• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    天山北麓中段绿洲带高砷地下水中砷的迁移转化规律

    雷米 周金龙 周殷竹 孙英 韩双宝 刘江涛 鲁涵 白凡 闫志雲

    雷米, 周金龙, 周殷竹, 孙英, 韩双宝, 刘江涛, 鲁涵, 白凡, 闫志雲, 2024. 天山北麓中段绿洲带高砷地下水中砷的迁移转化规律. 地球科学, 49(1): 253-270. doi: 10.3799/dqkx.2022.349
    引用本文: 雷米, 周金龙, 周殷竹, 孙英, 韩双宝, 刘江涛, 鲁涵, 白凡, 闫志雲, 2024. 天山北麓中段绿洲带高砷地下水中砷的迁移转化规律. 地球科学, 49(1): 253-270. doi: 10.3799/dqkx.2022.349
    Lei Mi, Zhou Jinlong, Zhou Yinzhu, Sun Ying, Han Shuangbao, Liu Jiangtao, Lu Han, Bai Fan, Yan Zhiyun, 2024. Migration and Transformation Mechanism of High Arsenic Groundwater in Oasis Belt in Middle Part of Northern Piedmont of Tianshan Mountain. Earth Science, 49(1): 253-270. doi: 10.3799/dqkx.2022.349
    Citation: Lei Mi, Zhou Jinlong, Zhou Yinzhu, Sun Ying, Han Shuangbao, Liu Jiangtao, Lu Han, Bai Fan, Yan Zhiyun, 2024. Migration and Transformation Mechanism of High Arsenic Groundwater in Oasis Belt in Middle Part of Northern Piedmont of Tianshan Mountain. Earth Science, 49(1): 253-270. doi: 10.3799/dqkx.2022.349

    天山北麓中段绿洲带高砷地下水中砷的迁移转化规律

    doi: 10.3799/dqkx.2022.349
    基金项目: 

    国家自然科学基金项目 42007161

    “新疆水利工程安全与水灾害防治重点实验室”2022年研究项目 ZDSYS-YJS-2022-10

    详细信息
      作者简介:

      雷米(1992-),男,博士研究生,主要研究方向为地下水水质演化与地下水超采区评价. ORCID:0000-0003-0546-5678. E-mail:178445085@qq.com

      通讯作者:

      周金龙,ORCID:0000-0001-5055-0252. E-mail:zjzhoujl@163.com

    • 中图分类号: P641

    Migration and Transformation Mechanism of High Arsenic Groundwater in Oasis Belt in Middle Part of Northern Piedmont of Tianshan Mountain

    • 摘要: 准噶尔盆地是典型高砷地下水分布的内陆盆地,地下水作为盆地重要饮用水源,区域供水安全存在风险,高砷地下水迁移转化规律有待进一步查明. 以天山北麓中段绿洲带为研究区,采用半变异函数模型和UNMIX源解析模型分析该区地下水砷的分布、地下水化学组分源贡献;结合地质条件、赋存环境与水文地球化学作用剖析典型剖面高砷地下水中砷的迁移转化与富集影响因素. 结果表明:研究区地下水整体为弱碱性、偏还原环境的淡水,As含量在ND~887.0 μg·L-1之间,平均值为11.2 μg·L-1ρ(As) > 10 μg·L-1的高砷地下水水化学类型以HCO3·SO4·Cl⁃Na(HSL⁃N型)和HCO3·SO4⁃Na(Na·Ca)型(HS-N(NC)型)为主. 单一结构潜水、承压水区潜水、承压水中高砷地下水占比分别为0.4%、6.4%、18.6%,高砷地下水主要富集于冲积平原深度100~300 m的承压含水层中. 原生矿物源、岩盐矿物源、土壤输入‒人为排放源、硫酸‒碳酸岩盐矿物源和环境影响源对地下水水化学组分贡献率分别为11.3%、21.1%、23.1%、23.4%和21.1%. 25组典型剖面地下水样中,24组地下水砷形态为As(Ⅴ)(占取样点的96.0%). 沿着地下水流向,从山前倾斜平原到冲积平原,地下水总As含量呈先增大后减小的变化趋势. 地下水砷富集不仅受到赋存环境中pH、Eh、HCO3-和PO43-等水化学指标的影响,还与地质条件、水文地质条件、有机质降解和溶滤作用等因素有关.

