• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    暴雨及水位骤降条件下渗流参数空间变异的水库滑坡概率分析

    蒋水华 熊威 朱光源 黄卓涛 林列 黄发明

    蒋水华, 熊威, 朱光源, 黄卓涛, 林列, 黄发明, 2024. 暴雨及水位骤降条件下渗流参数空间变异的水库滑坡概率分析. 地球科学, 49(5): 1679-1691. doi: 10.3799/dqkx.2022.361
    引用本文: 蒋水华, 熊威, 朱光源, 黄卓涛, 林列, 黄发明, 2024. 暴雨及水位骤降条件下渗流参数空间变异的水库滑坡概率分析. 地球科学, 49(5): 1679-1691. doi: 10.3799/dqkx.2022.361
    Jiang Shuihua, Xiong Wei, Zhu Guangyuan, Huang Zhuotao, Lin Lie, Huang Faming, 2024. Probabilitic Analysis of Reservoir Landslides Considering the Spatial Variation of Seepage Parameters under the Conditions of Rainstorm and Sudden Drop of Water Level. Earth Science, 49(5): 1679-1691. doi: 10.3799/dqkx.2022.361
    Citation: Jiang Shuihua, Xiong Wei, Zhu Guangyuan, Huang Zhuotao, Lin Lie, Huang Faming, 2024. Probabilitic Analysis of Reservoir Landslides Considering the Spatial Variation of Seepage Parameters under the Conditions of Rainstorm and Sudden Drop of Water Level. Earth Science, 49(5): 1679-1691. doi: 10.3799/dqkx.2022.361

    暴雨及水位骤降条件下渗流参数空间变异的水库滑坡概率分析

    doi: 10.3799/dqkx.2022.361
    基金项目: 

    江西省水利科学院开放研究基金项目 2021SKSG02

    国家自然科学基金项目 52222905

    国家自然科学基金项目 52179103

    江西省自然科学基金项目 20232ACB204031

    江西省自然科学基金项目 20224ACB204019

    详细信息
      作者简介:

      蒋水华(1987-),男,博士,教授,博士生导师,主要从事岩土工程可靠度与风险分析方面的研究. E-mail:sjiangaa@ncu.edu.cn

      通讯作者:

      熊威, E-mail: xiongwei300331@126.com

    • 中图分类号: P64

    Probabilitic Analysis of Reservoir Landslides Considering the Spatial Variation of Seepage Parameters under the Conditions of Rainstorm and Sudden Drop of Water Level

    • 摘要: 传统滑坡概率分析没有合理考虑滑坡体渗透系数空间变异性的影响.为有效表征滑坡体渗透系数空间变异性对滑坡概率的影响,提出基于反向传播神经网络(BPNN)的参数空间变异性边坡可靠度分析方法,其中采用Karhunen-Loève级数展开方法离散滑坡体饱和渗透系数非高斯随机场,基于BPNN构建边坡稳定系数代理模型.以白水河滑坡为例,分别进行暴雨和库水位骤降条件下滑坡概率分析,并与其他方法对比验证了提出方法的有效性.结果表明:提出方法不仅可有效考虑渗透系数空间变异性对滑坡概率的影响,而且具有较高的计算效率,可为实际复杂水库滑坡概率计算提供一种有效的工具.考虑滑坡体渗透系数空间变异性的作用,白水河滑坡在连续5 d暴雨作用下有19.5%的可能性发生局部失稳破坏,而在水位骤降条件下发生局部失稳破坏的可能性很小.

       

    • 图  1  神经网络结构

      Fig.  1.  Diagram of a neural network structure

      图  2  提出方法计算流程

      Fig.  2.  Flow chart for the proposed approach

      图  3  白水河滑坡平面图

      Fig.  3.  Layout of Baishuihe landslide

      图  4  白水河滑坡典型地质剖面

      Fig.  4.  Typical geological section of Baishuihe landslide

      图  5  滑坡体体积含水量和渗透系数函数

      Fig.  5.  Volumetric water content and hydraulic conductivity functions for the landslide mass

