39Ar-40Ar Geochronology and EBSD Analysis of Mylonite in Zanhuang Massif: Implications for Paleoproterozoic Tectono-Thermal Evolution of North China Craton
-
摘要: 赞皇地体位于华北克拉通中部造山带的东南段,出露有太古代至古元古代复杂的岩石组合和构造变形,是研究华北克拉通中部造山带早前寒武纪构造热演化的重要窗口.对赞皇地体内一条出露完好的韧性剪切带进行了大比例尺岩石-构造填图、岩相学、黑云母39Ar-40Ar年代学和石英EBSD组构分析,限定了剪切带的运动学特征和形成时代,进一步探讨华北克拉通古元古代构造热演化过程.韧性剪切带主体岩性为花岗质糜棱岩,主要由石英(30%~40%)、黑云母(5%~15%)和长石(35%~55%)组成.韧性剪切带内岩石变形强烈,发育有正断层、褶皱、旋转碎斑等变形构造,面理产状和旋转碎斑均指示北西-南东向的剪切作用.糜棱岩中黑云母氩氩年龄测试得到了1 781~1 745 Ma的坪年龄,表明剪切带形成于古元古代晚期.糜棱岩中石英的EBSD组构反映石英主要为底面a滑移,指示变形温度低于400 ℃.综合赞皇地区前人研究成果,提出赞皇变质地体在古元古代晚期经历了一次构造热事件的强烈扰动.Abstract: The Zanhuang massif is located in the southeast part of the Central Orogenic Belt of the North China Craton, with complex rock association and tectonic deformation from Archaean to Paleoproterozoic. It is important to study the Early Precambrian tectono-thermal evolution of the Central Orogenic Belt of the North China Craton. In this study, a large-scale rock structure mapping, petrography, biotite 39Ar-40Ar geochronology and quartz EBSD fabric analysis of a well-out cropping ductile shear zone in the Zanhuang massif were carried out to define the kinematic characteristics and formation age of the shear zone, and to further explore the Paleoproterozoic tectono-thermal evolution of the North China Craton. The main lithology of the ductile shear zone is granitic mylonite, mainly composed of quartz (30%-40%), biotite (5%-15%) and feldspar (35%-55%). In the study area, the rocks are strongly deformed and metamorphosed, and a series of normal faults, folds, lineaments, foliations, and rotated porphyroblasts are developed. The surface occurrence and the trail of rotating patches all indicate the NW-SE shear. A plateau age of 1 781-1 745 Ma for biotite in mylonite was obtained by argon age test, indicating that the shear zone was formed in the Late Paleoproterozoic. EBSD fabric of quartz in mylonite shows that the quartz is mainly underside a-slip, indicating that the deformation temperature is lower than 400 ℃. Based on the previous research results, this study shows that the Zanhuang metamorphic complex experienced a strong disturbance caused by a tectono-thermal event in the Late Paleoproterozoic.