       

    • 图  1  研究区2018年土地利用类型(a);水文地质平面图(b);南北向水文地质剖面图(c)

      图a数据来源于中国科学院地理科学与资源研究所资源环境科学与数据中心,分辨率为1 km×1 km,https://www.resdc.cn/;图b改自王彩华(2005),钻孔单位涌水量以孔径203 mm、抽水降深5 m为准;图c改自Wang et al.2019

      Fig.  1.  Land use type in 2018 (a); hydrogeological map (b); north-south hydrogeological profile (c)

      图  2  基于地下水砷分类的Drove图

      Fig.  2.  Drove diagram based on arsenic classification in groundwater

      图  3  高砷地下水Eh-pH图

      Fig.  3.  Eh-pH diagram of high⁃arsenic groundwater

      图  4  南北向典型剖面地下水中As与相关指标含量沿程变化

      图中水化学指标pH为无量纲,∑As、As(Ⅴ)和硫化物单位为μg·L-1,Eh单位为mV,其余为mg·L-1;$ \frac{\mathrm{G}1}{\mathrm{H}\mathrm{S}\mathrm{-}\mathrm{N}\mathrm{C}} $表示$ \frac{\mathrm{编}\mathrm{号}}{\mathrm{水}\mathrm{化}\mathrm{学}\mathrm{类}\mathrm{型}} $;水化学类型中H、S、L、C、M和N分别表示HCO3、SO4、Cl、Ca、Mg和Na

      Fig.  4.  Variation of As and related index concentration in groundwater along the typical north-south profile

      图  5  潜水(a、b、c、d)和承压水(e、f、g、h)中As、pH、TDS和Eh的水平分布

      Fig.  5.  Horizontal distribution of As, pH, TDS and Eh in unconfined groundwater (a, b, c, d) and confined groundwater (e, f, g, h)

      图  6  地下水中As (a)、pH (b)、TDS (c)和Eh (d)的垂向分布

      Fig.  6.  Vertical distribution of As (a), pH (b), TDS (c) and Eh (d) in groundwater

      图  7  UNMIX模型中各个因子贡献百分比(a),各水化学指标的因子图谱(b),各指标之间相关性和因子之间的联系(c)

      Fig.  7.  Contribution of each factor in UNMIX model (a), contribution of each hydrochemistry index to factor (b), correlations between each index and relationship between each index and factors (c)

      图  8  研究区第四纪地质图(改自王彩华, 2005

      Fig.  8.  Quaternary geological map of the study area (modified from Wang, 2005)

      图  9  南北剖面地下水As与γCa2+/γCl-的关系

      Fig.  9.  Relationship between As and γCa2+/γCl- in groundwater in north-south section

      图  10  地下水中砷化物含量(a)和主要矿物相的饱和指数(SI)(b)

      Fig.  10.  Arsenide concentration (a) and saturation index (SI) of main mineral phases (b) in groundwater

      图  11  高砷地下水As与DOC(a)、DIC(b)的关系,DIC与DOC(c)、HCO3-(d)的关系

      Fig.  11.  Relationship between As and DOC (a), DIC (b) and relationship between DIC and DOC (c), HCO3- (d) in high arsenic groundwater

      图  12  高砷地下水As与HCO3-(a)、PO3-(b)、DO(c)和γSO42-/γCl-(d)的关系

      Fig.  12.  Relationship between As and HCO3- (a), PO3- (b), DO (c), γSO42-/γCl- (d) in high arsenic groundwater

      图  13  南北向典型剖面地下水水化学和砷形成过程

      Fig.  13.  Groundwater hydrochemistry and arsenic formation process in the north-south typical profile

      表  1  典型剖面高砷与低砷地下水中的水化学指标对比

      Table  1.   Comparison of hydrochemistry indexes in high arsenic and low-arsenic groundwater in typical profiles