      图  6  白水河滑坡有限元渗流分析模型

      Fig.  6.  Finite element seepage analysis model of Baishuihe landslide

      图  7  第5 d边坡渗流稳定计算结果

      Fig.  7.  Slope seepage and stability analysis results on the fifth day

      图  8  稳定系数随时间的变化关系曲线

      Fig.  8.  Variations of the factor of safety with the time

      图  9  白水河滑坡渗透系数随机场的一次典型实现

      Fig.  9.  One typical realization of the hydraulic conductivity random field of Baishuihe landslide

      图  10  模型测试均方误差随训练样本数目的变化

      Fig.  10.  Variations of the mean square error of model testing with the number of training samples

      图  11  BPNN模型结构

      Fig.  11.  Diagram of BPNN model structure

      图  12  BPNN模型测试结果

      Fig.  12.  Testing results of the BPNN model

      图  13  滑坡概率随LHS模拟次数的变化关系曲线

      Fig.  13.  Variations of the landslide probability with the number of LHS simulations

      图  14  白水河滑坡有限元渗流分析模型

      Fig.  14.  Finite element seepage analysis model of Baishuihe landslide

      图  15  第50 d边坡渗流稳定计算结果

      Fig.  15.  Slope seepage and stability analysis results on the 50th day

      图  16  稳定系数随时间的变化关系曲线

      Fig.  16.  Variations of the factor of safety with the time

      图  17  白水河滑坡渗透系数随机场的一次典型实现

      Fig.  17.  One typical realization of the hydraulic conductivity random field of Baishuihe landslide

      图  18  模型测试均方误差随训练样本数目的变化

      Fig.  18.  Variations of the mean square error of model testing with the number of training samples

      图  19  BPNN模型测试结果

      Fig.  19.  Testing results of the BPNN model

      图  20  滑坡概率随LHS模拟次数的变化

      Fig.  20.  Variations of the landslide probability with the number of LHS simulations

      表  1  边坡岩土体参数取值

      Table  1.   Values of slope soil parameters

      区域 重度
      γ(kN/m3
      黏聚力
      c(kPa)
      内摩擦角
      φ(°)
      饱和渗透系数
      ks(m/d)
      滑坡体 20.7 27 18 0.43
      基岩 25.6 190 30.4 0.01
      下载: 导出CSV

      表  2  滑坡体Van Genuchten模型拟合参数取值

      Table  2.   Values of van Genuchten model fitting parameters for the landslide mass

