• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于氚和CFCs的洞庭盆地浅层地下水年龄及循环更新研究

    常致凯 马斌 李静 梁杏 付鹏宇 曹明达 张志鑫 杜永昌

    常致凯, 马斌, 李静, 梁杏, 付鹏宇, 曹明达, 张志鑫, 杜永昌, 2023. 基于氚和CFCs的洞庭盆地浅层地下水年龄及循环更新研究. 地球科学, 48(11): 4256-4269. doi: 10.3799/dqkx.2022.367
    引用本文: 常致凯, 马斌, 李静, 梁杏, 付鹏宇, 曹明达, 张志鑫, 杜永昌, 2023. 基于氚和CFCs的洞庭盆地浅层地下水年龄及循环更新研究. 地球科学, 48(11): 4256-4269. doi: 10.3799/dqkx.2022.367
    Chang Zhikai, Ma Bin, Li Jing, Liang Xing, Fu Pengyu, Cao Mingda, Zhang Zhixin, Du Yongchang, 2023. Study on Age and Recycling of Shallow Groundwater Based on Tritium and CFCs in Dongting Basin. Earth Science, 48(11): 4256-4269. doi: 10.3799/dqkx.2022.367
    Citation: Chang Zhikai, Ma Bin, Li Jing, Liang Xing, Fu Pengyu, Cao Mingda, Zhang Zhixin, Du Yongchang, 2023. Study on Age and Recycling of Shallow Groundwater Based on Tritium and CFCs in Dongting Basin. Earth Science, 48(11): 4256-4269. doi: 10.3799/dqkx.2022.367

    基于氚和CFCs的洞庭盆地浅层地下水年龄及循环更新研究

    doi: 10.3799/dqkx.2022.367
    基金项目: 

    国家自然科学基金项目 41772268

    中国地调局项目 DD20190263

    中国地调局项目 2019040022

    详细信息
      作者简介:

      常致凯(1984-),男,博士研究生,主要从事水文地质与环境地质方向研究.ORCID:0000-0003-0219-4307. E-mail:zhikaimail@cug.edu.cn

      通讯作者:

      马斌,E-mail: bma@cug.edu.cn

    • 中图分类号: P641

    Study on Age and Recycling of Shallow Groundwater Based on Tritium and CFCs in Dongting Basin

    • 摘要: 洞庭盆地水资源供需矛盾日益突出,为查明区域地下水年龄以及循环更新情况,2021年在洞庭盆地资江流域采集浅层地下水氚(3H)和CFCs水样各12组.利用活塞流(PFM)模型对地下水3H和CFCs年龄进行了计算.结果表明:研究区地下水年龄自山前丘岗区至平原区逐步变老.山前丘岗区地下水年龄普遍 < 40 a,新水补给比例为96.36%~86.41%,地下水实际流速为2.18 m/d,地下水循环更新较快;平原区地下水年龄基本都在50 a以上,新水补给比例为37.09%,地下水实际流速在1.2~1.59 m/d,渗透流速为0.000 8~0.001 2 m/d,地下水循环更新慢.结合区域水文地质条件,山前丘岗区主要发育局部水流系统,平原区开始进入中间水流系统,平原中部地下水年龄超过80 a,可能与区域循环系统相重叠.

       

    • 图  1  研究区位置、范围、地质概况及采样点分布

      地下水等水位线根据王俊霖等(2020)修改

      Fig.  1.  Study area location, scope, geological survey and distribution of sampling sites

      图  2  研究区地质剖面

      Fig.  2.  Regional geological section

      图  3  长沙站1952‒2021年大气降水氚浓度重建结果

      Fig.  3.  Reconstruction results of tritium concentration at Changsha station

      图  4  样品CFCs浓度(pptv)相对北美大气CFCs浓度标准变化曲线趋势

      Fig.  4.  Sample CFCs concentration (pptv) relative to the North American atmospheric CFCs concentration standard curve trend diagram

      图  5  北美大气CFCs浓度比值趋势

      Fig.  5.  Trend of atmospheric CFCs concentration ratio in North America

      图  6  地下水CFCs浓度相对北美标准曲线比值分布

      Fig.  6.  Ratio distribution of groundwater CFCs concentration to the North American standard curve