      地下水As含量水平 特征值 ∑As As(Ⅲ) As(Ⅴ) pH DO Eh TDS DIC DOC PO43- HCO3- NO3- 硫化物 TFe
      高砷地下水(n=17) 最小值 12.5 0 12.5 8.2 0.35 30.1 164.5 13.54 0.29 0.04 85.46 0.15 2.0 ND
      最大值 42.6 14.8 42.3 9.2 4.52 319.0 1 474.7 29.33 1.80 0.35 163.60 4.88 72.0 0.07
      平均值 25.4 0.9 24.5 8.7 1.97 160.2 484.9 19.81 0.79 0.17 117.59 0.60 20.0 0.06
      低砷地下水(n=8) 最小值 0.5 0 0.5 7.6 0.63 33.3 220.7 15.28 0.37 0.04 101.33 2.08 4.0 ND
      最大值 7.2 0 7.2 8.4 2.96 480.3 3 028.4 120.17 1.76 0.31 629.98 21.14 66.0 0.27
      平均值 3.2 0 3.2 8.1 1.77 255.4 1 130.9 36.32 0.84 0.09 275.92 4.77 16.5 0.27
      注:n为样本数;水化学指标中pH为无量纲,∑As、As(Ⅲ)、As(Ⅴ)和硫化物的单位为μg·L-1,Eh单位为mV,其余为mg·L-1.
      下载: 导出CSV

      表  2  地下水中As、pH和TDS半方差模型特征参数

      Table  2.   Characteristic parameters of As, pH and TDS semivariance model in groundwater

      地下水类型 化学组分 理论模型 块金值C0 基台值C0+C 块金系数C0/(C0+C)(%) 变程(km) R2 RSS
      潜水 As 球状模型 0.50 1.41 35.5 52.40 0.82 0.21
      pH 指数模型 0.14 0.28 50.0 79.50 0.79 2.18×10-3
      TDS 指数模型 3.0×10‒4 1.0×10‒3 30.0 51.90 0.76 1.39×10‒6
      Eh 线性模型 6 515.11 6 515.11 100.0 90.28 0.69 1.35×107
      承压水 As 高斯模型 0.02 0.03 66.7 70.84 0.83 7.95×10‒5
      pH 指数模型 0.18 0.37 48.6 66.60 0.65 5.49×10‒3
      TDS 指数模型 2.0×10‒4 3.85×10‒3 5.2 234.60 0.54 4.56×10‒9
      Eh 指数模型 4 570 14 140 32.3 80.10 0.87 5.29×106
      下载: 导出CSV

      表  3  南北剖面不同地下水类型中砷和各指标含量统计

      Table  3.   Statistics of arsenic and index concentration in different groundwater types in the north-south section

      地下水类型 地下水As含量水平 编号/特征值 ∑As As(Ⅲ) As(Ⅴ) pH DO Eh TDS DIC DOC PO43- HCO3- NO3- 硫化物 TFe
      单一结构潜水 低砷地下水(n=2) G1 0.5 ND 0.5 8.2 2.96 438.6 316.0 26.76 0.37 0.04 170.00 5.38 66.0 ND
      G2 1.2 ND 1.2 7.9 2.85 480.3 1 029.3 39.64 0.42 0.31 218.54 15.75 10.0 ND
      平均值 0.9 ND 0.9 8.1 2.91 459.5 672.7 33.20 0.40 0.18 194.27 10.57 38.0 ND
      承压水区潜水 低砷地下水(n=3) 最小值 1.2 ND 1.2 7.6 0.90 108.1 220.7 18.00 0.85 0.04 108.66 2.08 4.0 ND
      最大值 6.8 ND 6.8 8.2 2.81 384.5 3 028.4 111.08 1.76 0.07 540.85 3.50 17.0 0.27
      平均值 3.5 ND 3.5 7.9 1.61 246.5 1 498.9 50.29 1.15 0.05 258.42 2.60 9.0 ND
      承压水 低砷地下水(n=2) G12 7.2 ND 7.2 8.4 0.63 33.3 1 274.7 21.69 1.05 0.08 137.96 2.17 6.0 ND
      G13 3.2 ND 3.2 8.2 1.53 86.2 2 237.0 120.17 1.42 0.10 629.98 21.14 14.0 ND
      平均值 5.2 ND 5.2 8.3 1.08 59.8 1 755.9 70.93 1.24 0.09 383.97 11.66 10.0 ND
      高砷地下水(n=6) 最小值 29.9 ND 29.9 8.7 1.62 63.6 367.6 23.16 0.57 0.26 94.01 0.15 4.0 ND
      最大值 38.9 ND 38.9 9.2 3.57 135.2 1 474.7 29.33 1.11 0.35 163.60 4.88 72.0 0.07
      平均值 33.8 ND 33.8 8.9 2.28 103.0 787.9 25.72 0.85 0.31 127.99 1.73 23.5 ND
      注:n为样本数;水化学指标中pH为无量纲,∑As、As(Ⅲ)、As(Ⅴ)和硫化物单位为μg·L-1,Eh单位为mV,其余为mg·L-1.
      下载: 导出CSV

