Probabilitic Analysis of Reservoir Landslides Considering the Spatial Variation of Seepage Parameters under the Conditions of Rainstorm and Sudden Drop of Water Level
-
摘要: 传统滑坡概率分析没有合理考虑滑坡体渗透系数空间变异性的影响.为有效表征滑坡体渗透系数空间变异性对滑坡概率的影响,提出基于反向传播神经网络(BPNN)的参数空间变异性边坡可靠度分析方法,其中采用Karhunen-Loève级数展开方法离散滑坡体饱和渗透系数非高斯随机场,基于BPNN构建边坡稳定系数代理模型.以白水河滑坡为例,分别进行暴雨和库水位骤降条件下滑坡概率分析,并与其他方法对比验证了提出方法的有效性.结果表明:提出方法不仅可有效考虑渗透系数空间变异性对滑坡概率的影响,而且具有较高的计算效率,可为实际复杂水库滑坡概率计算提供一种有效的工具.考虑滑坡体渗透系数空间变异性的作用,白水河滑坡在连续5 d暴雨作用下有19.5%的可能性发生局部失稳破坏,而在水位骤降条件下发生局部失稳破坏的可能性很小.Abstract: Traditional probabilitic analyses of landslides do not take into account the influence of the spatial variability of hydraulic conductivity of landslide mass. To characterize the effect of the spatial variability of the hydraulic conductivity of landslide mass, this paper proposes a back-propagation neural network-based method for slope reliability analysis involving spatially variable soil parameters. The Karhunen-Loève series expansion method is used to discretize the non-Gaussian random field of the saturated hydraulic conductivity of landslide mass. The back-propagation neural network is adopted to construct the surrogate model of the factor of safety of a spatially variable slope. The Baishuihe landslide is investigated as an example to estimate the landslide probability caused by the rainstorm and sudden drop of reservoir water level, respectively. The effectiveness of the proposed method is demonstrated through comparisons with other methods. The results indicate that the proposed method can not only effectively account for the influence of the spatial variability of the hydraulic conductivity of landslide mass on the landslide probability, but also achieve high computational efficiency for the probabilitic analysis of reservoir landslides. It can provide an effective and versatile tool for the landslide probability evaluation. In addition, when the spatial variability of soil hydraulic conductivity is considered, the Baishuihe landslide has a 19.5% probability of local failure under five consecutive days of rainstorm, while it has quite small occurrence possibility of local failure under the sudden drop of reservoir water level.
-
表 1 边坡岩土体参数取值
Table 1. Values of slope soil parameters
区域 重度
γ(kN/m3)黏聚力
c(kPa)内摩擦角
φ(°)饱和渗透系数
ks(m/d)滑坡体 20.7 27 18 0.43 基岩 25.6 190 30.4 0.01 表 2 滑坡体Van Genuchten模型拟合参数取值
Table 2. Values of van Genuchten model fitting parameters for the landslide mass
拟合参数 a(kPa) n $ {\theta }_{s} $ $ {\theta }_{r} $ 取值 50 1.45 0.43 0.02 -
Bi, C. C., Qing, C., Qian, X. M., et al., 2021. Estimation of Atmospheric Optical Turbulence Profile Based on back Propagation Neural Network. Laser & Optoelectronics Progress, 58(21): 23-32 (in Chinese with English abstract). Cho, S. E., 2014. Probabilistic Stability Analysis of Rainfall-Induced Landslides Considering Spatial Variability of Permeability. Engineering Geology, 171: 11-20. https://doi.org/10.1016/j.enggeo.2013.12.015 Dayhoff, J. E., DeLeo, J. M., 2001. Artificial Neural Networks. Cancer, 91(S8): 1615-1635. doi: 10.1002/1097-0142(20010415)91:8+<1615::AID-CNCR1175>3.0.CO;2-L Dong, H., Huang, R. Q., Luo, X., et al., 2017. Spatial Distribution and Variability of Infiltration Characteristics for Shallow Slope of Gravel Soil. Chinese Journal of Geotechnical Engineering, 39(8): 