• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    深层碳酸盐储层再平衡流体包裹体特征及其原始捕获条件确定

    陈勇 韩雨航 鲁雪松 宋一帆 马行陟 范俊佳

    陈勇, 韩雨航, 鲁雪松, 宋一帆, 马行陟, 范俊佳, 2023. 深层碳酸盐储层再平衡流体包裹体特征及其原始捕获条件确定. 地球科学, 48(2): 413-428. doi: 10.3799/dqkx.2022.353
    引用本文: 陈勇, 韩雨航, 鲁雪松, 宋一帆, 马行陟, 范俊佳, 2023. 深层碳酸盐储层再平衡流体包裹体特征及其原始捕获条件确定. 地球科学, 48(2): 413-428. doi: 10.3799/dqkx.2022.353
    Chen Yong, Han Yuhang, Lu Xuesong, Song Yifan, Ma Xingzhi, Fan Junjia, 2023. The Characteristics of Re⁃Equilibrated Fluid Inclusions in Deep Carbonate Reservoirs and Determination of Their Original Trapping Conditions. Earth Science, 48(2): 413-428. doi: 10.3799/dqkx.2022.353
    Citation: Chen Yong, Han Yuhang, Lu Xuesong, Song Yifan, Ma Xingzhi, Fan Junjia, 2023. The Characteristics of Re⁃Equilibrated Fluid Inclusions in Deep Carbonate Reservoirs and Determination of Their Original Trapping Conditions. Earth Science, 48(2): 413-428. doi: 10.3799/dqkx.2022.353

    深层碳酸盐储层再平衡流体包裹体特征及其原始捕获条件确定

    doi: 10.3799/dqkx.2022.353
    基金项目: 

    国家自然科学基金项目 42173042

    国家自然科学基金项目 41873070

    详细信息
      作者简介:

      陈勇(1976-),男,教授,主要从事盆地成岩成藏流体分析和油气地球化学研究工作. ORCID:0000-0002-0955-2843.E-mail:yongchenzy@upc.edu.cn

    • 中图分类号: P59

    The Characteristics of Re⁃Equilibrated Fluid Inclusions in Deep Carbonate Reservoirs and Determination of Their Original Trapping Conditions

    • 摘要: 深层碳酸盐储层中流体包裹体往往因经历复杂地质演化而发生再平衡,正确判识流体包裹体再平衡对于准确解释古流体演化具有重要意义. 以四川盆地安岳气田震旦系灯影组白云岩储层为例,通过岩相学、拉曼光谱测试及显微测温方法结合构造演化史判别了再平衡流体包裹体及其类型,并利用再平衡流体包裹体极值均一温度等数据进行PVT模拟确定了各期包裹体的原始捕获条件. 结果表明安岳气田震旦系灯影组储层中第Ⅱ、Ⅲ、Ⅳ期白云石中流体包裹体发生了爆裂变形,第Ⅴ期方解石中流体包裹体发生了拉伸变形,而第Ⅳ期石英中包裹体再平衡特征不显著,其中第Ⅱ、Ⅲ期白云石中流体包裹体在埋藏升温过程中再平衡,而第Ⅳ期白云石和第Ⅴ期方解石中流体包裹体在抬升降温过程中再平衡. 第Ⅱ、Ⅲ、Ⅳ期成岩矿物中流体包裹体的捕获压力和捕获温度依次递增,至第Ⅳ期矿物形成时达到峰值,而后第Ⅴ期方解石中流体包裹体的捕获压力和捕获温度较第Ⅳ期则出现降低. 结合流体包裹体捕获温压条件和埋藏史准确限定了各成岩期矿物的形成期次和时间,其结果可与同位素定年对比.