      拟合参数 a(kPa) n $ {\theta }_{s} $ $ {\theta }_{r} $
      取值 50 1.45 0.43 0.02
      下载: 导出CSV
    • Bi, C. C., Qing, C., Qian, X. M., et al., 2021. Estimation of Atmospheric Optical Turbulence Profile Based on back Propagation Neural Network. Laser & Optoelectronics Progress, 58(21): 23-32 (in Chinese with English abstract).
      Cho, S. E., 2014. Probabilistic Stability Analysis of Rainfall-Induced Landslides Considering Spatial Variability of Permeability. Engineering Geology, 171: 11-20. https://doi.org/10.1016/j.enggeo.2013.12.015
      Dayhoff, J. E., DeLeo, J. M., 2001. Artificial Neural Networks. Cancer, 91(S8): 1615-1635. doi: 10.1002/1097-0142(20010415)91:8+<1615::AID-CNCR1175>3.0.CO;2-L
      Dong, H., Huang, R. Q., Luo, X., et al., 2017. Spatial Distribution and Variability of Infiltration Characteristics for Shallow Slope of Gravel Soil. Chinese Journal of Geotechnical Engineering, 39(8): 1501-1509 (in Chinese with English abstract).
      Dong, Z. H., 2015. Study on Groundwater Seepage and Deformation Mechanism of Baishuihe Landslide in Three Gorges Reservoir Area (Dissertation). China Three Gorges University, Yichang (in Chinese with English abstract).
      Dou, H. Q., Han, T. C., Gong, X. N., et al., 2015. Effects of the Spatial Variability of Permeability on Rainfall-Induced Landslides. Engineering Geology, 192: 92-100. https://doi.org/10.1016/j.enggeo.2015.03.014
      Duncan, J. M., 2000. Factors of Safety and Reliability in Geotechnical Engineering. Journal of Geotechnical and Geoenvironmental Engineering, 126(4): 307-316. https://doi.org/10.1061/(asce)1090-0241(2000)126: 4(307) doi: 10.1061/(asce)1090-0241(2000)126:4(307
      Griffiths, D. V., Fenton, G. A., 1993. Seepage beneath Water Retaining Structures Founded on Spatially Random Soil. Géotechnique, 43(4): 577-587. https://doi.org/10.1680/geot.1993.43.4.577
      Guardiani, C., Soranzo, E., Wu, W., 2022. Time-Dependent Reliability Analysis of Unsaturated Slopes under Rapid Drawdown with Intelligent Surrogate Models. Acta Geotechnica, 17(4): 1071-1096. https://doi.org/10.1007/s11440-021-01364-w
      Han, T. C., Dou, H. Q., Ma, S. G., et al., 2013. Rainwater Redistribution on Stability of Homogenous Infinite Slope. Journal of Zhejiang University (Engineering Science), 47(10): 1824-1829 (in Chinese with English abstract).
      Huang, M. L., Sun, D. A., Wang, C. H., et al., 2021. Reliability Analysis of Unsaturated Soil Slope Stability Using Spatial Random Field-Based Bayesian Method. Landslides, 18(3): 1177-1189. https://doi.org/10.1007/s10346-020-01525-0
      Jiang, S. H., Li, D. Q., Cao, Z. J., et al., 2015. Efficient System Reliability Analysis of Slope Stability in Spatially Variable Soils Using Monte Carlo Simulation. Journal of Geotechnical and Geoenvironmental Engineering, 141(2): 04014096. https://doi.org/10.1061/(asce)gt.1943-5606.0001227
      Jiang, S. H., Li, D. Q., Zhang, L. M., et al., 2014. Slope Reliability Analysis Considering Spatially Variable Shear Strength Parameters Using a Non-Intrusive Stochastic Finite Element Method. Engineering Geology, 168: 120-128. https://doi.org/10.1016/j.enggeo.2013.11.006
      Jiang, S. H., Li, D. Q., Zhou, C. B., et al., 2014. Reliability Analysis of Unsaturated Slope Considering Spatial Variability. Rock and Soil Mechanics, 35(9): 2569-2578 (in Chinese with English abstract).
      Jiao, L. C., Yang, S. Y., Liu, F., et al., 2016. Seventy Years beyond Neural Networks: Retrospect and Prospect. Chinese Journal of Computers, 39(8): 1697-1716 (in Chinese with English abstract).
      Lei, D. X., Yi, W., Liu, Q., et al., 2018. Reliability and Sensitivity Analysis of Woshaxi Landslide Stability in Three Gorges Reservoir Area. Safety and Environmental Engineering, 25(1): 23-28 (in Chinese with English abstract).