1501-1509 (in Chinese with English abstract). Dong, Z. H., 2015. Study on Groundwater Seepage and Deformation Mechanism of Baishuihe Landslide in Three Gorges Reservoir Area (Dissertation). China Three Gorges University, Yichang (in Chinese with English abstract). Dou, H. Q., Han, T. C., Gong, X. N., et al., 2015. Effects of the Spatial Variability of Permeability on Rainfall-Induced Landslides. Engineering Geology, 192: 92-100. https://doi.org/10.1016/j.enggeo.2015.03.014 Duncan, J. M., 2000. Factors of Safety and Reliability in Geotechnical Engineering. Journal of Geotechnical and Geoenvironmental Engineering, 126(4): 307-316. https://doi.org/10.1061/(asce)1090-0241(2000)126: 4(307) doi: 10.1061/(asce)1090-0241(2000)126:4(307 Griffiths, D. V., Fenton, G. A., 1993. Seepage beneath Water Retaining Structures Founded on Spatially Random Soil. Géotechnique, 43(4): 577-587. https://doi.org/10.1680/geot.1993.43.4.577 Guardiani, C., Soranzo, E., Wu, W., 2022. Time-Dependent Reliability Analysis of Unsaturated Slopes under Rapid Drawdown with Intelligent Surrogate Models. Acta Geotechnica, 17(4): 1071-1096. https://doi.org/10.1007/s11440-021-01364-w Han, T. C., Dou, H. Q., Ma, S. G., et al., 2013. Rainwater Redistribution on Stability of Homogenous Infinite Slope. Journal of Zhejiang University (Engineering Science), 47(10): 1824-1829 (in Chinese with English abstract). Huang, M. L., Sun, D. A., Wang, C. H., et al., 2021. Reliability Analysis of Unsaturated Soil Slope Stability Using Spatial Random Field-Based Bayesian Method. Landslides, 18(3): 1177-1189. https://doi.org/10.1007/s10346-020-01525-0 Jiang, S. H., Li, D. Q., Cao, Z. J., et al., 2015. Efficient System Reliability Analysis of Slope Stability in Spatially Variable Soils Using Monte Carlo Simulation. Journal of Geotechnical and Geoenvironmental Engineering, 141(2): 04014096. https://doi.org/10.1061/(asce)gt.1943-5606.0001227 Jiang, S. H., Li, D. Q., Zhang, L. M., et al., 2014. Slope Reliability Analysis Considering Spatially Variable Shear Strength Parameters Using a Non-Intrusive Stochastic Finite Element Method. Engineering Geology, 168: 120-128. https://doi.org/10.1016/j.enggeo.2013.11.006 Jiang, S. H., Li, D. Q., Zhou, C. B., et al., 2014. Reliability Analysis of Unsaturated Slope Considering Spatial Variability. Rock and Soil Mechanics, 35(9): 2569-2578 (in Chinese with English abstract). Jiao, L. C., Yang, S. Y., Liu, F., et al., 2016. Seventy Years beyond Neural Networks: Retrospect and Prospect. Chinese Journal of Computers, 39(8): 1697-1716 (in Chinese with English abstract). Lei, D. X., Yi, W., Liu, Q., et al., 2018. Reliability and Sensitivity Analysis of Woshaxi Landslide Stability in Three Gorges Reservoir Area. Safety and Environmental Engineering, 25(1): 23-28 (in Chinese with English abstract). Li, C. D., Long, J. J., Jiang, X. H., et al., 2020. Advance and Prospect of Formation Mechanism for Reservoir Landslides. Bulletin of Geological Science and Technology, 39(1): 67-77 (in Chinese with English abstract). Li, D. Q., Jiang, S. H., 2016. Non-Invasive Stochastic Analysis Method of Slope Reliability. Science Press, Beijing (in Chinese). Li, D. Y., Miao, F. S., Xie, Y. H., et al., 2019. Hazard Prediction for Baishuihe Landslide in the Three Gorges Reservoir during the Extreme Rainfall Return