• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    湖北庙垭碳酸岩杂岩体中铌赋存状态及富集机制:矿物化学制约

    王珂 王连训 朱煜翔 马昌前 黄宏业

    王珂, 王连训, 朱煜翔, 马昌前, 黄宏业, 2024. 湖北庙垭碳酸岩杂岩体中铌赋存状态及富集机制:矿物化学制约. 地球科学, 49(2): 594-611. doi: 10.3799/dqkx.2022.345
    引用本文: 王珂, 王连训, 朱煜翔, 马昌前, 黄宏业, 2024. 湖北庙垭碳酸岩杂岩体中铌赋存状态及富集机制:矿物化学制约. 地球科学, 49(2): 594-611. doi: 10.3799/dqkx.2022.345
    Wang Ke, Wang Lianxun, Zhu Yuxiang, Ma Changqian, Huang Hongye, 2024. Occurrences and Enrichment Mechanism of Niobium in Miaoya Carbonatite Complex, Hubei Province, China: Constrains from Mineral Chemistry. Earth Science, 49(2): 594-611. doi: 10.3799/dqkx.2022.345
    Citation: Wang Ke, Wang Lianxun, Zhu Yuxiang, Ma Changqian, Huang Hongye, 2024. Occurrences and Enrichment Mechanism of Niobium in Miaoya Carbonatite Complex, Hubei Province, China: Constrains from Mineral Chemistry. Earth Science, 49(2): 594-611. doi: 10.3799/dqkx.2022.345

    湖北庙垭碳酸岩杂岩体中铌赋存状态及富集机制:矿物化学制约

    doi: 10.3799/dqkx.2022.345
    基金项目: 

    国家自然科学基金项目 42072082

    湖北省自然科学基金项目 2022CFB116

    核工业地质局地勘费项目 202107

    详细信息
      作者简介:

      王珂(1994-),男,硕士研究生,主要从事铀矿勘查与研究工作. ORCID:0000-0003-1931-2883. E-mail:1243401962@qq.com

      通讯作者:

      王连训,ORCID: 0000-0002-5389-6782. E-mail: lianxunwang@cug.edu.cn

    • 中图分类号: P61

    Occurrences and Enrichment Mechanism of Niobium in Miaoya Carbonatite Complex, Hubei Province, China: Constrains from Mineral Chemistry

    • 摘要: 庙垭碳酸岩杂岩体位于南秦岭武当地块西南缘,主要由富铌、稀土的碳酸岩和正长岩组成,是我国第二大碳酸岩型铌矿床. 前人对碳酸岩中稀土元素的矿化机理进行了详细的研究,但铌元素的富集机制还尚未清楚. 因此对其开展了详细的岩石学、矿物学及矿物化学研究. 庙垭杂岩体主要由碳酸岩和正长岩组成,碳酸岩多呈岩脉或岩株状侵入正长岩中. 庙垭铌-稀土矿床含铌矿物主要有铌金红石、含Nb-Ti-Zr矿物、铌铁矿、富铀烧绿石和铌钛铀矿等. 铌金红石和Nb-Ti-Zr氧化物呈自形-半自形,Nb2O5含量较高(分别为1.10%~3.35%和8.58%~18.64%). Nb-Ti-Zr硅酸盐赋存于Nb-Ti-Zr氧化物裂隙内或沿其边缘分布,常与钠长石细脉伴生,Nb2O5含量为1.75%~6.00%. 铌铁矿呈它形细粒状结构,空间上与含Nb-Ti-Zr氧化物共生,显示较高的Nb2O5及FeO含量(72.30%~75.75%和18.52%~18.81%). 富铀烧绿石呈不规则粒状或者交生结构,具有较高含量的Nb2O5(35.42%~36.45%)和UO2(25.68%~26.76%),高的A位空缺值(0.55~0.74 apfu)和低的Na2O、F含量(低于检测线和0.32%~0.79%). 铌钛铀矿呈残骸状或椭圆状假晶,空间上依次伴生赤铁矿和黄铁矿,显著富集Nb2O5、UO2和TiO2.(结论). 综上,初步认为庙垭碳酸岩杂岩体中铌富集受控于岩浆和热液过程. 贫铌矿物和富F矿物在富Nb母岩浆中早先结晶导致残余熔体中Nb含量逐渐升高,最终结晶出铌金红石、Nb-Ti-Zr氧化物、富铀烧绿石、铌钛铀矿. 后期富Na、Si、Fe热液沿裂隙交代原生含铌矿物,经活化、迁移、沉淀形成了次生含铌矿物(Nb-Ti-Zr硅酸盐、铌铁矿等).