       

    • 图  1  四川盆地构造单元划分及主要气田分布(据郑志红,2017修改)

      Fig.  1.  Tectonic units and distribution of major gas fields in Sichuan Basin (modified from Zheng, 2017)

      图  2  灯影组白云岩成岩序列

      a. 磨溪12井,5 432.4 m,灯二段,单偏光;b. 磨溪12井,5 432.4 m,灯二段,正交光;c. 磨溪111井,5 490.1 m,灯四段,单偏光;d. 磨溪111井,5 490.1 m,灯四段,正交光;e. 磨溪111井,5 483.6 m,灯四段,单偏光;f. 磨溪111井,5 483.6 m,灯四段,正交光;Ⅰ. 早期微细晶白云石;Ⅱ. 重结晶白云石;Ⅲ. 孔洞缝边缘充填的白云石;Ⅳ⁃1. 孔洞缝内部充填的白云石;Ⅳ⁃2. 孔洞缝内部充填的石英;Ⅴ. 孔洞缝内部充填的方解石

      Fig.  2.  Diagenetic sequence of dolostone in Dengying Formation

      图  3  灯影组白云岩阴极发光特征

      a. 磨溪22井,5 415.69 m,灯四段,单偏光;b. 磨溪22井,5 415.69 m,灯四段,阴极发光;c. 磨溪12井,5 432.4 m,灯二段,单偏光;d. 磨溪12井,5 432.4 m,灯二段,阴极发光;e. 磨溪12井,5 432.4 m,灯二段,单偏光;f. 磨溪12井,5 432.4 m,灯二段,阴极发光;Ⅰ. 早期微细晶白云石;Ⅱ. 重结晶白云石;Ⅲ. 孔洞缝边缘充填的白云石;Ⅳ⁃1. 孔洞缝内部充填的白云石;Ⅳ⁃2. 孔洞缝内部充填的石英

      Fig.  3.  Cathodi cluminescence characteristics of dolostone in Dengying Formation

      图  4  Ⅱ和Ⅲ期白云石及Ⅳ期石英中流体包裹体岩相学特征

      a. 磨溪111井,5 487.16 m,灯四段;b. 磨溪111井,5 487.16 m,灯四段,第Ⅱ期白云石中体积较小的规则包裹体(蓝色箭头)及发生变形的包裹体的针状结构(红色箭头);c. 磨溪111井,5 487.16 m,灯四段;d. 磨溪111井,5 487.16 m,灯四段,第Ⅱ期白云石中体积较小的规则包裹体(蓝色箭头)及同一流体包裹体组合的包裹体呈现不同气液比(红色箭头);e. 磨溪12井,5 432.4 m,灯二段;f. 磨溪12井,5 432.4 m,灯二段,第Ⅲ期白云石中规则包裹体(蓝色箭头)及明显具有针状结构的包裹体(红色箭头);g. 磨溪12井,5 432.4 m,灯二段;h. 磨溪12井,5 432.4 m,灯二段,第Ⅳ期石英中的规则包裹体(蓝色箭头);图中左侧图片为50倍物镜下拍摄的整体照片,右侧图片为左侧图片中红框区域的局部放大图,所描述的包裹体中红色箭头所指示的是发生明显变形的包裹体,蓝色箭头所指示的是未发生明显变形的包裹体

      Fig.  4.  Petrographic characteristics of fluid inclusions in dolomite at stage Ⅱ, Ⅲ and quartz at stage Ⅳ

      图  5  Ⅳ期白云石及Ⅴ期方解石中流体包裹体岩相学特征

      a. 磨溪12井,5 432.4 m,灯二段;b. 磨溪12井,5 432.4 m,灯二段,第Ⅳ期白云石中长条形包裹体(蓝色箭头)及半环形包裹体(红色箭头);c. 磨溪12井,5 432.4 m,灯二段,第Ⅳ期白云石中规则形态包裹体的针状结构(红色箭头);d. 磨溪12井,5 432.4 m,灯二段,第Ⅳ期白云石中规则形态包裹体(蓝色箭头)及包裹体缺口(红色箭头);e. 磨溪13井,5 034.5 m,灯四段;f. 磨溪13井,5 034.5 m,灯四段,第Ⅳ期白云石中体积较小的包裹体(蓝色箭头)及不规则形态包裹体的复杂变形(红色箭头);g. 磨溪111井,5 483.6 m,灯四段;h. 磨溪111井,5 483.6 m,灯四段,第Ⅴ期方解石中长条形包裹体(蓝色箭头)及不规则形态包裹体的拉伸变形(红色箭头);图中左侧图片为50倍物镜下拍摄的整体照片,右侧图片为左侧图片中红框区域的局部放大图,所描述的包裹体中红色箭头所指示的是发生明显变形的包裹体,蓝色箭头所指示的是未发生明显变形的包裹体