      图  7  地下水年龄等值线

      Fig.  7.  Groundwater age contour

      图  8  浅层地下水循环模式

      Fig.  8.  Shallow groundwater circulation model

      表  1  氚与CFCs测试结果

      Table  1.   Tritium and CFCs test results

      点号 井深(m) 3H(TU) CFC-11 CFC-12 CFC-113
      (pmol/kg) (pmol/kg) (pmol/kg)
      GW10 14 4.9 0.54 0.39 0.03
      GW19 14 4.7 1.29 1.26 0.09
      GW22 18 4.9 0.21 - -
      GW32 11 5.3 0.02 - -
      GW36 9 5.2 0.07 0.22 -
      GW43 15 5.4 0.03 0.06 -
      GW51 12 4.6 0.25 0.43 -
      GW59 9 5.0 0.03 0.10 -
      GW62 12 4.1 1.88 1.34 0.17
      GW63 9 5.2 3.75 1.55 0.20
      GW82 9 8.5 7.35 1.29 0.16
      GW88 7 4.6 1.09 1.15 0.05
      注:“-”表示未检测出.
      下载: 导出CSV

      表  2  氚浓度恢复结果相对误差分析

      Table  2.   Relative error analysis of tritium concentration recovery results

      长沙站实测 长沙‒香港‒渥太华
      对数插值恢复 误差
      1988 11.78 8.90 0.24
      1989 11.00 11.09 ‒0.01
      1990 9.37 7.65 0.18
      1991 8.03 7.74 0.04
      1992 9.78 10.44 ‒0.07
      注:长沙站、香港站、渥太华站数据均来源于国际原子能机构IAEA(http://nds121.iaea.org/wiser/index.php).
      下载: 导出CSV

      表  3  地下水年龄及补给年份

      Table  3.   Groundwater age and recharge year

      点号 PFM模型地下水年龄 PFM模型补给年份
      3H CFC11 CFC12 CFC113 3H CFC11 CFC12 CFC113
      GW10 55.2 53.6 54.4 49.6 1966.3 1967.4 1966.6 1971.4
      GW19 38.0 48.8 39.8 41.6 1983.5 1972.2 1981.2 1979.4
      GW22 61.6 60.2 80+ 50+ 1959.9 1960.8 早于1940 早于1970
      GW32 61.6 69.2 80+ 50+ 1959.9 1951.8 早于1940 早于1970
      GW36 55.9 65.0 57.6 50+ 1965.6 1956 1963.4 早于1970
      GW43 55.9 68.0 66.8 50+ 1965.6 1953 1954.2 早于1970
      GW51 55.9 59.0 52.5 50+ 1965.6 1962 1968.5 早于1970
      GW59 55.6 68.0 63.6 50+ 1965.9 1953 1957.4 早于1970
      GW62 38.8 44.7 38.7 36.6 1982.7 1976.3 1982.3 1984.4
      GW63 38.0 31.6 35.6 35.6 1983.5 1989.4 1985.4 1985.4
      GW82 38.0 28.4 39.6 37.6 1983.5 1992.6 1981.4 1983.4
      GW88 38.1 50.0 41.5 46.5 1983.4 1971 1979.5 1974.5
      下载: 导出CSV

      表  4  地下水CFCs比值年龄及混合比例

      Table  4.   CFCs ratio age and mixing ratio of groundwater

      编号 比值年龄(CFC-113/CFC-12) 新水比例(%) 比值年龄(CFC-113/CFC-11) 新水比例(%)
      GW10 1978.5 37.05 1984 18.67
      GW19 1978 - 1987 38.23
      GW22 - - - -
      GW32 - - - -
      GW36 - - - -
      GW43 - - - -
      GW51 - - - -
      GW59 - - - -
      GW62 1985.5 86.79 1991.5 48.35
      GW63 1986 96.36 1983.5 -
      GW82 1985 86.41 - -
      GW88 - - 1981.5 41.66
      注:“-”表示该取样点因未检测出而无法计算比值年龄和新水比例.
      下载: 导出CSV

      表  5  含水层参数

      Table  5.   Aquifer parameters

      钻孔 含水层 水平渗透系数(m/d) 水力坡度(‰)
      资江南岸 S1-2 Qp2dt 1.42 0.6
      资江北岸 S1-1 Qp2dt 2.82 0.4
      下载: 导出CSV