       

    • 图  1  (a)秦岭造山带及邻区构造单元划分简图;(b)秦岭造山带组成及岩浆岩时空分布地质简图;(c)湖北庙垭碳酸岩杂岩体地质简图

      a,b. 据 Dong et al.(2011)修改;c. 据Su et al.(2019)修改

      Fig.  1.  (a) Tectonic units division of the Qinling Orogenic Belt and its adjacent areas; (b) Geological sketch map showing the constitution of the Qinling Orogenic Belt and distribution of magmatic rocks; (c) Geological sketch map of the Miaoya carbonatite complex, Hubei province, China

      图  2  庙垭碳酸岩杂岩体野外露头和镜下显微照片

      a,b. 方解石碳酸岩呈岩脉状或透镜状侵入正长岩类中;c. 混染正长岩手标本;d. 方解石碳酸岩手标本;e. 混染正长岩镜下特征(Bi.黑云母;Cal.方解石;Kfs.钾长石;正交偏光镜);f. 方解石碳酸岩镜下特征(Ap.磷灰石;Cal.方解石;正交偏光镜)

      Fig.  2.  Field and microscopic photographs in the Miaoya carbonatite complex

      图  3  庙垭碳酸岩杂岩体中铌金红石、含Nb-Ti-Zr矿物及铌铁矿显微照片

      a. 自形-半自形铌金红石(Rt. 金红石;Cal. 方解石;单偏光镜);b. 铌金红石的BSE图像;c. 方解石和钠长石细脉充填于长柱状Nb-Ti-Zr氧化物裂隙内(Ab. 钠长石;Ap. 磷灰石;Cal. 方解石;Kfs. 钾长石;正交偏光);d,e. 亮色Nb. Ti. Zr硅酸盐沿Nb-Ti-Zr氧化物的裂隙或边缘分布(Ab. 钠长石;Ap. 磷灰石;Cal. 方解石;Kfs. 钾长石);f. 独居石呈脉状分布在含Nb-Ti-Zr矿物相邻的磷灰石间隙之中(Ap. 磷灰石;Mnz. 独居石);g~i. 铌铁矿呈不规则它形细粒状结构,产出于方解石间隙之中,与含Nb. Ti. Zr矿物伴生(Ap. 磷灰石;Cal. 方解石;Clb. 铌铁矿)

      Fig.  3.  Microscopic photographs of the Nb-rutile, Nb-Ti-Zr bearing minerals and ferrocolumbite in the Miaoya carbonatite complex

      图  4  庙垭富铀烧绿石显微照片和化学特征

      a,b. 类型1富铀烧绿石镜下(单偏光镜)及BSE照片;c,d. 类型2富铀烧绿石镜下(单偏光镜)及BSE照片;e. 烧绿石Nb-Ta-Ti+Zr分类图解(底图据Atencio et al.,2010;底图数据来自Sharygin et al.,2009Zaitsev et al.,2012Dumanska-Słowik et al.,2014Xu et al.,2015Khromova et al.,2017);f. 类型2富铀烧绿石能谱分析显示图(Cal. 方解石;Ilm. 钛铁矿;Pcl. 烧绿石;Xtm. 磷钇矿)

      Fig.  4.  Microscopic photograph and chemical feature of the U-rich pyrochlore in the Miaoya carbonatite complex

      图  5  庙垭铌钛铀矿显微照片和化学特征

      a,b. 铌钛铀矿镜下(单偏光镜)及BSE照片(Btf. 铌钛铀矿;Cal. 方解石;Hem. 赤铁矿;Py. 黄铁矿);c. 铌钛铀矿能谱分析显示图

      Fig.  5.  Microscopic photograph and chemical feature of the Betafite in the Miaoya carbonatite complex

      图  6  庙垭杂岩体(a)全岩Nb-Ta含量对比和(b)年代学数据统计对比

      数据来源于 Xu et al.(20142015)Ying et al.(20172020)Zhu et al.(2017)应元灿(2018)Su et al.(2019)Zhang et al.(2019)Wu et al.(2021)

      Fig.  6.  (a) Comparison of whole-rock Nb-Ta contents and (b) geochronological data of the Miaoya complex

      图  7  庙垭碳酸岩杂岩体中含铌矿物地球化学特征图

      a. 铌金红石Nb2O5+FeO与TiO2关系图;b,c. Nb-Ti-Zr氧化物与Nb-Ti-Zr硅酸盐化学成分对比图;d. 富铀烧绿石Nb2O5与Ta2O5关系图;e. 富铀烧绿石Na+Ca(apfu)与A-□关系图;f. 烧绿石成因类型判别图(底图据Tremblay et al.,2017修改,底图数据来自Sharygin et al.,2009Zaitsev et al.,2012Dumanska-Słowik et al.,2014Xu et al.,2015Khromova et al.,2017Wu et al.,2021

      Fig.  7.  Geological chemical characteristics of Nb-bearing minerals in the Miaoya carbonatite complex

      图  8  庙垭碳酸岩杂岩体铌富集模式图

      Ab. 钠长石;Ap. 磷灰石;Bi. 黑云母;Btf. 铌钛铀矿;Cal.方解石;Clb. 铌铁矿;Hem. 赤铁矿;Ilm. 钛铁矿;Kfs. 钾长石;Nb-Rt. 铌金红石;Pcl. 烧绿石;Py. 黄铁矿;Xtm. 磷钇矿

