Landslide Susceptibility Prediction Considering Spatio-Temporal Division Principle of Training/Testing Datasets in Machine Learning Models
-
摘要: 滑坡易发性预测时大多按空间随机来划分模型训练/测试数据集,但随机划分方式难免将不确定性因素引入建模中.因为理论上滑坡易发性是基于过去的滑坡来预测将来发生滑坡的空间概率,具有显著的时间顺序特征而非单纯的空间随机,可见有必要探索基于滑坡发生的时间顺序划分模型训练/测试集.以浙江文成县为例获取11类环境因子及128个时间准确的滑坡;之后将联接了环境因子的滑坡-非滑坡样本分别按照滑坡时间顺序和空间随机的原则,划分为两类不同训练/测试集;其划分比例分别设定为9∶1、8∶2、7∶3、6∶4和5∶5等以避免不同比例影响研究结果,由此得到10种组合工况下的训练/测试集;最后再训练测试支持向量机(SVM)、多层感知器(MLP)和随机森林(RF)等模型以预测滑坡易发性并分析其不确定性.结果表明:(1)训练/测试集按时间顺序划分的SVM、MLP和RF模型预测的滑坡易发性的不确定性略低于按空间随机性划分的模型,验证了按时间顺序划分的可行性;(2)训练/测试集按时间顺序划分实际上是其在空间随机划分下的一种更符合滑坡发生实际情况的“确定性”特征,当然对缺乏滑坡发生时间的数据集开展空间随机划分也是可行的.Abstract: In most of the landslide susceptibility prediction (LSP) models, the landslide-non landslide spatial datasets are divided into training/testing datasets according to the principle of spatial random, however, this spatial randomness division inevitably introduces uncertainties into LSP modelling. Theoretically, LSP modelling is based on past landslide inventories to predict the spatial probability of future landslides, which has significant time series characteristics rather than only spatial random characteristics. Therefore, we believe that it is necessary to divide spatial datasets into the model training/testing datasets based on the time series of landslide occurrence. Taking Wencheng County in China as an example, 11 types of environmental factors and 128 time-accurate landslides are obtained; Then, the landslide and non-landslide samples connected with environmental factors are divided into two different types of training/testing datasets according to the principles of landslide time series and spatial random, respectively. The division ratios of training/testing datasets are set as 9∶1, 8∶2, 7∶3, 6∶4 and 5∶5, respectively, to avoid the influences of different ratios on the LSP results. Thus, the training/testing datasets under 10 combined working conditions are obtained. Finally, several typical machine learning models, such as Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) and Random Forest (RF), are then trained and tested to perform LSP and analyze their uncertainties. Results show that: (1) The LSP uncertainties performed by the time series-based SVM, MLP and RF models are slightly lower than those by spatial random-based models, which verifies the feasibility of dividing by time series; (2) The time series division of training/testing datasets is actually a "deterministic" case among the spatial random division, which is more consistent with the actual situation of landslides. Of course, it is also feasible to carry out spatial random division for training and testing datasets when lacking landslide occurrence time.
-
表 1 按时间顺序原则划分的机器学习模型的滑坡训练集和测试集
Table 1. Landslide training set and test set of machine learning model divided according to chronological principle
训练集/测试集 时间节点(年) 训练集中滑坡栅格数 测试集中滑坡栅格数 滑坡‒非滑坡样本中的训练/测试集划分数 9∶1 2011 760 105 1 520∶210 8∶2 2009 655 207 1 310∶414 7∶3 2006 617 239 1 234∶478 6∶4 2005.7 507 347 1 014∶694 5∶5 2004.8 427 432 854∶864 表 2 时间顺序和空间随机两种划分工况SVM模型预测滑坡易发性的频率比分析
Table 2. Frequency ratios of LSP by SVM under two division conditions of time series and spatial random