      Fig.  5.  Petrographic characteristics of fluid inclusions in dolomite at stage Ⅳ and calcite at stage Ⅴ

      图  6  流体包裹体显微照片及其激光拉曼谱图

      a. 磨溪111井,5 487.16 m,灯四段,第Ⅱ期白云石中的盐水包裹体;b. 磨溪13井,5 047.9 m,灯四段,第Ⅱ期白云石中的沥青包裹体;c. 磨溪111井,5 483.6 m,灯四段,第Ⅲ期白云石中的盐水包裹体;d. 磨溪13井,5 034.5 m,灯四段,第Ⅳ期白云石中的纯液相含甲烷盐水包裹体;e. 磨溪12井,5 432.4 m,灯二段,第Ⅳ期石英中的盐水包裹体;f. 磨溪13井,5 047.9 m,灯四段,第Ⅳ期石英中的含甲烷包裹体;g. 磨溪111井,5 490.1 m,灯四段,第Ⅴ期方解石中的盐水包裹体;h. 磨溪111井,5 483.6 m,灯四段,第Ⅴ期方解石中的含甲烷包裹体

      Fig.  6.  Laser Raman spectra and micrographs of fluid inclusions

      图  7  不同期次成岩矿物中流体包裹体均一温度和盐度关系图

      a. 磨溪111井,5 487.16 m,灯四段;b. 磨溪111,5 483.6 m,灯四段;c. 磨溪12井,5 432.4 m,灯二段;d. 磨溪12井,5 432.4 m,灯二段;e. 磨溪111井,5 483.6 m,灯四段

      Fig.  7.  The relationship between homogenization temperature and salinity of fluid inclusions in different diagenetic minerals

      图  8  流体包裹体捕获温压条件演化图

      Fig.  8.  Diagram of trapping temperature and trapping pressure of fluid inclusions

      图  9  高石梯-磨溪地区埋藏史

      Fig.  9.  Burial history of Gaoshiti⁃Moxi area

      表  1  第Ⅳ期及Ⅴ期矿物中包裹体甲烷密度及摩尔体积计算结果

      Table  1.   The density and molar volume calculation results of methane inclusions in minerals at stage Ⅳ and Ⅴ

      期次 $ {\upsilon }_{1} $(cm-1 ρ(g/cm3 $ {V}_{\mathrm{m}} $(cc/mol)
      第Ⅳ期白云石 2 911.69 0.274 74 58.389 85
      第Ⅳ期石英 2 911.32 0.293 78 54.604 79
      第Ⅳ期石英 2 911.32 0.293 95 54.573 75
      第Ⅳ期石英 2 911.32 0.293 79 54.604 17
      第Ⅴ期方解石 2 912.48 0.235 48 68.126 24
      下载: 导出CSV

      表  2  不同成岩期次矿物中流体包裹体的捕获温度和捕获压力

      Table  2.   Trapping temperature and trapping pressure of fluid inclusions at different diagenetic sequence

      样品信息 期次 均一温度(℃) 冰点(℃) 盐度
      (%)
      捕获温度(℃) 捕获压力(MPa)
      磨溪111
      5 487.16 m
      第Ⅱ期白云石 113 -10.1 14.04 130.12 41.69
      117 -8.6 12.39 134.99 40.77
      磨溪111
      5 483.6 m
      第Ⅲ期白云石 123 -5.9 9.08 142.76 43.50
      磨溪12
      5 432.4 m
      第Ⅳ期白云石 216 -10.4 14.36 215.70 119.27
      第Ⅳ期石英 217 -6.5 9.86 217.00 138.78
      220 -5.6 8.68 219.60 139.78
      214 -6.7 10.11 213.50 137.43
      磨溪111
      5 483.6 m
      第Ⅴ期方解石 174 -5.7 8.81 173.60 66.65
      下载: 导出CSV