      表  6  地下水流速估算

      Table  6.   Estimation of groundwater velocity

      编号 距离(m) 流动时间(a) 实际流速(m/d) 渗透流速(m/d)
      GW63-GW62(丘岗区) 2 465 3.1 2.18 -
      GW51-GW43(资江南岸) 8 288 14.3 1.59 0.000 8
      GW82-GW36(资江北岸) 7 892 18 1.2 0.001 2
      下载: 导出CSV

      表  7  资江流域2012年地表水水位与长观孔水位(m)

      Table  7.   Surface water level and long-time-observation-hole water level in Zijiang basin in 2012

      站点/月份 1 2 3 4 5 6 7 8 9 10 11 12
      沙头(水文站) 28.6 28.5 28.2 28.3 28.1 30.2 29.4 28.7 27.7 27.9 27.9 27.7
      益阳(水文站) 28.7 28.7 28.9 30.1 31.2 30.3 30.1 29.3 29.4 28.4 27.9 27.7
      S01(长观孔) 20.2 20.3 20.7 21.2 21.4 21.4 21.4 21.3 21.1 20.8 21.5 22.2
      下载: 导出CSV

      表  8  南洞庭湖水位(m)

      Table  8.   Water level of South Dongting Lake

      湖泊名称 最高水位 最低水位 多年平均水位
      南洞庭湖 35.32 27.04 29.46
      注:表 7、表8数据来源于《江汉‒洞庭平原地下水数值模拟专题研究报告》(中国地质调查局武汉地质调查中心,2016).
      下载: 导出CSV
    • Banks, E. W., Cook, P. G., Owor, M., et al., 2021. Environmental Tracers to Evaluate Groundwater Residence Times and Water Quality Risk in Shallow Unconfined Aquifers in Sub Saharan Africa. Journal of Hydrology, 598: 125753. doi: 10.1016/j.jhydrol.2020.125753
      Cao, T., Han, D., Song, X., et al., 2020. Subsurface Hydrological Processes and Groundwater Residence Time in a Coastal Alluvium Aquifer: Evidence from Environmental Tracers (δ18O, δ2H, CFCS, 3H) Combined with Hydrochemistry. The Science of the Total Environment, 743: 140684. https://doi.org/10.1016/j.scitotenv.2020.140684
      Chambers, L. A., Gooddy, D. C., Binley, A. M., 2019. Use and Application of CFC-11, CFC-12, CFC-113 and SF6 as Environmental Tracers of Groundwater Residence Time: A Review. Geoscience Frontiers, 10(5): 1643-1652. doi: 10.1016/j.gsf.2018.02.017
      Chen, Z. Y., Qi, J. X., Zhang, Z. J., et al., 2010. Application of Isotope Hydrogeological Methods in Typical Basins of Northern China. Science Press, Beijing (in Chinese).
      Cheng, Z. S., Li, Y., Chen, Z. Y., et al., 2019. Distribution Characteristics and Age of Tritium in Phreatic Aquifers in Yinchuan Plain. Journal of Arid Land Resources and Environment, 33(2): 139-145 (in Chinese).
      Fu, P. Y., Liang, X., Chang, Z. K., et al., 2022. The Distribution and Source of Sb in Groundwater at the End of the Zishui River. Earth Science, 1-18 (in Chinese with English abstract).
      Gao, S. Q., 2008. Quaternary Groundwater Circulation Model and Its Renewable Capacity Evaluation in Henan Plain (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Geological Environment Testing Station of Hunan Province, 1996. Regional Hydrogeological Survey Report of Heshan District, Ziyang District, Yiyang City, Hunan Province. Hunan Geological Environment Testing Station, Changsha (in Chinese).
      Guo, C. Y., 2019. Study on Groundwater Circulation and Regeneration in Taiyuan Basin (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Han, D. M., Song, X. F., Currell, M. J., et al., 2012. Using Chlorofluorocarbons (CFCs) and Tritium to Improve Conceptual Model of Groundwater Flow in the South Coast Aquifers of Laizhou Bay, China. Hydrological Processes, 26(23): 3614-3629. doi: 10.1002/hyp.8450
      Huang, B., Jiang, H., Qian, Z., et al., 2019. Spatial Distribution Characteristics of Groundwater Quality in the Dongting Lake Area Based on ARCGIS. China Rural Water and Hydropower, (10): 34-37 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-2284.2019.10.007