      Fig.  8.  The model pattern of Nb enrichment in the Miaoya carbonatite complex

      表  1  庙垭铌金红石化学成分(%)分析测试结果

      Table  1.   Chemical compositions (%) for the Miaoya Nb-rutile

      岩性 方解石碳酸岩
      点号 Rt-1 Rt-2 Rt-3 Rt-4 Rt-5 Rt-6
      FeOT 0.49 1.26 1.27 1.03 1.04 1.17
      TiO2 97.58 94.76 94.49 95.24 94.62 95.39
      Nb2O5 1.09 2.91 3.35 2.57 2.05 2.41
      V2O3 bdl bdl bdl bdl bdl bdl
      Total 98.67 97.67 97.83 97.80 96.68 97.80
      基于2个氧原子计算
      FeT 0.01 0.01 0.01 0.01 0.01 0.01
      Ti 0.99 0.97 0.97 0.97 0.98 0.98
      Nb bdl 0.01 0.01 0.01 0.01 0.01
      V bdl bdl bdl bdl bdl bdl
      注:bdl表示低于检测线
      下载: 导出CSV

      表  2  庙垭铌铁矿化学成分(%)分析结果

      Table  2.   Chemical compositions (%) for the Miaoya ferrocolumbite

      岩性 方解石碳酸岩
      点号 Clb-1 Clb-2 Clb-3 Clb-4 Clb-5 Clb-6
      TiO2 1.33 1.47 1.42 1.63 1.85 1.66
      FeOT 18.61 18.54 18.52 18.75 18.79 18.81
      MnO 1.87 2.09 2.27 2.06 1.86 1.87
      Ta2O5 5.74 1.30 1.70 5.26 2.46 6.45
      Nb2O5 72.91 75.75 75.51 72.31 73.20 72.31
      Total 100.46 99.14 99.41 100.01 98.15 101.09
      基于6个氧原子计算
      Mn 0.09 0.10 0.11 0.10 0.09 0.09
      FeT 0.90 0.88 0.88 0.91 0.91 0.91
      SumA 0.99 0.98 0.99 1.01 1.00 1.00
      Ti 0.06 0.06 0.06 0.07 0.08 0.07
      Ta 0.05 0.01 0.02 0.05 0.02 0.06
      Nb 1.89 1.93 1.92 1.88 1.90 1.87
      SumB 2.00 2.00 2.00 2.00 2.00 2.00
      Mn/(Mn+Fe) 0.09 0.10 0.11 0.10 0.09 0.09
      Ta/(Nb+Ta) 0.03 0.01 0.01 0.03 0.01 0.03
      下载: 导出CSV

      表  3  庙垭含Nb-Ti-Zr矿物化学成分(%)分析结果

      Table  3.   Chemical compositions (%) for the Miaoya Nb-Ti-Zr bearingminerals

      岩性 混染正长岩 混染正长岩
      样品号 MY02-9 MY02-9
      类型 Nb-Ti-Zr氧化物 Nb-Ti-Zr硅酸盐
      点号 Nb-1 Nb-2 Nb-3 Nb-4 Nb-5 Nb-6 Nb-7 Nb-8 Nb-9 Nb-10
      SiO2 7.62 1.08 0.10 9.77 5.68 28.25 20.88 23.92 29.31 27.23
      TiO2 47.49 20.47 34.73 26.42 36.23 9.58 26.78 22.11 9.61 5.84
      BaO 0.40 0.39 0.25 0.27 0.26 0.13 0.25 0.16 0.13 0.07
      CaO 0.37 0.76 0.14 0.31 0.14 0.08 0.29 0.20 0.10 0.29
      ThO2 0.55 3.12 0.10 0.41 0.59 0.26 0.34 0.77 0.43 0.67
      FeOT 5.55 3.72 2.80 5.10 2.42 0.92 2.05 1.95 1.00 0.64
      SrO 0.31 0.50 0.34 0.35 0.27 0.92 0.50 0.39 0.53 0.66
      Ta2O5 7.16 5.20 1.99 4.08 2.18 1.15 3.64 2.75 1.24 0.72
      Al2O3 0.09 0.14 0.27 0.21 0.30 0.05 0.15 0.09 bdl 0.19
      Ce2O3 0.13 1.24 0.08 0.17 0.22 0.04 0.05 0.02 0.04 0.07
      Nd2O3 0.10 1.16 0.07 0.28 0.30 0.06 0.04 0.05 0.06 0.13
      ZrO2 11.48 40.81 49.41 34.74 43.57 55.09 37.47 42.97 54.90 55.15
      Nb2O5 16.51 18.64 9.75 15.87 8.58 2.89 6.00 4.68 2.95 1.75
      UO2 3.46 1.52 0.40 1.29 0.44 0.77 1.37 0.67 1.08 1.74
      Total 101.22 98.76 100.43 99.25 101.19 100.18 99.80 100.72 101.36 95.15
      注:bdl表示低于检测线.
      下载: 导出CSV