      表  3  不同成岩期次白云石形成年龄与温度数据

      Table  3.   The age and temperature of dolomites at different diagenetic sequence

      本文确定的年龄与温度 U-Pb同位素测年及团簇同位素Δ47测温数据
      成岩期次 年龄(Ma) 温度(℃) 测试矿物 U-Pb年龄(Ma) Δ47温度(℃) 参考文献
      第Ⅱ期白云石 240~225 130~135 粗晶白云石 248±27 138.75 沈安江等(2021)
      第Ⅲ期白云石 225~200 135~145 粗晶白云石 216.4±7.7 / 沈安江等(2021)
      第Ⅳ期白云石 115~105 210~220 鞍状白云石 115±69 250 胡安平等(2021)
      下载: 导出CSV
    • Bakker, R. J., 1999. Adaptation of the Bowers and Helgeson (1983) Equation of State to the H2O-CO2-CH4-N2-NaCl System. Chemical Geology, 154(1): 225-236. https://doi.org/10.1016/S0009-2541(98)00133-8
      Bodnar, R. J., 1994. Synthetic Fluid Inclusions: Ⅻ. The System H2O-NaCl Experimental Determination of the Halite Liquidus and Isochores for a 40 wt% NaCl Solution. Geochimica et Cosmochimica Acta, 58(3): 1053-1063. https://doi.org/10.1016/0016-7037(94)90571-1
      Bodnar, R. J., Bethke, P. M., 1984. Systematics of Stretching of Fluid Inclusions I, Fluorite and Sphalerite at 1 Atmosphere Confining Pressure. Economic Geology, 79(1): 141-161. https://doi.org/10.2113/gsecongeo.79.1.141.
      Bodnar, R. J., Binns, P. R., Hall. D. L., 1989. Synthetic Fluid Inclusions‐Ⅵ. Quantitative Evaluation of the Decrepitation Behaviour of Fluid Inclusions in Quartz at One Atmosphere Confining Pressure. Journal of Metamorphic Geology, 7(2): 229-242. https://doi.org/10.1111/j.1525-1314.1989.tb00586.x
      Bourdet, J., Pironon, J., 2008. Strain Response and Re-equilibration of CH4-Rich Synthetic Aqueous Fluid Inclusions in Calcite during Pressure Drops. Geochimica et Cosmochimica Acta, 72(12): 2946-2959. https://doi.org/10.1016/j.gca.2008.04.012.
      Burruss, R. C., 1987. Diagenetic Palaeotemperatures from Aqueous Fluid Inclusions: Re-Equilibration of Inclusions in Carbonate Cements by Burial Heating. Mineralogical Magazine, 51(362): 477-481. https://doi.org/10.1180/minmag.1987.051.362.02.
      Cao, M. C., Chen, Y., Liu, C., et al., 2017. Mechanism and Identification of Fluid Inclusion Re-Equilibration in Diagenetic Environment of Sedimentary Basins. Geological Review, 63(1): 21-34(in Chinese with English abstract).
      Chi, G. X., Lu, H. Z., 2008. Validation and Representation of Fluid Inclusion Microthermometric Data Using the Fluid Inclusion Assemblage (FIA) Concept. Acta Petrologica Sinica, 24(9): 1945-1953(in Chinese with English abstract).
      Doppler, G., Bakker, R. J., Baumgartner, M., 2013. Fluid Inclusion Modification by H2O and D2O Diffusion: the Influence of Inclusion Depth, Size, and Shape in Re-Equilibration Experiments. Contributions to Mineralogy & Petrology, 165(6): 1259-1274. https://doi.org/10.1007/s00410-013-0857-6
      Feng, M. Y., Qiang, Z. T., Shen, P., et al., 2016. Evidences for Hydrothermal Dolomite of Sinian Dengying Formation in Gaoshiti-Moxi Area, Sichuan Basin. Acta Petrolei Sinica, 37(5): 587-598(in Chinese with English abstract).
      Ferrero, S., Bodnar, R. J., Cesare, B., et al., 2011. Re-Equilibration of Primary Fluid Inclusions in Peritectic Garnet from Metapelitic Enclaves, El Hoyazo, Spain. Lithos, 124(1): 117-131. https://doi.org/10.1016/j.lithos.2010.09.004
