for Fluoride and Arsenate Removal from Aqueous Solution. Chemical Engineering Journal, 228: 731-740. https://doi.org/10.1016/j.cej.2013.05.041
      Kelly, A. D. R., Lemaire, M., Young, Y. K., et al., 2013. In Vivo Tungsten Exposure Alters B-Cell Development and Increases DNA Damage in Murine Bone Marrow. Toxicological Sciences: An Official Journal of the Society of Toxicology, 131(2): 434-446. https://doi.org/10.1093/toxsci/kfs324
      Khatibikamal, V., Torabian, A., Ahmad, P. H., et al., 2019. Stabilizing of Poly(Amidoamine) Dendrimer on the Surface of Sand for the Removal of Nonylphenol from Water: Batch and Column Studies. Journal of Hazardous Materials, 367: 357-364. https://doi.org/10.1016/j.jhazmat.2018.12.106
      Koutsospyros, A. D., Strigul, N., Braida, W., et al., 2011. Tungsten: Environmental Pollution and Health Effects. Encyclopedia of Environmental Health. Amsterdam: Elsevier, 418-426. https://doi.org/10.1016/b978-0-444-52272-6.00650-4
      Landrum, J. T., Bennett, P. C., Engel, A. S., et al., 2009. Partitioning Geochemistry of Arsenic and Antimony, El Tatio Geyser Field, Chile. Applied Geochemistry, 24(4): 664-676. https://doi.org/10.1016/j.apgeochem.2008.12.024
      Li, Y. L., Yu, C. S., Jiang, Z. C., et al., 2021. An Experimental Study of Heating Tail Water Treatment of the Lindian Geothermal Fields in the Northern Songnen Basin. Hydrogeology & Engineering Geology, 48(1): 188-194 (in Chinese with English abstract).
      Luo, L., Guo, Q. H., Cao, Y. W., 2019. Uptake of Aqueous Tungsten and Molybdenum by a Nitrate Intercalated, Pyroaurite-Like Anion Exchangeable Clay. Applied Clay Science, 180: 105179. https://doi.org/10.1016/j.clay.2019.105179
      Mandal, S., Mayadevi, S., 2008. Cellulose Supported Layered Double Hydroxides for the Adsorption of Fluoride from Aqueous Solution. Chemosphere, 72(6): 995-998. https://doi.org/10.1016/j.chemosphere.2008.03.053
      Recepoğlu, Y. K., Kabay, N., Ipek, I. Y., et al., 2018. Packed Bed Column Dynamic Study for Boron Removal from Geothermal Brine by a Chelating Fiber and Breakthrough Curve Analysis by Using Mathematical Models. Desalination, 437: 1-6. https://doi.org/10.1016/j.desal.2018.02.022
      Rives, V., Ulibarri, M. A., 1999. Layered Double Hydroxides (LDH) Intercalated with Metal Coordination Compounds and Oxometalates. Coordination Chemistry Reviews, 181(1): 61-120. https://doi.org/10.1016/ S0010-8545(98)00216-1 doi: 10.1016/S0010-8545(98)00216-1
      Sasaki, K., Hayashi, Y., Toshiyuki, K., et al., 2018. Simultaneous Immobilization of Borate, Arsenate, and Silicate from Geothermal Water Derived from Mining Activity by Co-Precipitation with Hydroxyapatite. Chemosphere, 207: 139-146. https://doi.org/10.1016/j.chemosphere.2018.05.074
      Tomaszewska, B., Akkurt, G. G., Kaczmarczyk, M., et al., 2021. Utilization of Renewable Energy Sources in Desalination of Geothermal Water for Agriculture. Desalination, 513: 115151. https://doi.org/10.1016/j.desal.2021.115151
      Tyszer, M., Tomaszewska, B., Kabay, N., 2021. Desalination of Geothermal Wastewaters by Membrane Processes: Strategies for Environmentally Friendly Use of Retentate Streams. Desalination, 520: 115330. https://doi.org/10.1016/j.desal.2021.115330