      表  4  庙垭富铀烧绿石化学成分(%)分析测试结果

      Table  4.   Chemical compositions (%) for the Miaoya U-rich pyrochlore

      样品号 MY02-1 MY02-9
      岩性 方解石碳酸岩 混染正长岩
      类型 类型1
      点号 Pcl-1 Pcl-2 Pcl-3 Pcl-4 Pcl-1 Pcl-2 Pcl-3
      SiO2 1.79 1.91 1.75 1.85 1.80 1.83 1.79
      TiO2 10.70 10.85 10.41 10.83 10.75 10.50 10.68
      Na2O bdl bdl bdl bdl bdl bdl bdl
      FeOT 1.62 1.61 1.70 1.69 1.65 1.70 1.72
      MnO 0.02 0.03 0.01 0.05 0.04 0.04 0.03
      CaO 8.31 6.92 8.62 7.57 8.05 7.42 7.8
      BaO 0.53 0.49 0.48 0.5 0.52 0.55 0.6
      SrO 2.62 1.25 2.65 1.45 2.20 2.1 1.98
      Nb2O5 35.42 36.39 36.33 36.05 36.45 35.90 36.25
      UO2 26.56 25.68 26.42 26.23 26.20 26.76 26.40
      Ta2O5 9.22 8.89 8.36 8.81 8.70 9.12 8.95
      ThO2 bdl bdl bdl bdl bdl bdl bdl
      Ce2O3 0.35 0.51 0.49 0.60 0.54 0.62 0.65
      Nd2O3 0.21 0.48 0.20 0.46 0.40 0.30 0.50
      F 0.68 0.32 0.79 0.35 0.50 0.65 0.56
      H2O* 3.10 3.27 2.94 2.09 2.02 1.93 1.99
      O=F -0.28 -0.14 -0.33 -0.15 -0.21 -0.27 -0.24
      Total 100.85 98.46 100.80 98.38 99.61 99.15 99.66
      基于2个金属阳离子计算
      Ca 0.60 0.49 0.62 0.54 0.57 0.53 0.56
      Na bdl bdl bdl bdl bdl bdl bdl
      Mn bdl bdl bdl bdl bdl bdl bdl
      Ba 0.01 0.01 0.01 0.01 0.01 0.01 0.02
      Sr 0.10 0.05 0.10 0.06 0.08 0.08 0.08
      FeT 0.09 0.09 0.10 0.09 0.09 0.10 0.10
      LREE 0.02 0.03 0.02 0.03 0.03 0.03 0.03
      U 0.40 0.38 0.40 0.39 0.39 0.40 0.39
      Th bdl bdl bdl bdl bdl bdl bdl
      Nb 1.08 1.09 1.11 1.08 1.09 1.09 1.09
      Ta 0.17 0.16 0.15 0.16 0.16 0.17 0.16
      Ti 0.54 0.54 0.53 0.54 0.54 0.53 0.53
      Si 0.12 0.13 0.12 0.12 0.12 0.12 0.12
      F 0.14 0.07 0.17 0.07 0.11 0.14 0.12
      OH 0.86 0.93 0.83 0.93 0.89 0.86 0.88
      A-vancancy 0.57 0.74 0.55 0.67 0.61 0.64 0.63
      注:bdl表示低于检测线.
      下载: 导出CSV
    • Ackerman, L., Ulrych, J., Řanda, Z., et al., 2015. Geochemical Characteristics and Petrogenesis of Phonolites and Trachytic Rocks from the České Středohoří Volcanic Complex, the Ohře Rift, Bohemian Massif. Lithos, 224: 256-271. https://doi.org/10.1016/j.lithos.2015.03.014
      Atencio, D., Andrade, M. B., Christy, A. G., et al., 2010. The Pyrochlore Supergroup of Minerals: Nomenclature. The Canadian Mineralogist, 48(3): 673-698. https://doi.org/10.3749/canmin.51.5.803
      Brenan, J., 1993. Kinetics of Fluorine, Chlorine and Hydroxyl Exchange in Fluorapatite. Chemical Geology, 110(1): 195-210. https://doi.org/10.1016/0009-2541(93)90254-G
      Cerny, P., Novak, M., Chapman, R., et al., 2007. Subsolidus Behavior of Niobian Rutile from the Písek Region, Czech Republic: a Model for Exsolution in W- and Fe2+ >> Fe3+-Rich Phases. Journal of Geosciences, 52(1-2): 143-159. https://doi.org/10.3190/jgeosci.008
      Chakhmouradian, A. R., Reguir, E. P., Kressall, R. D., et al., 2015. Carbonatite-Hosted Niobium Deposit at Aley, Northern British Columbia (Canada): Mineralogy, Geochemistry and Petrogenesis. Ore Geology Reviews, 64: 642-666. https://doi.org/10.1016/j.oregeorev.2014.04.020
      Chao, H., Su, S., Yang, X., et al., 2016. Research on the Geological Characteristics of the Miaoya REE Deposit, Hubei Province. Earth Science Frontiers, 23(4): 102-108 (in Chinese with English abstract).
      Dong, Y. P., Zhang, G. W., Neubauer, F, et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3), 213-237. https://doi.org/10.1016/j.jseaes.2011.03.002
      Dumanska-Słowik, M., Pieczka, A., Tempesta, G., et al., 2014. "Silicified" Pyrochlore from Nepheline Syenite (Mariupolite) of the Mariupol Massif, SE Ukraine: A New Insight into the Role of Silicon in the Pyrochlore Structure. American Mineralogist, 99(10): 2008-2017. https://doi.org/10.2138/am-2014-4896
      Dostal, J., Kontak, D. J., Karl, S. M., 2014. The Early Jurassic Bokan Mountain Peralkaline Granitic Complex (Southeastern Alaska): Geochemistry, Petrogenesis and Rare-Metal Mineralization. Lithos, 202: 395-412. https://doi.org/10.1016/j.lithos.2014.06.005
      Gao, L. G., Chen, Y. W., Bi, X. W., et al., 2019. Chronology and Mineral Chemistry of the Uranium Minerals in Huayangchuan Uranium-Niobium Deposit, Shaanxi Province and Its Implications for Uranium Mineralization. Acta Geologica Sinica, 93(9), 2273-2291 (in Chinese with English abstract).