      Goldstein, R. H., 1986. Reequilibration of Fluid Inclusions in Low-Temperature Calcium-Carbonate Cement. Geology, 14(9): 792-795. https://doi.org/10.1130/0091-7613(1986)14<792:rofiil>2.0.co;2 doi: 10.1130/0091-7613(1986)14<792:rofiil>2.0.co;2
      Goldstein, R. H., 2001. Fluid Inclusions in Sedimentary and Diagenetic Systems. Lithos, 55(1): 159-193. https://doi.org/10.1016/S0024-4937(00)00044-X
      Hu, A. P., Shen, A. J., Chen, Y. N., et al., 2021. Reconstruction of Tectonic-Burial Evolution History of Sinian Dengying Formation in Sichuan Basin based on the Constraints of In-Situ Laser Ablation U-Pb Date and Clumped Isotopic Thermometer(Δ47). Petroleum Geology & Experiment, 43(5): 896-905+914(in Chinese with English abstract).
      Knight, C. L., Bodnar, R. J., 1989. Synthetic Fluid Inclusions: Ⅸ. Critical PVTX Properties of NaCl-H2O Solutions. Geochimica Et Cosmochimica Acta, 53(1): 3-8. https://doi.org/10.1016/0016-7037(89)90267-6
      Li, K. P., Chen, H. H., Feng, Y., 2012. Characteristics of Homogenization Temperatures of Fluid Inclusions and Application in Deeply Buried Carbonate Rocks. Natural Gas Geoscience, 23(4): 756-763(in Chinese with English abstract).
      Mei, Q. H., He, D. F., Wen, Z., et al., 2014. Geologic Structure and Tectonic Evolution of Leshan-Longnvsi Paleo-Uplift in Sichuan Baisn, China. Acta Petrolei Sinica, 35(1): 11-25(in Chinese with English abstract). doi: 10.1038/aps.2013.142
      Osborne, M., Haszeldine, S., 1993. Evidence for Resetting of Fluid Inclusion Temperatures from Quartz Cements in Oilfields. Marine and Petroleum Geology, 10(3): 271-278. https://doi.org/10.1016/0264-8172(95)91509-N
      Roedder, E., 1984. Fluid inclusions. Mineralogical Society of America, Washington.
      Shang, L. B., Chou, I. M., Burruss, R. C., et al., 2015. Raman Spectroscopic Characterization of CH4 Density over a Wide Range of Temperature and Pressure. Journal of Raman Spectroscopy, 45(8): 696-702. https://doi.org/10.1002/jrs.4529
      Shen, A. J., Zhao, W. Z., Hu, A. P., et al., 2021. The Dating and Temperature Measurement Technologies for Carbonate Minerals and their Application in Hydrocarbon Accumulation Research in the Paleo-Uplift in Central Sichuan Basin, SW China. Petroleum Exploration and Development, 48(3): 476-487(in Chinese with English abstract).
      Sterner, S. M., Bodnar, R. J., 2010. Synthetic Fluid Inclusions-Ⅶ. Re-Equilibration of Fluid Inclusions in Quartz during Laboratory-Simulated Metamorphic Burial and Uplift. Journal of Metamorphic Geology, 7(2): 243-260. https://doi.org/10.1111/j.1525-1314.1989.tb00587.x
      Sterner, S. M., Hall, D. L., Keppler, H., 1995. Compositional Re-Equilibration of Fluid Inclusions in Quartz. Contributions to Mineralogy and Petrology, 119(1): 1-15. https://doi.org/10.1007/BF00310713
      Sun, W., Liu. S. G., Song, J. M., et al., 2017. The Formation Process and Characteristics of Ancient and Deep Carbonate Petroleum Reservoirs in Superimposed Basins: a Case Study of Sinian (Ediacaran) Dengying Formation in the Sichuan Superimposed Basin, China. Journal of Chengdu University of Technology(Science & Technology Edition), 44(3): 257-285(in Chinese with English abstract).