      表  4  南北向剖面地下水反向水文地球化学模拟结果

      Table  4.   Reverse hydrogeochemical simulation results in groundwater of the north-south profile

      矿物相 (单一结构潜水)G1→G2 (承压水)G5→G7 (承压水)G10→G12
      方解石(CaCO3 3.28×10‒4 ‒3.64×10‒4
      白云石(CaMg(CO3)2 3.28×10‒4 1.41×10‒4 -6.36×10‒5
      石膏(CaSO4·2H2O) 3.33×10‒3 -1.18×10‒4 2.41×10‒3
      岩盐(NaCl) 3.18×10‒3 -1.96×10‒4 9.55×10‒3
      雌黄(As2S3 -2.35×10‒6 -2.33×10‒7 4.85×10‒7
      雄黄(AsS) 4.70×10‒6 5.25×10‒7 -1.39×10‒6
      CO2(g) 3.63×10‒4 1.22×10‒4 -2.82×10‒3
      NaX -1.53×10‒3 6.02×10‒4 1.27×10‒3
      CaX2 - - -1.35×10‒3
      MgX2 7.67×10‒4 -3.01×10‒4 7.17×10‒4
      注:表中正值表示溶解,负值表示沉淀,“-”表示未参加反应.
      下载: 导出CSV
    • Abdelrady, A., Sharma, S., Sefelnasr, A., et al., 2020. Characterisation of the Impact of Dissolved Organic Matter on Iron, Manganese, and Arsenic Mobilisation during Bank Filtration. Journal of Environmental Management, 258: 110003. https://doi.org/10.1016/j.jenvman.2019.110003
      An, F., Zhu, Y. F., 2009. Significance of Native Arsenic in the Baogutu Gold Deposit, Western Junggar, Xinjiang, NW China. Chinese Science Bulletin, 54(10): 1744-1749. https://doi.org/10.1007/s11434-009-0086-6
      Cao, W. G., Yang, H. F., Gao, Y. Y., et al., 2020. Prediction of Groundwater Quality Evolution in the Baoding Plain of the SNWDP Benefited Regions. Journal of Hydraulic Engineering, 51(8): 924-935 (in Chinese with English abstract).
      Cao, Y. S., Guo, H. M., Ni, P., et al., 2017. Influences of Sediments Geochemical Characteristics and Land Utilization on Groundwater Arsenic Activities. Earth Science Frontiers, 24(2): 274-285 (in Chinese with English abstract).
      Chen, T. D., Chen, X. G., Wang, W. K., et al., 2009. Investigation and Evaluation of Groundwater Resources and Environmental Problems in Junggar Basin. Geological Publishing House, Beijing, 47-64 (in Chinese).
      Deng, Y. M., Wang, Y. X., Li, H. J., et al., 2015. Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain. Earth Science, 40(11): 1876-1886 (in Chinese with English abstract).
      Gao, Z. P., Jia, Y. F., Guo, H. M., et al., 2020. Quantifying Geochemical Processes of Arsenic Mobility in Groundwater from an Inland Basin Using a Reactive Transport Model. Water Resources Research, 56(2): e2019WR025492. https://doi.org/10.1029/2019WR025492
      Gulgundi, M. S., Shetty, A., 2019. Source Apportionment of Groundwater Pollution Using Unmix and Positive Matrix Factorization. Environmental Processes, 6(2): 457-473. https://doi.org/10.1007/s40710-019-00373-y
      Guo, H. M., Ni, P., Jia, Y. F., et al., 2014. Types, Chemical Characteristics and Genesis of Geogenic High-Arsenic Groundwater in the World. Earth Science Frontiers, 21(4): 1-12 (in Chinese with English abstract).