      Li, C. D., Long, J. J., Jiang, X. H., et al., 2020. Advance and Prospect of Formation Mechanism for Reservoir Landslides. Bulletin of Geological Science and Technology, 39(1): 67-77 (in Chinese with English abstract).
      Li, D. Q., Jiang, S. H., 2016. Non-Invasive Stochastic Analysis Method of Slope Reliability. Science Press, Beijing (in Chinese).
      Li, D. Y., Miao, F. S., Xie, Y. H., et al., 2019. Hazard Prediction for Baishuihe Landslide in the Three Gorges Reservoir during the Extreme Rainfall Return Period. KSCE Journal of Civil Engineering, 23(12): 5021-5031. https://doi.org/10.1007/s12205-019-1025-y
      Liu, T. Q., Wang, B. G., Zhang, J. S., et al., 2021. Variation Law and Influencing Factors of Soil Saturated Hydraulic Conductivity in Jianghan Plain. Earth Science, 46(2): 671-682 (in Chinese with English abstract).
      Long, H. T., 2014. Study on Characteristics and Deformation Prediction of Hydrodynamic Pressure Landslide—A Case Study of Baishuihe Landslide (Dissertation). China Three Gorges University, Yichang (in Chinese with English abstract).
      Lu, S. Q., Yi, Q. L., Yi, W., et al., 2014. Study on Dynamic Deformation Mechanism of Landslide in Drawdown of Reservoir Water Level-Take Baishuihe Landslide in Three Gorges Reservoir Area for Example. Journal of Engineering Geology, 22(5): 869-875 (in Chinese with English abstract).
      Petley, D., 2012. Global Patterns of Loss of Life from Landslides. Geology, 40(10): 927-930. https://doi.org/10.1130/g33217.1
      Santoso, A. M., Phoon, K. K., Quek, S. T., 2011. Effects of Soil Spatial Variability on Rainfall-Induced Landslides. Computers & Structures, 89(11/12): 893-900. https://doi.org/10.1016/j.compstruc.2011.02.016
      Shi, L. S., Yang, J. Z., Chen, F. L., et al., 2007. Research on Application of Karhunen-Loeve Expansion to Simulating Anisotropic Random Field of Soil Property. Rock and Soil Mechanics, 28(11): 2303-2308 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2007.11.010
      Shu, S. X., Gong, W. H., 2016. An Artificial Neural Network-Based Response Surface Method for Reliability Analyses of C-φ Slopes with Spatially Variable Soil. China Ocean Engineering, 30(1): 113-122. doi: 10.1007/s13344-016-0006-x
      Tsaparas, I., Rahardjo, H., Toll, D. G., et al., 2002. Controlling Parameters for Rainfall-Induced Landslides. Computers and Geotechnics, 29(1): 1-27. https://doi.org/10.1016/S0266-352X(01)00019-2
      van Genuchten, M. T., 1980. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5): 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
      Wang, Z. Z., 2022. Deep Learning for Geotechnical Reliability Analysis with Multiple Uncertainties. Journal of Geotechnical and Geoenvironmental Engineering, 148(4): 06022001. doi: 10.1061/(ASCE)GT.1943-5606.0002771
      Wu, Y. P., Miao, F. S., Li, L. W., et al., 2017. Time-Varying Reliability Analysis of Huangtupo Riverside No. 2 Landslide in the Three Gorges Reservoir Based on Water-Soil Coupling. Engineering Geology, 226: 267-276. https://doi.org/10.1016/j.enggeo.2017.06.016
      Xiao, T., Li, D. Q., Zhou, C. B., et al., 2014. Non-Intrusive Reliability Analysis of Multi-Layered Slopes Using Strength Reduction FEM. Journal of Basic Science and Engineering, 22(4): 718-732 (in Chinese with English abstract).
      Xue, Y., Wu, Y. P., Miao, F. S., et al., 2020. Effect of Spatially Variable Saturated Hydraulic Conductivity with Non-Stationary Characteristics on the Stability of Reservoir Landslides. Stochastic Environmental Research and Risk Assessment, 34(2): 311-329. https://doi.org/10.1007/s00477-020-01777-1
      Xue, Y., Wu, Y. P., Miao, F. S., et al., 2020. Seepage and Deformation Analysis of Baishuihe Landslide Considering Spatial Variability of Saturated Hydraulic Conductivity under Reservoir Water Level Fluctuation. Rock and Soil Mechanics, 41(5): 1709-1720 (in Chinese with English abstract).