      Tao, S. Z., 2004. Premise Conditions and Key Problems of Applied Study of Inclusion in Oil-Gas Geology. Chinese Journal of Geology, 39(1): 77-91(in Chinese with English abstract).
      Tian, X. W., Peng, H. L., Wang, Y. L., et al., 2020. Analysis of Reservoir Difference and Controlling Factors between the Platform Margin and the Inner Area of the Fourth Member of Sinian Dengying Formation in Anyue Gas Field, Central Sichuan. Natural Gas Geoscience, 31(9): 1225-1238(in Chinese with English abstract).
      Ujiie, K., Yamaguchi, A., Taguchi, S., 2008. Stretching of Fluid Inclusions in Calcite as an Indicator of Frictional Heating on Faults. Geology, 36(2): 111-114. https://doi.org/10.1130/G24263A.1
      Vityk, M. O., Bodnar, R. J., 1995. Textural Evolution of Synthetic Fluid Inclusions in Quartz during Reequilibration, with Applications to Tectonic Reconstruction. Contributions to Mineralogy & Petrology, 121(3): 309-323. https://doi.org/10.1007/BF02688246
      Vityk, M. O., Bodnar, R. J., 1998. Statistical Microthermometry of Synthetic Fluid Inclusions in Quartz during Decompression Reequilibration. Contributions to Mineralogy & Petrology, 132(2): 149-162. https://doi.org/10.1007/s004100050413
      Vityk, M. O., Bodnar, R. J., Doukhan, J. C., 2000. Synthetic Fluid inclusions. XV. TEM Investigation of Plastic Flow Associated with Reequilibration of Fluid Inclusions in Natural Quartz. Contributions to Mineralogy & Petrology, 139(3): 285-297. https://doi.org/10.1007/s004100000142
      Wang, X. J., Yang, Z. R., Han, B., 2015. Superposed Evolution of Sichuan Basin and its Petroleum Accumulation. Earth Science Frontiers, 22(3): 161-173(in Chinese with English abstract).
      Wang, X. L., Hu, W. X., Qiu, Y., et al., 2022. Fluid Inclusion Evidence for Extreme Overpressure Induced by Gas Generation in Sedimentary Basins. Geology, 50(7): 765–770. https://doi.org/10.1130/G49848.1
      Wu, J., Chen, X. Z., Liu, W. P., et al., 2022. Fluid Activity and Pressure Evolution Process of Wufeng‐Longmaxi Shales, Southern Sichuan Basin. Earth Science, 47(2): 518-531(in Chinese with English abstract).
      Yang, Y. M., Wen, L., Luo, B., et al., 2016. Hydrocarbon Accumulation of Sinian Natural Gas Reservoirs, Leshan-Longnvsi Paleohigh, Sichuan Basin, SW China. Petroleum Exploration and Development, 43(2): 197-207(in Chinese with English abstract). doi: 10.1016/S1876-3804(16)30023-4
      Yuan, H. F., Liu, Y., Xu, F. H., et al., 2014. The Fluid Charge and Hydrocarbon Accumulation, Sinian Reservoir, Anpingdian-Gaoshiti Structure, Central Sichuan Basin. Acta Petrologica Sinica, 30(3): 727-736(in Chinese with English abstract).
      Zeng, Y., Hou, Y. G., Hu, D. F., et al., 2022. Characteristics of Shale Fracture Veins and Paleo‐Pressure Evolution in Normal Pressure Shale Gas Zone, Southeast Margin of Sichuan Basin. Earth Science, 47(5): 1819-1833(in Chinese with English abstract).