Period. KSCE Journal of Civil Engineering, 23(12): 5021-5031. https://doi.org/10.1007/s12205-019-1025-y Liu, T. Q., Wang, B. G., Zhang, J. S., et al., 2021. Variation Law and Influencing Factors of Soil Saturated Hydraulic Conductivity in Jianghan Plain. Earth Science, 46(2): 671-682 (in Chinese with English abstract). Long, H. T., 2014. Study on Characteristics and Deformation Prediction of Hydrodynamic Pressure Landslide—A Case Study of Baishuihe Landslide (Dissertation). China Three Gorges University, Yichang (in Chinese with English abstract). Lu, S. Q., Yi, Q. L., Yi, W., et al., 2014. Study on Dynamic Deformation Mechanism of Landslide in Drawdown of Reservoir Water Level-Take Baishuihe Landslide in Three Gorges Reservoir Area for Example. Journal of Engineering Geology, 22(5): 869-875 (in Chinese with English abstract). Petley, D., 2012. Global Patterns of Loss of Life from Landslides. Geology, 40(10): 927-930. https://doi.org/10.1130/g33217.1 Santoso, A. M., Phoon, K. K., Quek, S. T., 2011. Effects of Soil Spatial Variability on Rainfall-Induced Landslides. Computers & Structures, 89(11/12): 893-900. https://doi.org/10.1016/j.compstruc.2011.02.016 Shi, L. S., Yang, J. Z., Chen, F. L., et al., 2007. Research on Application of Karhunen-Loeve Expansion to Simulating Anisotropic Random Field of Soil Property. Rock and Soil Mechanics, 28(11): 2303-2308 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2007.11.010 Shu, S. X., Gong, W. H., 2016. An Artificial Neural Network-Based Response Surface Method for Reliability Analyses of C-φ Slopes with Spatially Variable Soil. China Ocean Engineering, 30(1): 113-122. doi: 10.1007/s13344-016-0006-x Tsaparas, I., Rahardjo, H., Toll, D. G., et al., 2002. Controlling Parameters for Rainfall-Induced Landslides. Computers and Geotechnics, 29(1): 1-27. https://doi.org/10.1016/S0266-352X(01)00019-2 van Genuchten, M. T., 1980. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5): 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x Wang, Z. Z., 2022. Deep Learning for Geotechnical Reliability Analysis with Multiple Uncertainties. Journal of Geotechnical and Geoenvironmental Engineering, 148(4): 06022001. doi: 10.1061/(ASCE)GT.1943-5606.0002771 Wu, Y. P., Miao, F. S., Li, L. W., et al., 2017. Time-Varying Reliability Analysis of Huangtupo Riverside No. 2 Landslide in the Three Gorges Reservoir Based on Water-Soil Coupling. Engineering Geology, 226: 267-276. https://doi.org/10.1016/j.enggeo.2017.06.016 Xiao, T., Li, D. Q., Zhou, C. B., et al., 2014. Non-Intrusive Reliability Analysis of Multi-Layered Slopes Using Strength Reduction FEM. Journal of Basic Science and Engineering, 22(4): 718-732 (in Chinese with English abstract). Xue, Y., Wu, Y. P., Miao, F. S., et al., 2020. Effect of Spatially Variable Saturated Hydraulic Conductivity with Non-Stationary Characteristics on the Stability of Reservoir Landslides. Stochastic Environmental Research and Risk Assessment, 34(2): 311-329. https://doi.org/10.1007/s00477-020-01777-1 Xue, Y., Wu, Y. P., Miao, F. S., et al., 2020. Seepage and Deformation Analysis of Baishuihe Landslide Considering Spatial Variability of Saturated Hydraulic Conductivity under Reservoir Water Level Fluctuation. Rock and Soil Mechanics, 41(5): 1709-1720 (in Chinese with English abstract). Yin, K. L., Zhang, Y., Wang, Y., 