-
Key words:
- Paleoproterozoic /
- mylonite /
- 39Ar-40Ar dating /
- tectono-thermal evolution /
- Zanhuang massif /
- North China Craton /
- structural geology
-
图 1 华北克拉通构造简图(a)、华北中部造山带中部各变质地体分布图(b)和赞皇变质地体地质图(c)
图a由东部陆块、西部陆块和中部造山带组成. LL. 吕梁地块;WT. 五台地块;HS. 恒山地块;FP. 阜平地块;ZH. 赞皇地块
Fig. 1. Structural diagram of the NCC, which consists of the eastern block, the western block and the central orogenic belt (a), distribution of metamorphic terrane in the central orogenic belt of North China (b) and geologic map of the Zanhuang metamorphic massif (c)
-
Hebei Bureau of Geology and Mineral Resources, 1989. Regional Geology of Hebei, Beijing and Tianjin. Geological Publishing House, Beijing(in Chinese). Hou, G. T., Li, J. H., Liu, Y. L., et al., 2005. Extensional Events at the End of Paleoproterozoic in North China Craton: Aola Valley and Dike Swarms. Progress in Natural Science, 15(11): 1366-1373(in Chinese with English abstract). Jiang, K., Wang, J. P., Kusky, T., et al., 2020. Neoarchean Seafloor Hydrothermal Metamorphism of Basalts in the Zanhuang Ophiolitic Mélange, North China Craton. Precambrian Research, 347: 105832. https://doi.org/10.1016/j.precamres.2020.105832 Kusky, T. M., 2011. Geophysical and Geological Tests of Tectonic Models of the North China Craton. Gondwana Research, 20(1): 26-35. https://doi.org/10.1016/j.gr.2011.01.004 Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397. https://doi.org/10.1016/S1367-9120(03)00071-3 Kusky, T. M., Li, J. H., Santosh, M., 2007. The Paleoproterozoic North Hebei Orogen: North China Craton's Collisional Suture with the Columbia Supercontinent. Gondwana Research, 12(1/2): 4-28. https://doi.org/10.1016/j.gr.2006.11.012 Lei, S. H., Hu, S. J., Zhao, Z. Y., et al., 1994. Models for Fuping-Zanhuang Metamorphic Bicore Complexes Structure, Hebei, China. Journal of Hebei GEO University, 17(1): 54-64(in Chinese with English abstract). Li, J. H., Hou, G. T., Huang, X. N., et al., 2001. The Constraint for the Supercontinental Cycles: Evidence from Precambrian Geology of North China Block. Acta Petrologica Sinica, 17(2): 177-186(in Chinese with English abstract). Liu, S. W., Li, J. H., Pan, Y. M., et al., 2002. The Archean Blocks in the Taihang and Hengshan Regions: Geochronological and Geochemical Constraints. Progress in Natural Science, 12(8): 826-833. Ma, X. Y., Wu, Z. W., Tan, Y. J., et al., 1979. Tectonics of the North China Platform Basement. Acta Geologica Sinica, 53(4): 293-304(in Chinese with English abstract). Ning, W. B., Wang, J. P., Xiao, D., et al., 2019. Electron Probe Microanalysis of Monazite and Its Applications to U-Th-Pb Dating of Geological Samples. Journal of Earth Science, 30(5): 952-963. https://doi.org/10.1007/s12583-019-1020-8 Shi, W. B., Wang, F., Wu, L., et al., 2020. Geologically Meaningful 40Ar/39Ar Ages of Altered Biotite from a Polyphase Deformed Shear Zone Obtained by in Vacuo Step-Heating Method: A Case Study of the Waziyü Detachment Fault, Northeast China. Minerals, 10(8): 648. https://doi.org/10.3390/min10080648 Tang, X. M., Liu, S. W., 1997. An Initial Research on the Extension Deformation Belt in the Archean Metamorphic Rocks in the Northern Taihang Mountains. Acta Scientiarum Naturalium Universitatis Pekinensis, 33(4): 447-455(in Chinese with English