      Huang, X. G., Ping, J. H., Yu, Y., et al., 2021. Groundwater Renewability Study Based on Tritium (3H) in the Middle and Lower Watershed of Anyang River. Geoscience, 35(3): 693-702 (in Chinese with English abstract).
      Huang, Y. W., Du, Y., Xu, Y., et al., 2020. Source and Enrichment Mechanism of Ammonium in Shallow Confined Aquifer in the West of Dongting Plain. Bulletin of Geological Science and Technology, 39(6): 165-174 (in Chinese with English abstract).
      International Atomic Energy Agency (IAEA), 2006. Use of Chlorofluorocarbons in Hydrology: A Guidebook. International Atomic Energy Agency, Vienna.
      Joshi, S. K., Rai, S. P., Sinha, R., et al., 2018. Tracing Groundwater Recharge Sources in the Northwestern Indian Alluvial Aquifer Using Water Isotopes (δ18O, δ2H and 3H). Journal of Hydrology, 559: 835-847. doi: 10.1016/j.jhydrol.2018.02.056
      Jurgens, B. C., Bohlke, J. K., Eberts, S. M., 2012. Tracer LPM (Version 1): An Excel Workbook for Interpreting Groundwater Age Distributions from Environmental Tracer Data. Techniques and Methods, Reston.
      Lai, H. Z., Mo, D. W., Su, C., 2004. Discussion on the Evolutionary Trend of Lake Dongting. Geographical Research, (1): 78-86 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0585.2004.01.010
      Lei, M., Liu, Y. S., Ma, Q. W., et al., 2020. Water Cycle Analysis of the Jinqu Basin Based on Isotope Techniques. Yellow River, 42(8): 88-92, 99 (in Chinese with English abstract).
      Li, S. H., Chen, J. Y., Dioni, C., et al., 2022. Preliminary Study on the Age of Groundwater in the Middle and Deep Aquifers of Leizhou Peninsula Based on Multi- Isotopes. Acta Scientiarum Naturalium Universitatis Sunyatseni, 61(4): 95-103 (in Chinese with English abstract).
      Qin, D. J., 2002. Groundwater Dating Using the Concentrations of Chlorofluorocarbons. Geological Review, 48(S1): 210-214 (in Chinese with English abstract).
      Shi, X. F., Dong, W. H., Li, M. Z., et al., 2012. The Age of Shallow Groundwater in Henan Plain. Journal of Jilin University (Earth Science Edition), 42 (1) : 190-197 (in Chinese with English abstract).
      Su, C., 2021. Multi-Isotope Tracer Study on Water Age and Recharge Flow Pattern in the Ili River Valley (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      Sun, L. Q., Zhang, X., Liang, X., et al., 2021. Identification and Characteristics of the Sedimentary Environment since the Quaternary in Zi River Delta, Dongting Basin. Earth Science, 46(9): 3245-3257 (in Chinese with English abstract).
      Turnadge, C., Smerdon, B. D., 2014. A Review of Methods for Modelling Environmental Tracers in Groundwater: Advantages of Tracer Concentration Simulation. Journal of Hydrology, 519: 3674-3689. doi: 10.1016/j.jhydrol.2014.10.056
      Wang, H. C., 1991. Introduction to Isotope Hydrogeology. Geological Publishing House, Beijing, 86 (in Chinese).
      Wang, J. J., 2020. Numerical Simulation of Groundwater Flow Model and Typical System in Arid Inland Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Wang, J. L., Huang, B., Zheng, Y., et al., 2020. Spatial Characteristics of Groundwater Level in Dongting Lake Area. Resources and Environment in the Yangtze Basin, 29(4): 919-927 (in Chinese).
      Wang, J. X., 2015. Coupling Simulation of Hydrological Model and Groundwater Numerical Model in Jianghan-Dongting Plain (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Wei, R. C., Cao, Y., Tang, S. M., et al., 2022. Spatial Variation of Quality Indices of Shallow Groundwater in the Dongting Lake Area and Their Control Factors. Wetland Science, 20(1): 1-14 (in Chinese with English abstract).