      Yin, K. L., Zhang, Y., Wang, Y., 2022. A Review of Landslide-Generated Waves Risk and Practice of Management of Hazard Chain Risk from Reservoir Landslide. Bulletin of Geological Science and Technology, 41(2): 1-12 (in Chinese with English abstract).
      Zhang, J., Yin, K. L., Wang, J. J., et al., 2015. Displacement Prediction of Baishuihe Landslide Based on Time Series and PSO-SVR Model. Chinese Journal of Rock Mechanics and Engineering, 34(2): 382-391 (in Chinese with English abstract).
      Zhang, J. R., Tang, H. M., Wen, T., et al., 2020. A Hybrid Landslide Displacement Prediction Method Based on CEEMD and DTW-ACO-SVR-Cases Studied in the Three Gorges Reservoir Area. Sensors, 20(15): 4287. https://doi.org/10.3390/s20154287
      Zhang, S., Tang, H. M., Liu, X., et al., 2018. Seepage and Instability Characteristics of Slope Based on Spatial Variation Structure of Saturated Hydraulic Conductivity. Earth Science, 43(2): 622-634 (in Chinese with English abstract).
      Zhu, H., Zhang, L. M., Zhang, L. L., et al., 2013. Two-Dimensional Probabilistic Infiltration Analysis with a Spatially Varying Permeability Function. Computers and Geotechnics, 48: 249-259. https://doi.org/10.1016/j.compgeo.2012.07.010
      毕翠翠, 青春, 钱仙妹, 等, 2021. 基于反向传播神经网络估算大气光学湍流廓线. 激光与光电子学进展, 58(21): 23-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202121002.htm
      董辉, 黄润秋, 罗潇, 等, 2017. 堆积碎石土斜坡浅表入渗的空间分布与变异性研究. 岩土工程学报, 39(8): 1501-1509. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708022.htm
      董志鸿, 2015. 三峡库区白水河滑坡地下水渗流及变形机理研究(硕士学位论文). 宜昌: 三峡大学.
      韩同春, 豆红强, 马世国, 等, 2013. 考虑雨水重分布对均质无限长边坡稳定性的研究. 浙江大学学报(工学版), 47(10): 1824-1829. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201310018.htm
      蒋水华, 李典庆, 周创兵, 等, 2014. 考虑参数空间变异性的非饱和土坡可靠度分析. 岩土力学, 35(9): 2569-2578. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409021.htm
      焦李成, 杨淑媛, 刘芳, 等, 2016. 神经网络七十年: 回顾与展望. 计算机学报, 39(8): 1697-1716. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201901009.htm
      雷德鑫, 易武, 柳青, 等, 2018. 三峡库区卧沙溪滑坡稳定性的可靠度及敏感性分析. 安全与环境工程, 25(1): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201801005.htm
      李长冬, 龙晶晶, 姜茜慧, 等, 2020. 水库滑坡成因机制研究进展与展望. 地质科技通报, 39(1): 67-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001009.htm
      李典庆, 蒋水华, 2016. 边坡可靠度非侵入式随机分析方法. 北京: 科学出版社.
      刘天奇, 汪丙国, 张钧帅, 等, 2021. 江汉平原土壤饱和渗透系数变化规律及影响因素. 地球科学, 46(2): 671-682. doi: 10.3799/dqkx.2020.039
      龙海涛, 2014. 动水压力型滑坡特征及其变形预测研究——以白水河滑坡为例(硕士学位论文). 宜昌: 三峡大学.
      卢书强, 易庆林, 易武, 等, 2014. 库水下降作用下滑坡动态变形机理分析: 以三峡库区白水河滑坡为例. 工程地质学报, 22(5): 869-875. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201405016.htm
      史良胜, 杨金忠, 陈伏龙, 等, 2007. Karhunen-Loeve展开在土性各向异性随机场模拟中的应用研究. 岩土力学, 28(11): 2303-2308. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200711009.htm
      肖特, 李典庆, 周创兵, 等, 2014. 基于有限元强度折减法的多层边坡非侵入式可靠度分析. 应用基础与工程科学学报, 22(4): 718-732. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201404009.htm
      薛阳, 吴益平, 苗发盛, 等, 2020. 库水升降条件下考虑饱和渗透系数空间变异性的白水河滑坡渗流变形分析. 岩土力学, 41(5): 1709-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005030.htm
      殷坤龙, 张宇, 汪洋, 2022. 水库滑坡涌浪风险研究现状和灾害链风险管控实践. 地质科技通报, 41(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202202001.htm
      张俊, 殷坤龙, 王佳佳, 等, 2015. 基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究. 岩石力学与工程学报, 34(2): 382-391. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502019.htm
      张抒, 唐辉明, 刘晓, 等, 2018. 基于饱和渗透系数空间变异结构的斜坡渗流及失稳特征. 地球科学, 43(2): 622-634. doi: 10.3799/dqkx.2017.617
    • 加载中
    图(20) / 表(2)
    计量
    • 文章访问数:  492
    • HTML全文浏览量:  122
    • PDF下载量:  64
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-09-01
    • 网络出版日期:  2024-06-04
    • 刊出日期:  2024-05-25

    目录

      /

      返回文章
      返回