abstract). Toy, V. G., Prior, D. J., Norris, R. J., 2008. Quartz Fabrics in the Alpine Fault Mylonites: Influence of Pre-Existing Preferred Orientations on Fabric Development during Progressive Uplift. Journal of Structural Geology, 30(5): 602-621. https://doi.org/10.1016/j.jsg.2008.01.001 Trap, P., Faure, M., Lin, W., et al., 2009. The Zanhuang Massif, the Second and Eastern Suture Zone of the Paleoproterozoic Trans-North China Orogen. Precambrian Research, 172(1/2): 80-98. https://doi.org/10.1016/j.precamres.2009.03.011 Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2015. Some Progress in the Study of Archean Basement of the North China Craton. Acta Geoscientica Sinica, 36(6): 685-700 (in Chinese with English abstract). Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2024. Formation and Evolution of Archean Continental Crust in the Anshan-Benxi Area, North China Craton: A Review. Earth Science, 49(11): 3855-3878 (in Chinese with English abstract). Wang, J. P., Jiang, K., Xiao, D., et al., 2022. Mineral Chemistry of Biotite and Its Petrogenesis Implications in ca. 2.5 Ga Wangjiazhuang Granitic Pluton, North China Craton. Journal of Earth Science, 33(6): 1535-1548. https://doi.org/10.1007/s12583-020-1376-9 Wang, J. P., Kusky, T., Polat, A., et al., 2013. A Late Archean Tectonic Mélange in the Central Orogenic Belt, North China Craton. Tectonophysics, 608: 929-946. https://doi.org/10.1016/j.tecto.2013.07.025 Wang, J. P., Kusky, T., Wang, L., et al., 2015. A Neoarchean Subduction Polarity Reversal Event in the North China Craton. Lithos, 220: 133-146. https://doi.org/10.1016/j.lithos.2015.01.029 Wang, J. P., Kusky, T., Wang, L., et al., 2017. Petrogenesis and Geochemistry of Circa 2.5 Ga Granitoids in the Zanhuang Massif: Implications for Magmatic Source and Neoarchean Metamorphism of the North China Craton. Lithos, 268: 149-162. https://doi.org/10.1016/j.lithos.2016.10.028 Wang, Y. J., Fan, W. M., Guo, F., et al., 2003. Biotite 40Ar/39Ar Geochronology of the Deformational Rocks from Zanhuang Metamorphic Domain in South Taihang Mountains and Their Tectonothermal Overprinting. Acta Petrologica Sinica, 19(1): 131-140 (in Chinese with English abstract). Wu, J. S., 1998. Archaean Geology Characteristics and Tectonic Evolution of China-Korea Paleo-Continent. Geological Publishing House, Beijing(in Chinese). Xia, H. R., Liu, J. L., 2011. The Crystallographic Preferred Orientation of Quartz and Its Applications. Geological Bulletin of China, 30(1): 58-70(in Chinese with English abstract). Xiao, D., Ning, W. B., Wang, J. P., et al., 2021. Neoarchean to Paleoproterozoic Tectonothermal Evolution of the North China Craton: Constraints from Geological Mapping and Th-U-Pb Geochronology of Zircon, Titanite and Monazite in Zanhuang Massif. Precambrian Research, 359: 106214. https://doi.org/10.1016/j.precamres.2021.106214 Xiao, L. L., Liu, F. L., 2015. Precambrian Metamorphic History of the Metamorphic Complexes in the Trans-North China Orogen, North China Craton. Acta Petrologica Sinica, 31(10): 3012-3044(in Chinese with English abstract). Xiao, L. L., Liu, F. L., Zhang, J., 2019. Response to the Early Neoarchean Tectono-Thermal Events in the North China Craton: Evidence of ca. 2.7 Ga TTG Gneisses from the Zuoquan Metamorphic Complex. Acta Petrologica Sinica, 