      Guo, Q., Guo, H. M., Yang, Y. C., et al., 2014. Hydrogeochemical Contrasts between Low and High Arsenic Groundwater and Its Implications for Arsenic Mobilization in Shallow Aquifers of the Northern Yinchuan Basin, P. R. China. Journal of Hydrology, 518: 464-476. https://doi.org/10.1016/j.jhydrol.2014.06.026
      Hong, L., 1983. A Preliminary Study on the Diseases and Formation Environment of High Fluoride and High Arsenic Water in Chepaizi Area, North Kuitun, Xinjiang. Environmental Protection of Xinjiang, 5(1): 22-28 (in Chinese).
      Hou, J., 2018. Research of Evolution of Groundwater Quality and Occurrence Mechanism of Trace Inorganic Components in Shihezi Area (Dissertation). Xinjiang Agricultural University, Urumqi (in Chinese with English abstract).
      Hug, S. J., Leupin, O. X., Berg, M., 2008. Bangladesh and Vietnam: Different Groundwater Compositions Require Different Approaches to Arsenic Mitigation. Environmental Science & Technology, 42(17): 6318-6323. https://doi.org/10.1021/es7028284
      Hug, S. J., Winkel, L. H. E., Voegelin, A., et al., 2020. Arsenic and Other Geogenic Contaminants in Groundwater⁃A Global Challenge. Chimia, 74(7): 524-537. https://doi.org/10.2533/chimia.2020.524
      Kuang, J., 2005. Palaeohighs and Targets for Petroleum Exploration in Junggar Basin. Xinjiang Petroleum Geology, 26(5): 502-509 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-3873.2005.05.008
      Lei, M., Zhou, J. L., Liang, X., et al., 2022. Hydrochemical Characteristics of Pore Water and Genesis of Soda Water in the Middle of the Northern Piedmont of Tianshan Mountain, Xinjiang. Earth Science, 47(2): 674-688 (in Chinese with English abstract).
      Liu, Y. B., 2018. Nitrate Distribution and Source Apportionment in Surface and Groundwater in Manas River Basin Oasis (Dissertation). Shihezi University, Shihezi (in Chinese with English abstract).
      Niu, S. Y., Sun, A. Q., Li, H. Y., et al., 2005. Evolution of Crust-Mantle and Its Eco-Environmental Effects in Zhangjiakou-Xuanhua Region. Earth Science Frontiers, 12(4): 597-606 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2005.04.032
      Pi, K. F., Wang, Y. X., Xie, X. J., et al., 2015. Geochemical Effects of Dissolved Organic Matter Biodegradation on Arsenic Transport in Groundwater Systems. Journal of Geochemical Exploration, 149: 8-21. https://doi.org/10.1016/j.gexplo.2014.11.005
      Podgorski, J. E., Eqani, S., Khanam, T., et al., 2017. Extensive Arsenic Contamination in High-pH Unconfined Aquifers in the Indus Valley. Science Advances, 3(8): e1700935. https://doi.org/10.1126/sciadv.1700935
      Román⁃Ross, G., Cuello, G. J., Turrillas, X., et al., 2006. Arsenite Sorption and Co-Precipitation with Calcite. Chemical Geology, 233(3-4): 328-336. https://doi.org/10.1016/j.chemgeo.2006.04.007