2022. A Review of Landslide-Generated Waves Risk and Practice of Management of Hazard Chain Risk from Reservoir Landslide. Bulletin of Geological Science and Technology, 41(2): 1-12 (in Chinese with English abstract). Zhang, J., Yin, K. L., Wang, J. J., et al., 2015. Displacement Prediction of Baishuihe Landslide Based on Time Series and PSO-SVR Model. Chinese Journal of Rock Mechanics and Engineering, 34(2): 382-391 (in Chinese with English abstract). Zhang, J. R., Tang, H. M., Wen, T., et al., 2020. A Hybrid Landslide Displacement Prediction Method Based on CEEMD and DTW-ACO-SVR-Cases Studied in the Three Gorges Reservoir Area. Sensors, 20(15): 4287. https://doi.org/10.3390/s20154287 Zhang, S., Tang, H. M., Liu, X., et al., 2018. Seepage and Instability Characteristics of Slope Based on Spatial Variation Structure of Saturated Hydraulic Conductivity. Earth Science, 43(2): 622-634 (in Chinese with English abstract). Zhu, H., Zhang, L. M., Zhang, L. L., et al., 2013. Two-Dimensional Probabilistic Infiltration Analysis with a Spatially Varying Permeability Function. Computers and Geotechnics, 48: 249-259. https://doi.org/10.1016/j.compgeo.2012.07.010 毕翠翠, 青春, 钱仙妹, 等, 2021. 基于反向传播神经网络估算大气光学湍流廓线. 激光与光电子学进展, 58(21): 23-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202121002.htm 董辉, 黄润秋, 罗潇, 等, 2017. 堆积碎石土斜坡浅表入渗的空间分布与变异性研究. 岩土工程学报, 39(8): 1501-1509. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708022.htm 董志鸿, 2015. 三峡库区白水河滑坡地下水渗流及变形机理研究(硕士学位论文). 宜昌: 三峡大学. 韩同春, 豆红强, 马世国, 等, 2013. 考虑雨水重分布对均质无限长边坡稳定性的研究. 浙江大学学报(工学版), 47(10): 1824-1829. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201310018.htm 蒋水华, 李典庆, 周创兵, 等, 2014. 考虑参数空间变异性的非饱和土坡可靠度分析. 岩土力学, 35(9): 2569-2578. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409021.htm 焦李成, 杨淑媛, 刘芳, 等, 2016. 神经网络七十年: 回顾与展望. 计算机学报, 39(8): 1697-1716. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201901009.htm 雷德鑫, 易武, 柳青, 等, 2018. 三峡库区卧沙溪滑坡稳定性的可靠度及敏感性分析. 安全与环境工程, 25(1): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201801005.htm 李长冬, 龙晶晶, 姜茜慧, 等, 2020. 水库滑坡成因机制研究进展与展望. 地质科技通报, 39(1): 67-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001009.htm 李典庆, 蒋水华, 2016. 边坡可靠度非侵入式随机分析方法. 北京: 科学出版社. 刘天奇, 汪丙国, 张钧帅, 等, 2021. 江汉平原土壤饱和渗透系数变化规律及影响因素. 地球科学, 46(2): 671-682. doi: 10.3799/dqkx.2020.039 龙海涛, 2014. 动水压力型滑坡特征及其变形预测研究——以白水河滑坡为例(硕士学位论文). 宜昌: 三峡大学. 卢书强, 易庆林, 易武, 等, 2014. 库水下降作用下滑坡动态变形机理分析: 以三峡库区白水河滑坡为例. 工程地质学报, 22(5): 869-875. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201405016.htm 史良胜, 杨金忠, 陈伏龙, 等, 2007. Karhunen-Loeve展开在土性各向异性随机场模拟中的应用研究. 岩土力学, 28(11): 2303-2308. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200711009.htm 肖特, 李典庆, 周创兵, 等, 2014. 基于有限元强度折减法的多层边坡非侵入式可靠度分析. 应用基础与工程科学学报, 22(4): 718-732. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201404009.htm 薛阳, 吴益平, 苗发盛, 等, 2020. 库水升降条件下考虑饱和渗透系数空间变异性的白水河滑坡渗流变形分析. 岩土力学, 41(5): 1709-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005030.htm 殷坤龙, 张宇, 汪洋, 2022. 水库滑坡涌浪风险研究现状和灾害链风险管控实践. 地质科技通报, 41(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202202001.htm 张俊, 殷坤龙, 王佳佳, 等, 2015. 基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究. 岩石力学与工程学报, 34(2): 382-391. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502019.htm 张抒, 唐辉明, 刘晓, 等, 2018. 基于饱和渗透系数空间变异结构的斜坡渗流及失稳特征. 地球科学, 43(2): 622-634. doi: 10.3799/dqkx.2017.617 -