训练/ 测试集比例 易发性等级 时间工况全区栅格比例(%) 时间工况坡内栅格比例(%) 时间工况频率比(FR) 随机工况全区栅格比例(%) 随机工况坡内栅格比例(%) 随机工况频率比(FR) 9∶1 极低 36.69 1.27 0.035 38.29 1.16 0.030 低 21.93 5.78 0.264 21.22 6.71 0.316 中 15.42 9.13 0.592 14.97 8.32 0.556 高 13.55 24.39 1.801 13.37 24.62 1.842 极高 12.41 59.42 4.787 12.14 59.19 4.874 8∶2 极低 34.53 1.51 0.044 36.42 1.86 0.051 低 22.12 5.80 0.262 22.38 6.61 0.296 中 16.51 11.37 0.689 15.65 9.05 0.578 高 14.36 23.20 1.616 13.48 26.80 1.988 极高 12.48 58.12 4.655 12.08 55.68 4.611 7∶3 极低 34.63 1.29 0.037 34.46 1.75 0.051 低 21.68 5.61 0.259 22.31 6.78 0.304 中 16.57 11.33 0.684 16.39 7.71 0.471 高 14.29 21.85 1.529 14.12 24.65 1.746 极高 12.82 59.93 4.675 12.73 59.11 4.643 6∶4 极低 33.59 1.87 0.056 35.70 1.99 0.056 低 22.17 5.27 0.238 21.58 7.14 0.331 中 17.04 12.65 0.742 16.18 9.48 0.586 高 14.72 23.65 1.607 14.08 24.36 1.729 极高 12.48 56.56 4.533 12.46 57.03 4.576 5∶5 极低 33.82 2.91 0.086 34.36 2.44 0.071 低 21.96 8.27 0.376 21.52 7.68 0.357 中 17.31 15.83 0.915 17.28 15.13 0.876 高 14.71 24.10 1.639 15.07 27.60 1.831 极高 12.20 48.89 4.009 11.77 47.15 4.004 表 3 各工况下SVM、MLP、RF模型ROC曲线的AUC值
Table 3. AUC values of ROC curves of SVM, MLP and RF models under various working conditions
机器学习模型 AUC (括号外为时间顺序划分而括号内为空间随机划分工况) 9∶1 8∶2 7∶3 6∶4 5∶5 SVM 0.847 (0.845) 0.809 (0.781) 0.824 (0.835) 0.816 (0.811) 0.807 (0.818) MLP 0.818 (0.802) 0.812 (0.794) 0.818 (0.821) 0.816 (0.809) 0.788 (0.791) RF 0.872 (0.911) 0.853 (0.855) 0.868 (0.901) 0.858 (0.849) 0.821 (0.880) 表 4 各工况下SVM、MLP、RF模型的平均值和标准差
Table 4. Mean value and standard deviation of SVM, MLP and RF models under various working conditions
训练集/测试集 MEAN(括号外为时间顺序划分而括号内为空间随机划分) SD (括号外为时间顺序划分而括号内为空间随机划分) SVM MLP RF SVM MLP RF 9∶1 0.307 (0.301) 0.332 (0.306) 0.302 (0.319) 0.277 (0.276) 0.287 (0.259) 0.230 (0.210) 8∶2 0.316 (0.302) 0.315 (0.315) 0.318 (0.325) 0.272 (0.270) 0.299 (0.257) 0.213 (0.210) 7∶3 0.317 (0.314) 0.315 (0.352) 0.314 (0.331) 0.273 (0.271) 0.279 (0.244) 0.225 (0.208) 6∶4 0.315 (0.322) 0.318 (0.342) 0.328 (0.344) 0.269 (0.267) 0.264 (0.241) 0.216 (0.209) 5∶5 0.321 (0.321) 0.316 (0.331) 0.325 (0.329) 0.252 (0.265) 0.260 (0.247) 0.203 (0.195) -
Cao, W. G., Pan, D., Xu, Z. J., et al., 2023. Landslide Hazard Susceptibility Mapping in Henan Province: Comparison of Multiple Machine Learning Models. Bulletin of Geological Science and Technology, 1-11 (in Chinese with English abstract). Chen, W., Peng, J. B., Hong, H. Y., et al., 2018. Landslide Susceptibility Modelling Using GIS-Based Machine Learning Techniques for Chongren County, Jiangxi Province, China. Science of the Total Environment, 626: 1121-1135. https://doi.org/10.1016/j.scitotenv.2018.01.124 Guo, Y. H., Dou, J., Xiang, Z. L., et al., 2023. Evaluation of Susceptibility of Wenchuan Coseismic Landslide Using Gradient Lifting Decision Trees and Random Forests Based on Optimal Negative Sample Sampling Strategy. Geological Science and Technology Bulletin, 1-20 (in Chinese with English abstract). Huang, F. M., Chen, B., Mao, D. X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696-1710 (in Chinese with English abstract). Huang, F. M., Chen, J. W., Tang, Z. P., et al., 2021. Uncertainties of Landslide Susceptibility Prediction Due to Different Spatial Resolutions and Different Proportions of Training and Testing Datasets. Chinese Journal of Rock Mechanics and Engineering, 40(6): 1155-1169 (in Chinese with English abstract). Huang, F. M., Hu, S. Y., Yan, X. Y., et al., 2022a. Landslide Susceptibility Prediction Modeling Based on Machine Learning and Identification of Main Control Factors. Bulletin of Geological Science and Technology, 41(2): 79-90 (in Chinese with English abstract). Huang, F. M., Li, J. F., Wang, J. Y., et al., 2022b. Landslide Susceptibility Prediction Modeling Law Considering Suitability of Linear Environmental Factors and Different Machine Learning Models. Bulletin of Geological Science and Technology, 41(2): 44-59 (in Chinese with English abstract). Huang, F. M., Ye, Z., Jiang, S. H., et al., 2021. Uncertainty