35(2): 325-348(in Chinese with English abstract). Xu, H. J., Jin, S. Y., Zheng, B. R., 2007. New Technique of Petrofabric: Electron Backscatter Diffraction(EBSD). Geoscience, 21(2): 213-225(in Chinese with English abstract). Xu, J. H., Jiang, Y. P., Hu, S. L., et al., 2024. Petrogenesis and Tectonic Implications of the Paleoproterozoic A-Type Granites in the Xiong'ershan Area along the Southern Margin of the North China Craton. Journal of Earth Science, 35(2): 41-429. https://doi.org/10.1007/s12583-021-1424-0 Yang, C. H., Du, L. L., Ren, L. D., et al., 2011a. Petrogenesis and Geodynamic Setting of Jiandeng Potassic Granite at the End of the Neoarchean in Zanhuang Complex, North China Craton. Earth Science Frontiers, 18(2): 62-78(in Chinese with English abstract). Yang, C. H., Du, L. L., Ren, L. D., et al., 2011b. The Age and Petrogenesis of the Xuting Granite in the Zanhuang Complex, Hebei Province: Constraints on the Structural Evolution of the Trans-North China Orogen, North China Craton. Acta Petrologica Sinica, 27(4): 1003-1016(in Chinese with English abstract). Zhai, M. G., 2010. Tectonic Evolution and Metallogenesis of North China Craton. Mineral Deposits, 29(1): 24-36(in Chinese with English abstract). Zhao, G. C., 2001. Palaeoproterozoic Assembly of the North China Craton. Geological Magazine, 138(1): 87-91. https://doi.org/10.1017/s0016756801005040 Zhao, G. C., 2002. SHRIMP U-Pb Zircon Ages of the Fuping Complex: Implications for Late Archean to Paleoproterozoic Accretion and Assembly of the North China Craton. American Journal of Science, 302(3): 191-226. https://doi.org/10.2475/ajs.302.3.191 Zhao, G. C., Cawood, P., Lu, L. Z., 1999. Petrology and P-T History of the Wutai Amphibolites: Implications for Tectonic Evolution of the Wutai Complex, China. Precambrian Research, 93(2/3): 181-199. https://doi.org/10.1016/S0301-9268(98)00090-4 Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002 Zhong, Y. T., Kusky, T. M., Wang, L., 2022. Giant Sheath-Folded Nappe Stack Demonstrates Extreme Subhorizontal Shear Strain in an Archean Orogen. Geology, 50(5): 577-582. https://doi.org/10.1130/G49599.1 翟明国, 2010. 华北克拉通的形成演化与成矿作用. 矿床地质, 29(1): 24-36. 河北地质矿产局, 1989. 河北北京天津区域地质志. 北京: 地质出版社. 侯贵廷, 李江海, 刘玉琳, 等, 2005. 华北克拉通古元古代末的伸展事件: 拗拉谷与岩墙群. 自然科学进展, 15(11): 1366-1373. 雷世和, 胡胜军, 赵占元, 等, 1994. 河北阜平、赞皇变质核杂岩构造及成因模式. 河北地质学院学报, 17(1): 54-64. 李江海, 侯贵廷, 黄雄南, 等, 2001. 华北克拉通对前寒武纪超大陆旋回的基本制约. 岩石学报, 17(2): 177-186. 马杏垣, 吴正文, 谭应佳, 等, 1979. 华北地台基底构造. 地质学报, 53(4): 293-304. 唐先梅, 刘树文, 1997. 太行山北段晚太古宙变质杂岩伸展变形带的初步研究. 北京大学学报(自然科学版), 33(4): 447-455. 万渝生, 董春艳, 颉颃强, 等, 2015. 华北克拉通太古宙研究若干进展. 地球学报, 36(6): 685-700. 万渝生, 董春艳, 颉颃强, 等, 2024. 华北克拉通鞍山-本溪地区太古宙地壳形成演化: 综述. 地球科学, 49(11): 3855-3878. 王岳军, 范蔚茗, 郭锋, 等, 2003. 赞皇变质穹隆黑云母40Ar/39Ar年代学研究及其对构造热事件的约束. 岩石学报, 19(1): 131-140. 伍家善, 1998. 中朝古大陆太古宙地质特征及构造演化. 北京: 地质出版社. 夏浩然, 刘俊来, 2011. 石英结晶学优选与应用. 地质通报, 30(1): 58-70. 肖玲玲, 刘福来, 2015. 华北克拉通中部造山带早前寒武纪变质演化历史评述. 岩石学报, 31(10): 3012-3044. 肖玲玲, 刘福来, 张健, 2019. 华北克拉通新太古代早期构造热事件的响应: 来自左权地区ca. 2.7 Ga TTG片麻岩的证据. 岩石学报, 35(2): 325-348. 徐海军, 金淑燕, 郑伯让, 2007. 岩石组构学研究的最新技术: 电子背散射衍射(EBSD). 现代地质, 21(2): 213-225. 杨崇辉, 杜利林, 任留东, 等, 2011a. 赞皇杂岩中太古宙末期菅等钾质花岗岩的成因及动力学背景. 地学前缘, 18(2): 62-78. 杨崇辉, 杜利林, 任留东, 等, 2011b. 河北赞皇地区许亭花岗岩的时代及成因: 对华北克拉通中部带构造演化的制约. 岩石学报, 27(4): 1003-1016. -
dqkxzx-50-4-1273-王军鹏 附表1 .doc
-