      Schaefer, M. V., Guo, X. X., Gan, Y. Q., et al., 2017. Redox Controls on Arsenic Enrichment and Release from Aquifer Sediments in Central Yangtze River Basin. Geochimica et Cosmochimica Acta, 204: 104-119. https://doi.org/10.1016/j.gca.2017.01.035
      Senn, D. B., Hemond, H. F., 2002. Nitrate Controls on Iron and Arsenic in an Urban Lake. Science, 296(5577): 2373-2376. https://doi.org/10.1126/science.1072402
      Shaji, E., Santosh, M., Sarath, K. V., et al., 2021. Arsenic Contamination of Groundwater: A Global Synopsis with Focus on the Indian Peninsula. Geoscience Frontiers, 12(3): 101079. https://doi.org/10.1016/j.gsf.2020.08.015
      Su, Y. P., Li, Q., Tao, H. F., et al., 2022. Factors Influencing the Abnormal Spatial Distribution of Arsenic Content in Groundwater in Kuitun River Basin. Journal of Yangtze River Scientific Research Institute, 39(2): 43-49, 55 (in Chinese with English abstract).
      Stolze, L., Zhang, D., Guo, H. M., et al., 2019. Surface Complexation Modeling of Arsenic Mobilization from Goethite: Interpretation of an In-Situ Experiment. Geochimica et Cosmochimica Acta, 248: 274-288. https://doi.org/10.1016/j.gca.2019.01.008
      Sø, H. U., Postma, D., Hoang, V. H., et al., 2018. Arsenite Adsorption Controlled by the Iron Oxide Content of Holocene Red River Aquifer Sediment. Geochimica et Cosmochimica Acta, 239: 61-73. https://doi.org/10.1016/j.gca.2018.07.026
      Wallis, I., Prommer, H., Berg, M., et al., 2020. The River-Groundwater Interface as a Hotspot for Arsenic Release. Nature Geoscience, 13(4): 288-295. https://doi.org/10.1038/s41561-020-0557-6
      Wang, C. H., 2005. Environmental Geology Atlas of Xinjiang Uygur Autonomous Region. Changji Xinjiang Gold Plate Printing Co. Ltd., Changji, 13 (in Chinese).
      Wang, J. J., Liang, X., Liu, Y. F., et al., 2019. Hydrogeochemical Evolution along Groundwater Flow Paths in the Manas River Basin, Northwest China. Ground Water, 57(4): 575-589. https://doi.org/10.1111/gwat.12829
      Wen, D. G., Zhang, F. C., Zhang, E. Y., et al., 2013. Arsenic, Fluoride and Iodine in Groundwater of China. Journal of Geochemical Exploration, 135: 1-21. https://doi.org/10.1016/j.gexplo.2013.10.012
      WHO (World Health Organization), 2011. Guidelines for Drinking-Water Quality. WHO, Geneva, 541.
      Yu, G. Q., Sun, D. J., Zheng, Y., 2007. Health Effects of Exposure to Natural Arsenic in Groundwater and Coal in China: An Overview of Occurrence. Environmental Health Perspectives, 115(4): 636-642. https://doi.org/10.1289/ehp.9268
      Zhang, H. Y., Zhang, X. J., Liu, W. B., et al., 2022. Impacts of Active Tectonics on Geogenic Arsenic Enrichment in Groundwater in the Hetao Plain, Inner Mongolia. Quaternary Science Reviews, 278: 107343. https://doi.org/10.1016/j.quascirev.2021.107343