      Huang, H., Zhang, Z., Santosh, M., et al., 2014. Geochronology, Geochemistry and Metallogenic Implications of the Boziguo'er Rare Metal-Bearing Peralkaline Granitic Intrusion in South Tianshan, NW China. Ore Geology Reviews, 61: 157-174. https://doi.org/10.1016/j.oregeorev.2014.01.011
      Li, G. G., Yang, G. M., Xiong, M., 2014. A New Mineral Classification and of Pyrochlore Super-Group Characteristics of Pyrochlore Super-Group Minerals in China. Acta Mineralogica Sinica, 34(2): 153-158 (in Chinese with English abstract).
      Linnen, R. L., Keppler, H., 1997. Columbite Solubility in Granitic Melts: Consequences for the Enrichment and Fractionation of Nb and Ta in the Earth's Crust. Contributions to Mineralogy and Petrology, 128: 213-227. https://doi.org/10.1007/s004100050304
      Li, S., 1980. Geochemical Features and Petrogenesis of Miaoya Carbonatites, Hubei Province. Chinese Journal of Geochemistry, 1(4): 409-420 (in Chinese with English abstract).
      Li, S., 1990. Age and Genesis of the Alkaline Rocks in Northern Hubei Province. Acta Petrologica Sinica, 6(5): 286-292 (in Chinese with English abstract).
      Li, Z. D., Li, S. P., Guo, H., et al., 2022. Geochemical, U-Pb Age and Nd-Isotopic Characteristics of Titanite in Alkaline Rocks from Dazhuang Nb-REE Deposit in Southern Margin of North China Craton. Earth Science, 47(04): 1415-1434 (in Chinese with English abstract).
      Liu, S., Ding, L., Fan, H. R., et al., 2020. Hydrothermal Genesis of Nb Mineralization in the Giant Bayan Obo REE-Nb-Fe Deposit (China): Implicated by Petrography and Geochemistry of Nb-Bearing Minerals. Precambrian Research, 348: 105864. https://doi.org/10.1016/j.precamres.2020.105864
      Lu, X. S., Zhou, B., Sun, T., et al., 2021. Research and Exploration Progress of Alkaline Carbonatite and Related Nb-Ta-REE Deposits in Northwest Hubei Province. Resources Environment & Engineering, 35(03): 279-284+312 (in Chinese with English abstract).
      Lukyanova, E. V., Akinfiev, N. N., Zotov, A. V, et al., 2017. Niobium in Hydrothermal Systems Related to Alkali Granites: Thermodynamic Description of Hydroxo and Hydroxofluoride Complexes. Geology of Ore Deposits, 59(4): 305-314. https://doi.org/10.1134/S1075701517040031
      Lumpkin, G. R., Ewing, R. C., 1995. Geochemical Alteration of Pyrochlore Group Minerals: Pyrochlore Subgroup. American. Mineralist, 80: 732-743.
      Khromova, E. A., Doroshkevich, A. G., Sharygin, V. V., et al., 2017. Compositional Evolution of Pyrochlore-Group Minerals in Carbonatites of the Belaya Zima Pluton, Eastern Sayan. Geology of Ore Deposits, 59(8): 752-764. https://doi.org/10.1134/S1075701517080037
      Mccreath, J. A., Finch, A. A., Herd, D. A., et al., 2013. Geochemistry of Pyrochlore Minerals from the Motzfeldt Center, South Greenland: The Mineralogy of a Syenite-Hosted Ta, Nb Deposit. American Mineralogist, 98(2-3): 426-438. https://doi.org/10.2138/am.2013.4068
      Mitchell, R. H., Kjarsgaard, B. A., 2004. Solubility of Niobium in the System CaCO3-CaF2-NaNbO3 at 0.1 GPa Pressure: Implications for the Crystallization of Pyrochlore from Carbonatite Magma. Contributions to Mineralogy and Petrology, 148(3): 281-287. https://doi.org/10.1007/s00410-004-0603-1
      Mitchell, R. H., 2015. Primary and Secondary Niobium Mineral Deposits Associated with Carbonatites. Ore Geology Reviews, 64: 626-641. https://doi.org/10.1016/j.oregeorev.2014.03.010
      Migdisov, A., Williams-Jones, A. E., Brugger, J, et al., 2016. Hydrothermal Transport, Deposition, and Fractionation of the REE: Experimental Data and Thermodynamic Calculations. Chemical Geology, 439, 13-42. https://doi.org/10.1016/j.chemgeo.2016.06.005
      Moghazi, A. M., Harbi, H. M., Ali, K. A., 2011. Geochemistry of the Late Neoproterozoic Hadb Adh Dayheen Ring Complex, Central Arabian Shield: Implications for the Origin of Rare-Metal-Bearing Post-Orogenic A-Type Granites. Journal of Asian Earth Sciences, 42: 1324-1340. https://doi.org/10.1016/j.jseaes.2011.07.018