      Wang, R. Z., Liu, J., Wu, J. H., et al., 2019. Preparation of Magnetic Nanocomposite and Their Removal Properties of F and As in Geothermal Water. The Journal of New Industrialization, 9(6): 82-85 (in Chinese with English abstract).
      Wang, X. X., Yu, S. Q., Wu, Y. H., et al., 2018. The Synergistic Elimination of Uranium (Ⅵ) Species from Aqueous Solution Using Bi-Functional Nanocomposite of Carbon Sphere and Layered Double Hydroxide. Chemical Engineering Journal, 342: 321-330. https://doi.org/10.1016/j.cej.2018.02.102
      Wilson, N., Webster-Brown, J., Brown, K., 2012. The Behaviour of Antimony Released from Surface Geothermal Features in New Zealand. Journal of Volcanology and Geothermal Research, 247-248: 158-167. https://doi.org/10.1016/j.jvolgeores.2012.08.009
      Witten, M. L., Sheppard, P. R., Witten, B. L., 2012. Tungsten Toxicity. Chemico-Biological Interactions, 196(3): 87-88. https://doi.org/10.1016/j.cbi.2011.12.002
      Yan, K. T., Guo, Q. H., Luo, L., 2022. Methylation and Thiolation of Arsenic in Tengchong Hot Springs. Earth Science, 47(2): 622-632 (in Chinese with English abstract).
      Yang, T. M., 2018. Test Engineering of Heat-Supply System Using Geothermal Tail Water Treated by Reverse Osmosis Method as Secondary Network Make-Up Water. Guangdong Chemical Industry, 45(1): 61-62, 68 (in Chinese with English abstract).
      İpek, İ. Y., Kabay, N., Yüksel, M., 2013. Modeling of Fixed Bed Column Studies for Removal of Boron from Geothermal Water by Selective Chelating Ion Exchange Resins. Desalination, 310: 151-157. https://doi.org/10.1016/j.desal.2012.10.009
      Yu, Z. Y., Cao, Y. W., Guo, Q. H., 2018. Removing Harmful Constituents from Geothermal Water Using Selected Anion Clays. Environmental Science & Technology, 41(3): 109-117 (in Chinese with English abstract).
      Zaneva, S., Stanimirova, T., 2004. Crystal Chemistry, Classification Position and Nomenclature of Layered Double Hydroxydes. Bulgarian Geological Society, Annual Scientific Conference "Geology 2004", Sofia.
      郭清海, 2022. 地热系统来源有害组分的环境效应及其处理. 地质学报, 96(5): 1767-1773. doi: 10.3969/j.issn.0001-5717.2022.05.016
      李永利, 于长生, 姜智超, 等, 2021. 松嫩盆地北部林甸地热田供暖尾水处理试验. 水文地质工程地质, 48(1): 188-194. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202101023.htm
      王睿智, 刘建, 吴金辉, 等, 2019. 磁性纳米复合物的制备及其在地热水中F和As的去除性能研究. 新型工业化, 9(6): 82-85. https://www.cnki.com.cn/Article/CJFDTOTAL-XXHG201906018.htm
      严克涛, 郭清海, 罗黎, 2022. 腾冲热泉中砷的甲基化和巯基化过程. 地球科学, 47(2): 622-632. doi: 10.3799/dqkx.2021.105
      杨天明, 2018. 反渗透法处理地热尾水作为采暖二次网补水试验工程. 广东化工, 45(1): 61-62, 68. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201801029.htm
      余正艳, 曹耀武, 郭清海, 2018. 基于阴离子粘土去除地热水中多种有害组分. 环境科学与技术, 41(3): 109-117. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201803017.htm
    • 加载中
    图(6) / 表(4)
    计量
    • 文章访问数:  497
    • HTML全文浏览量:  384
    • PDF下载量:  39
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-08-20
    • 网络出版日期:  2023-03-27
    • 刊出日期:  2023-03-25

    目录

      /

      返回文章
      返回