      Zhang, J., Liang, X., Liu, Y. F., et al., 2022. The Collaborative Kriging Method Based on Principal Components to Predict the Spatial Distribution of Arsenic in Groundwater. Earth Science, 48(10): 3820-3831 (in Chinese with English abstract).
      Zhang, R. Q., Liang, X., Jin, M. G., et al., 2018. Fundamentals of Hydrogeology. Geological Publishing House, Beijing, 57 (in Chinese).
      Zheng, M. L., Fan, X. D., He, W. J., et al., 2019. Superposition of Deep Geological Structural Evolution and Hydrocarbon Accumulation in the Junggar Basin. Earth Science Frontiers, 26(1): 22-32 (in Chinese with English abstract).
      Zhou, B. B., Guo, J., Chen, X. P., et al., 2021. Source Apportionment of Soil Heavy Metals in Abandoned Mining Areas in Dafan Mountain of Anhui Province Based on the UNMIX Model. Transactions of the Chinese Society of Agricultural Engineering, 37(24): 240-248 (in Chinese with English abstract).
      Zhou, Y. Z., 2018. Biogeochemical Processes in High Arsenic Groundwater in the Northwestern Hetao Basin, Inner Mongolia: Evidences from Hydrogeochemistry and Stable Isotopes (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Zhou, Y. Z., Zeng, Y. Y., Zhou, J. L., et al., 2017. Distribution of Groundwater Arsenic in Xinjiang, P. R. China. Applied Geochemistry, 77: 116-125. https://doi.org/10.1016/j.apgeochem.2016.09.005
      曹文庚, 杨会峰, 高媛媛, 等, 2020. 南水北调中线受水区保定平原地下水质量演变预测研究. 水利学报, 51(8): 924-935.
      曹永生, 郭华明, 倪萍, 等, 2017. 沉积物地球化学特征和土地利用方式对地下水砷行为的影响. 地学前缘, 24(2): 274-285.
      谌天德, 陈旭光, 王文科, 等, 2009. 准噶尔盆地地下水资源及其环境问题调查评价. 北京: 地质出版社, 47-64.
      邓娅敏, 王焰新, 李慧娟, 等, 2015. 江汉平原砷中毒病区地下水砷形态季节性变化特征. 地球科学, 40(11): 1876-1886. doi: 10.3799/dqkx.2015.168
      郭华明, 倪萍, 贾永锋, 等, 2014. 原生高砷地下水的类型、化学特征及成因. 地学前缘, 21(4): 1-12.
      洪里, 1983. 新疆奎屯北部车排子地区高氟、高砷水的病害与形成环境的初步研究. 新疆环境保护, 5(1): 22-28.
      侯珺, 2018. 石河子地区地下水水质演化与微量无机组分形成机理研究(博士学位论文). 乌鲁木齐: 新疆农业大学.
      况军, 2005. 准噶尔盆地古隆起与油气勘探方向. 新疆石油地质, 26(5): 502-509.
      雷米, 周金龙, 梁杏, 等, 2022. 新疆天山北麓中段孔隙水水化学特征及苏打水的成因. 地球科学, 47(2): 674-688. doi: 10.3799/dqkx.2021.027
      刘一博, 2018. 玛纳斯河流域绿洲区地表、地下水硝酸盐分布规律与源解析(硕士学位论文). 石河子: 石河子大学.
      牛树银, 孙爱群, 李红阳, 等, 2005. 张宣地区壳幔演化与生态效应. 地学前缘, 12(4): 597-606.
      宿彦鹏, 李巧, 陶洪飞, 等, 2022. 奎屯河流域高砷地下水砷含量空间分布异常的影响因素. 长江科学院院报, 39(2): 43-49, 55.
      王彩华, 2005. 新疆维吾尔自治区环境地质图集. 昌吉: 昌吉新疆金版印务有限公司, 13.
      张洁, 梁杏, 刘延锋, 等, 2022. 基于主成分的协克里金法对地下水砷空间分布预测. 地球科学, 48(10): 3820-3831. doi: 10.3799/dqkx.2021.180
      张人权, 梁杏, 靳孟贵, 等, 2018. 水文地质学基础. 北京: 地质出版社, 57.
      郑孟林, 樊向东, 何文军, 等, 2019. 准噶尔盆地深层地质结构叠加演变与油气赋存. 地学前缘, 26(1): 22-32.
      周蓓蓓, 郭江, 陈晓鹏, 等, 2021. 基于UNMIX模型的安徽大矾山废弃矿区土壤重金属源解析. 农业工程学报, 37(24): 240-248.
      周殷竹, 2018. 基于碳、铁稳定同位素的高砷地下水生物地球化学研究(博士学位论文). 北京: 中国地质大学.
    • 加载中
    图(13) / 表(4)
    计量
    • 文章访问数:  221
    • HTML全文浏览量:  612
    • PDF下载量:  54
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-16
    • 网络出版日期:  2024-01-24
    • 刊出日期:  2024-01-25

    目录

      /

      返回文章
      返回