      Nie, X., Wang, Z., Chen, L., et al., 2020. Mineralogical Constraints on Nb-REE Mineralization of the Zhujiayuan Nb (-REE) Deposit in the North Daba Mountain, South Qinling, China. Geological Journal, 55(6): 4845-4863. https://doi.org/10.1002/gj.3710
      Schulz, K. J., Deyoung, J. H., Seal, R. R., et al., 2017. Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply. Geological Survey. https://doi.org/10.3133/pp1802
      Sharygin, V. V., Sobolev, N. V., Channer, D. M. D. R., 2009. Oscillatory-Zoned Crystals of Pyrochlore-Group Minerals from the Guaniamo Kimberlites, Venezuela. Lithos, 112: 976-985. https://doi.org/10.1016/j.lithos.2009.03.049
      Song, W. L., Xu, C., Wang, L. J., et al., 2013. Review of the Metallogenesis of the Endogenetic Rare Earth Elements Deposits Related to Carbonatite-Alkaline Complex. Acta Entiarum Naturalium Universitatis Pekinensis, 49(4): 725-740 (in Chinese with English abstract).
      Spandler, C., Morris, C., 2016. Geology and Genesis of the Toongi Rare Metal (Zr, Hf, Nb, Ta, Y and REE) Deposit, NSW, Australia, and Implications for Rare Metal Mineralization in Peralkaline Igneous Rocks. Contributions to Mineralogy and Petrology, 171(12): 104. https://doi.org/10.1007/s00410-016-1316-y
      Stepanov, A., Mavrogenes, J. A., Meffre, S., et al., 2014. The Key Role of Mica during Igneous Concentration of Tantalum. Contributions to Mineralogy and Petrology, 167: 1-8. https://doi.org/10.1007/s00410-014-1009-3
      Su, J. H., Zhao, X. F., Li, X. C., et al., 2019. Geological and Geochemical Characteristics of the Miaoya Syenite-Carbonatite Complex, Central China: Implications for the origin of REE-Nb-Enriched Carbonatite. Ore Geology Reviews, 113: 103101. https://doi.org/10.1016/j.oregeorev.2019.103101
      Tremblay, J., Bédard, L. P., Matton, G., 2017. Columbitization of Fluorcalciopyrochlore by Hydrothermalism at the Saint-Honoré Alkaline Complex, Québec (Canada): New Insights on Halite in Carbonatites. Ore Geology Reviews, 91: 695-707. https://doi.org/10.1016/j.oregeorev.2017.08.027
      Wang, F. L., Zhao, T. P., Chen, W., 2012. Advances in Study of Nb-Ta Ore Deposits in Panxi Area and Tentative Discussion on Genesis of These Ore Deposits. Mineral Deposits, 31(2): 293-308 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.02.010
      Wang, G., 2014. Metallogeny of the Mesozoic and Paleozoic Volcanic Igneous Event in Ziyang-Langao Areas, North Dabashan(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Wang, K., Wang, L. X., Ma, C. Q., et al., 2021. Mineralogy and Geochemistry of the Zhuxi Nb-Rich Trachytic Rocks, South Qinling (China): Insights into the Niobium Mineralization during Magmatic-Hydrothermal Processes. Ore Geology Reviews, 104346. https://doi.org/10.1016/j.oregeorev.2021.104346
      Wang, L. X., Ma, C. Q., Zhang, C., et al., 2018. Halogen Geochemistry of I- and A-Type Granites from Jiuhuashan Region (South China): Insights into the Elevated Fluorine in A-Type Granite. Chemical Geology, 478: 164-182. https://doi.org/10.1016/j.chemgeo.2017.09.033
      Wang, Z. Q., Yan, Q. R., Yan. Z., et al., 2009. New Division of the Main Tectonic Units of the Qinling Orogenic Belt, Central China. Acta Geologica Sinica, 83(11): 5-24 (in Chinese with English abstract).
      Webster, J. D., Tappen, C. M., Mandeville, C. W., 2009. Partitioning Behavior of Chlorine and Fluorine in the System Apatite-Melt-Fluid. Ⅱ: Felsic Silicate Systems at 200 MPa. Geochimica et Cosmochimica Acta, 73(3): 559-581. https://doi.org/10.1016/j.gca.2008.10.034
      Wu, B., Wang, R. C., Liu, X. D., et al., 2018. Chemical Composition and Alteration Assemblages of Eudialyte in the Saima Alkaline Complex, Liaoning Province, and Its Implication for Alkaline Magmatic-Hydrothermal Evolution. Acta Petrologica Sinica, 34(6): 1741-1757 (in Chinese with English abstract).
      Wu, B., Wang, R. C., Guo, G. L., et al., 2020. Compositional Variations of Rinkite in the Saima Alkaline Complex, Liaoning Province, and Its Implications for Alkaline Magma Evolution. Earth Science, 45(2): 467-478 (in Chinese with English abstract).