Study of Landslide Susceptibility Prediction Considering the Different Attribute Interval Numbers of Environmental Factors and Different Data-Based Models. CATENA, 202: 105250. https://doi.org/10.1016/j.catena.2021.105250 Hussin, H. Y., Zumpano, V., Reichenbach, P., et al., 2016. Different Landslide Sampling Strategies in a Grid-Based Bi-Variate Statistical Susceptibility Model. Geomorphology, 253: 508-523. https://doi.org/10.1016/j.geomorph.2015.10.030 Khanna, K., Martha, T. R., Roy, P., et al., 2021. Effect of Time and Space Partitioning Strategies of Samples on Regional Landslide Susceptibility Modelling. Landslides, 18(6): 2281-2294. https://doi.org/10.1007/s10346-021-01627-3 Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract). Li, Y. W., Xu, L. R., Zhang, L. L., et al., 2023. Study on Development Patterns and Susceptibility Evaluation of Coseismic Landslides within Mountainous Regions Influenced by Strong Earthquakes. Earth Science, 48(5): 1960-1976 (in Chinese with English abstract). Lombardo, L., Tanyas, H., 2020. Chrono-Validation of Near-Real-Time Landslide Susceptibility Models via Plug-in Statistical Simulations. Engineering Geology, 278: 105818. https://doi.org/10.1016/j.enggeo.2020.105818 Shirzadi, A., Solaimani, K., Roshan, M. H., et al., 2019. Uncertainties of Prediction Accuracy in Shallow Landslide Modeling: Sample Size and Raster Resolution. CATENA, 178: 172-188. https://doi.org/10.1016/j.catena.2019.03.017 Wang, L. L., 2016. Feature Processing Methods in the Assessment of the Vulnerability of Rainfall-Type Landslides. Zhejiang University, Hangzhou (in Chinese with English abstract). Wu, R. Z., Hu, X. D., Mei, H. B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330 (in Chinese with English abstract). Zhang, H., Gu, Q. Y., Sun, C. B., et al., 2022. Landslide Susceptibility Mapping in Hilly and Gentle Slope Region Based on Interpretable Machine Learning. Journal of Chongqing Normal University (Natural Science), 39(3): 78-92 (in Chinese with English abstract). Zhu, J. X., Zhang, L. Z., Zhou, X. Y., et al., 2014. Characteristics of Temporal Scale of Regional Landslides Susceptibility Assessment. Soil and Water Conservation in China, (6): 18-21, 69 (in Chinese with English abstract). 曹文庚, 潘登, 徐郅杰, 等, 2023. 河南省滑坡灾害易发性制图研究: 多种机器学习模型的对比. 地质科技通报, 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ202303011.htm 郭衍昊, 窦杰, 向子林, 等, 2023. 基于优化负样本采样策略的梯度提升决策树与随机森林的汶川同震滑坡易发性评价. 地质科技通报, 1-20. 黄发明, 陈彬, 毛达雄, 等, 2023. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性. 地球科学, 48(5): 1696-1710. doi: 10.3799/dqkx.2022.247 黄发明, 陈佳武, 唐志鹏, 等, 2021. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性. 岩石力学与工程学报, 40(6): 1155-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106008.htm 黄发明, 胡松雁, 闫学涯, 等, 2022a. 基于机器学习的滑坡易发性预测建模及其主控因子识别. 地质科技通报, 41(2): 79-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202202008.htm 黄发明, 李金凤, 王俊宇, 等, 2022b. 考虑线状环境因子适宜性和不同机器学习模型的滑坡易发性预测建模规律. 地质科技通报, 41(2): 44-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202202005.htm 李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042 李永威, 徐林荣, 张亮亮, 等, 2023. 强震山区地震诱发滑坡发育规律与易发性评估. 地球科学, 48(5): 1960-1976. doi: 10.3799/dqkx.2022.224 王丽丽, 2016. 降雨型滑坡地质灾害易发性评价中的特征处理方法. 杭州: 浙江大学. 吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330. doi: 10.3799/dqkx.2020.032 张虹, 辜庆渝, 孙诚彬, 等, 2022. 基于可解释性机器学习的丘陵缓坡地区滑坡易发性区划研究. 重庆师范大学学报(自然科学版), 39(3): 78-92. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF202203012.htm 朱吉祥, 张礼中, 周小元, 等, 2014. 区域滑坡易发性评价的时间尺度特征分析. 中国水土保持, (6): 18-21, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSB201406008.htm -