      Zhang, X., Chen, K., Ma, B., et al., 2018. The Structural Evolution Characteristics of the Sinian Dengying Formation Gas Reservoir and its Controlling Mechanism in the Anyue Gas Field, Sichuan Basin, China. Journal of Chengdu University of Technology(Science & Technology Edition), 45(6): 698-708(in Chinese with English abstract).
      Zheng, Z. H., Li, D. H., Bai, S. S., et al., 2017. Resource Potentials of Natural Gas in Sichuan Basin. China Petroleum Exploration, 22(3): 12-20(in Chinese with English abstract).
      曹梦春, 陈勇, 刘闯, 等, 2017. 沉积盆地成岩环境下流体包裹体再平衡机制及其判别方法. 地质论评, 63(1): 21-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201701004.htm
      池国祥, 卢焕章, 2008. 流体包裹体组合对测温数据有效性的制约及数据表达方法. 岩石学报, 24(9): 1945-1953. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200809001.htm
      冯明友, 强子同, 沈平, 等, 2016. 四川盆地高石梯-磨溪地区震旦系灯影组热液白云岩证据. 石油学报, 37(5): 587-598. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201605003.htm
      胡安平, 沈安江, 陈亚娜, 等, 2021. 基于U-Pb同位素年龄和团簇同位素(Δ47)温度约束的四川盆地震旦系灯影组构造-埋藏史重建. 石油实验地质, 43(5): 896-905+914. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202105020.htm
      李克蓬, 陈红汉, 丰勇, 2012. 深层碳酸盐岩流体包裹体均一温度特征及应用探讨. 天然气地球科学, 23(4): 756-763. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201204020.htm
      梅庆华, 何登发, 文竹, 等, 2014. 四川盆地乐山-龙女寺古隆起地质结构及构造演化. 石油学报, 35(1): 11-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401002.htm
      沈安江, 赵文智, 胡安平, 等, 2021. 碳酸盐矿物定年和定温技术及其在川中古隆起油气成藏研究中的应用. 石油勘探与开发, 48(3): 476-487. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103005.htm
      孙玮, 刘树根, 宋金民, 等, 2017. 叠合盆地古老深层碳酸盐岩油气成藏过程和特征——以四川叠合盆地震旦系灯影组为例. 成都理工大学学报(自然科学版), 44(3): 257-285. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201703001.htm
      陶士振, 2004. 包裹体应用于油气地质研究的前提条件和关键问题. 地质科学, 39(1): 77-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200401008.htm
      田兴旺, 彭瀚霖, 王云龙, 等, 2020. 川中安岳气田震旦系灯影组四段台缘-台内区储层差异及控制因素. 天然气地球科学, 31(9): 1225-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202009004.htm
      王学军, 杨志如, 韩冰, 2015. 四川盆地叠合演化与油气聚集. 地学前缘, 22(3): 161-173. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201503016.htm
      吴娟, 陈学忠, 刘文平, 等, 2022. 川南五峰组-龙马溪组页岩流体活动及压力演化过程. 地球科学, 47(2): 518-531. doi: 10.3799/dqkx.2021.049
      杨跃明, 文龙, 罗冰, 等, 2016. 四川盆地乐山—龙女寺古隆起震旦系天然气成藏特征. 石油勘探与开发, 43(2): 179-188. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602004.htm
      袁海锋, 刘勇, 徐昉昊, 等, 2014. 川中安平店-高石梯构造震旦系灯影组流体充注特征及油气成藏过程. 岩石学报, 30(3): 727-736. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201403012.htm
      曾宇, 侯宇光, 胡东风, 等, 2022. 川东南盆缘常压区页岩裂缝脉体特征及古压力演化. 地球科学, 47(5): 1819-1833. doi: 10.3799/dqkx.2022.011
      张旋, 陈康, 马波, 等, 2018. 川中安岳气田灯影组气藏构造演化特征及控藏机制. 成都理工大学学报(自然科学版), 45(6): 698-708. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201806006.htm
      郑志红, 李登华, 白森舒, 等, 2017. 四川盆地天然气资源潜力. 中国石油勘探, 22(3): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201703002.htm
    • 加载中
    图(9) / 表(3)
    计量
    • 文章访问数:  621
    • HTML全文浏览量:  672
    • PDF下载量:  87
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-19
    • 刊出日期:  2023-02-25

    目录

      /

      返回文章
      返回