      Wu, B., Hu, Y. Q., Bonnetti, C., et al., 2021. Hydrothermal Alteration of Pyrochlore Group Minerals from the Miaoya Carbonatite Complex, Central China and Its Implications for Nb Mineralization. Ore Geology Reviews, 132: 104059. https://doi.org/10.1016/j.oregeorev.2021.104059
      Wu, M., Xu, C., Wang, L. J., et al., 2011. A Preliminary Study on Genesis of REE Deposit in Miaoya. Acta Mineralogica Sinica, 31(3): 478-484 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB201103024.htm
      Wu, M. Q., Samson, I. M., Zhang, D. H., 2017. Textural and Chemical Constrains on the Formation of Disseminated Granite-Hosted W-Ta-Nb Mineralization at the Dajishan Deposit, Nanling Range, Southeastern China. Economic Geology. 112: 855-887. doi: 10.2113/econgeo.112.4.855
      Xu, C., Chakhmouradian, A. R., Taylor, R. N., et al., 2014. Origin of Carbonatites in the South Qinling Orogen: Implications for Crustal Recycling and Timing of Collision between the South and North China Blocks. Geochimica et Cosmochimica Acta, 143: 189-206. https://doi.org/10.1016/j.gca.2014.03.041
      Xu, C., Kynicky, J., Chakhmouradian, A. R., et al., 2015. A Case Example of the Importance of Multi-Analytical Approach in Deciphering Carbonatite Petrogenesis in South Qinling Orogen: Miaoya Rare-Metal Deposit, Central China. Lithos, 227: 107-121. https://doi.org/10.1016/j.lithos.2015.03.024
      Xu, C., Zeng, L., Song, W. L., et al., 2017. Orogenic Carbonatite Petrogenesis and Deep Carbon Recycle. Bulletin of Mineralogy Petrology and Geochemistry, 36(2): 213-221 (in Chinese with English abstract).
      Xue, S., Ling, M. X., Liu, Y. L., et al., 2020. The Formation of the Giant Huayangchuan U-Nb Deposit Associated with Carbonatite in the Qingling Orogenic Belt. Ore Geology Reviews, 122: 103498. https://doi.org/10.1016/j.oregeorev.2020.103498
      Yang, C., Liu, C. X., Liu, W. L., et al., 2017. Geochemical Characteristics of Trachyte and Nb Mineralization Process in Tianbao Township, Zhuxi County, Southern Qinling. Acta Petrologica et Mineralogica, 36(5): 605-618 (in Chinese with English abstract).
      Yang, W. B., Shang, Q., Zhao, Z. H., et al., 2011. Petrogenic and Metallogenic Action of the Alkaline Granitoids in Baerzhe Area: A Comparison Between Mineralized and Barren Plutons. Journal of Jilin University (Earth Science Edition), 41(6): 1689-1704 (in Chinese with English abstract).
      Yang, W. B., Niu, H. C., Li, N. B., et al., 2020. Enrichment of REE and HFSE during the Magmatic-Hydrothermal Evolution of the Baerzhe Alkaline Granite, NE China: Implications for Rare Metal Mineralization. Lithos, 358: 105411. https://doi.org/10.1016/j.lithos.2020.105411
      Ying, Y. C., Chen, W., Lu, J., et al., 2017. In Situ U-Th-Pb Ages of the Miaoya Carbonatite Complex in the South Qinling Orogenic Belt, Central China. Lithos, 290: 159-171. https://doi.org/0.1016/j.lithos.2017.08.003
      Ying, Y. C., 2018. Geochronology and Geochemistry of the Miaoya Carbonatite Complex (Hubei Province): Implications for Petrogenesis and Metallogenesis(Dissertation). China University of Geoscienc, Wuhan (in Chinese with English abstract).
      Ying, Y. C., Chen, W., Simonetti, A., et al., 2020. Significance of Hydrothermal Reworking for REE Mineralization Associated with Carbonatite: Constraints from in situ Trace Element and C-Sr Isotope Study of Calcite and Apatite from the Miaoya Carbonatite Complex (China). Geochimica et Cosmochimica Acta, 280: 340-359. https://doi.org/10.1016/j.gca.2020.04.028
      Zaitsev, A. N., Williams, C. T., Wall, F., et al., 2012. Evolution of Chemical Composition of Pyrochlore Group Minerals from Phoscorites and Carbonatites of the Khibina Alkaline Massif. Geology of Ore Deposits, 54(7): 503-515. doi: 10.1134/S1075701512070094
      Zhang, D., Liu, Y., Pan, J., et al., 2019a. Mineralogical and Geochemical Characteristics of the Miaoya REE Prospect, Qinling Orogenic Belt, China: Insights from Sr-Nd-C-O Isotopes and LA-ICP-MS Mineral Chemistry. Ore Geology Reviews, 110: 102932. https://doi.org/10.1016/j.oregeorev.2019.05.018
      Zhang, G. W., 1995. Orogenic Process and Dynamic Characteristics of Qinling Orogenic Belt. Sci. China (Ser. D), 26: 193-200 (in Chinese with English abstract).
      Zhang, W., Chen, W. T., Gao, J. F., et al., 2019b. Two Episodes of REE Mineralization in the Qinling Orogenic Belt, Central China: In-Situ U-Th-Pb Dating of Bastnäsite and Monazite. Mineralium Deposita, 54(8): 1265-1280. https://doi.org/10.1007/s00126-019-00875-7
      Zheng, L., Gu, X. X., Zhang, Y. M., et al., 2014. Geochemical Compositions and Evolution of Pyrochlore and Their Relationships with Magmatic-Hydrothermal Processes in the Bonga Carbonatite-Type Nb Deposit, Huila Province, Angola. Earth Science Frontiers, 21(5): 69-89 (in Chinese with English abstract).
      Zhu, J., Wang, L., Peng, S., et al., 2017. U-Pb Zircon Age, Geochemical and Isotopic Characteristics of the Miaoya Syenite and Carbonatite Complex, Central China. Geological Journal, 52(6): 938-954. https://doi.org/10.1002/gj.2859
      Zhu, Y. X., Wang, L. X., Ma, C. Q., et al., 2020. The Neoproterozoic Alkaline Rocks from Fangcheng Area, East Qinling (China) and Their Implications for Regional Nb Mineralization and Tectonic Evolution. Precambrian Research, 350: 105852. https://doi.org/10.1016/j.precamres.2020.105852
      高龙刚, 陈佑纬, 毕献武, 等, 2019. 陕西华阳川铀铌矿床中铀矿物的年代学与矿物化学研究及其对铀成矿的启示. 地质学报, 93(9): 2273-2291. doi: 10.3969/j.issn.0001-5717.2019.09.012
      李国武, 杨光明, 熊明, 等, 2014. 烧绿石超族矿物分类新方案及烧绿石超族矿物. 矿物学报, 34(2): 153-158. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201402002.htm
      李石, 1980. 湖北庙垭碳酸岩地球化学特征及岩石成因探讨. 地球化学, (4): 345-355. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198004002.htm
      李石, 1990. 湖北庙垭正长岩—碳酸岩杂岩体铌和稀土元素赋存状态研究. 地质实验室, 6(5): 286-292.
      李志丹, 李山坡, 郭虎, 等, 2022. 华北克拉通南缘大庄铌-稀土矿床碱性岩中榍石的地球化学、U-Pb年龄和Nd同位素特征. 地球科学, 47(4): 1415-1434. doi: 10.3799/dqkx.2021.126
      鲁显松, 周豹, 孙腾, 等, 2021. 鄂西北地区碱性岩-碳酸岩及相关铌钽-稀土矿研究与勘查进展. 资源环境与工程, 35(3): 279-284+312. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202103002.htm
      宋文磊, 许成, 王林均, 等, 2013. 与碳酸岩碱性杂岩体相关的内生稀土矿床成矿作用研究进展. 北京大学学报: 自然科学版, 4(4): 725-725. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201304025.htm
      王汾连, 赵太平, 陈伟, 2012. 铌钽矿研究进展和攀西地区铌钽矿成因初探. 矿床地质, 31(2): 293-308. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201202011.htm
      王刚, 2014. 北大巴山紫阳-岚皋地区古生代火山岩浆事件与中生代成矿作用(博士学位论文). 北京: 中国地质大学.
      王宗起, 闫全人, 闫臻, 等, 2009. 秦岭造山带主要大地构造单元的新划分. 地质学报, (11): 5-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200911003.htm
      邬斌, 王汝成, 刘晓东, 等, 2018. 辽宁赛马碱性岩体异性石化学成分特征及其蚀变组合对碱性岩浆-热液演化的指示意义. 岩石学报, 34(6): 1741-1757. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201806012.htm
      邬斌, 王汝成, 郭国林, 等, 2020. 辽宁赛马碱性岩体层硅铈钛矿化学成分变化及其对碱性岩浆演化的指示意义. 地球科学, 45(2): 467-478. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202002009.htm
      吴敏, 许成, 王林均, 等, 2011. 庙垭碳酸岩型稀土矿床成矿过程初探. 矿物学报, 31(003): 478-484. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201103024.htm
      许成, 曾亮, 宋文磊, 等, 2017. 造山带碳酸岩起源与深部碳循环. 矿物岩石地球化学通报, 36(2): 213-221. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201702006.htm
      杨成, 刘成新, 刘万亮, 等, 2017. 南秦岭竹溪县天宝乡粗面岩地球化学特征与铌成矿. 岩石矿物学杂志, 36(5): 605-618. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201705003.htm
      杨武斌, 单强, 赵振华, 等, 2011. 巴尔哲地区碱性花岗岩的成岩和成矿作用: 矿化和未矿化岩体的比较. 吉林大学学报(地球科学版), 41(6): 1689-1704. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201106004.htm
      应元灿, 2018. 湖北庙垭碳酸岩杂岩体年代学和地球化学特征及成岩成矿过程(硕士学位论文). 武汉: 中国地质大学.
      张国伟, 张宗清, 董云鹏, 等, 1995. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义. 岩石学报, 11(2): 101-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199502000.htm
      晁会霞, 苏生瑞, 杨兴科, 等, 2016. 湖北庙垭稀土矿床地质特征研究. 地学前缘, 23(4): 102-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201604011.htm
      郑硌, 顾雪祥, 章永梅, 等, 2014. 安哥拉Huila省Bonga碳酸岩型铌矿床烧绿石地球化学组成, 演化及其与岩浆热液作用过程的关系. 地学前缘, 21(5): 69-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201405008.htm
    • 加载中
    图(8) / 表(4)
    计量
    • 文章访问数:  278
    • HTML全文浏览量:  347
    • PDF下载量:  77
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-27
    • 刊出日期:  2024-02-25

    目录

      /

      返回文章
      返回