      Wei, R. C., Tang, S. M., Wu, C. S., et al., 2020. Redox Zoning of Shallow Groundwater in Dongting Lake Region. China Environmental Science, 40(4): 1715-1722 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2020.04.039
      Wu, B. J., 1986. Numerical Calculation of Tritium in Atmospheric Precipitation in China. Hydrogeology and Engineering Geology, (4): 38-41 (in Chinese with English abstract).
      Wuhan Center of Geological Survey, China Geological Survey, 2016. Research Report of Groundwater Numerical Simulation in Jianghan-Dongting Plain. Wuhan Geological Survey Center, China Geological Survey, Wuhan (in Chinese).
      Yuan, R. Q., Zhang, L. Y., Long, X. T., 2021a. Fe-Mn Pollution in Shallow Groundwater in the Upper Plain of the Dongting Lake. Journal of China Hydrology, 41(5): 97-102 (in Chinese).
      Yuan, R. Q., Zhong, Y. X., Long, X. T., 2021b. Comprehensive Evaluation of Shallow Groundwater Quality in Upper Plain of Dongting Lake. Water Resources Protection, 37(6): 121-127 (in Chinese with English abstract).
      Zeng, W., 2018. Research on Environmental Governance and Protection of Dongting Lake Region (1949-2016) (Dissertation). Hunan Normal University, Changsha (in Chinese with English abstract).
      Zhang, B., Song, X. F., Zhang, Y. H., et al., 2014. Estimation of Groundwater Renewal Rate by Tritium and Chlorofluorocarbons in Sanjiang Plain. Journal of Natural Resources, 29(11): 1859-1868 (in Chinese).
      Zhang, J. W., 2021. Evolution of Groundwater Flow System and Its Effect on the Distribution of High Arsenic and Inferior Water in Jianghan Plain (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Zhang, R. Q., Liang, X., Jin, M. G., et al., 2011. Fundamentals of Hydrogeology. Geological Publishing House, Beijing, 98 (in Chinese).
      Zhang, Y. H., Ye, S. J., Wu, J. C., 2011. A Global Model of Recovering the Annual Mean Tritium Concentration in Atmospheric Precipitation. Geological Review, 57(3): 409-418 (in Chinese with English abstract).
      Zhao, Z. H., Wu, J. C., Yuan, G. X., et al., 2017. Recovery and Application of Tritium Concentration in Precipitation in Northeast of Tarim Basin. Hydrogeology & Engineering Geology, 44(1): 16-22 (in Chinese with English abstract).
      陈宗宇, 齐继祥, 张兆吉, 等, 2010. 北方典型盆地同位素水文地质学方法应用. 北京: 科学出版社.
      程中双, 李英, 陈宗宇, 等, 2019. 银川平原潜水氚分布特征与年龄. 干旱区资源与环境, 33(2): 139-145. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201902021.htm
      付鹏宇, 梁杏, 常致凯, 等, 2022. 资水尾闾地下水Sb含量分布及来源. 地球科学, 1-18. doi: 10.3799/dqkx.2022.084
      高淑琴, 2008. 河南平原第四系地下水循环模式及其可更新能力评价(博士学位论文). 长春: 吉林大学.
      湖南省地质环境检测总站, 1996. 湖南省益阳市资阳区赫山区区域水文地质调查报告. 长沙: 湖南省地质环境检测总站.
      郭春艳, 2019. 太原盆地地下水循环与更新性研究(博士学位论文). 北京: 中国地质大学.
      黄兵, 姜恒, 钱湛, 等, 2019. 环洞庭湖区地下水水质空间分布特征研究. 中国农村水利水电, (10): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201910007.htm
      黄先贵, 平建华, 禹言, 等, 2021. 基于氚同位素的安阳河中下游流域地下水更新能力研究. 现代地质, 35(3): 693-702. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202103012.htm
      黄艳雯, 杜尧, 徐宇, 等, 2020. 洞庭湖平原西部地区浅层承压水中铵氮的来源与富集机理. 地质科技通报, 39(6): 165-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202006018.htm
      来红州, 莫多闻, 苏成, 2004. 洞庭湖演变趋势探讨. 地理研究, (1): 78-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ200401009.htm
      雷明, 柳永胜, 马勤威, 等, 2020. 基于同位素技术的金衢盆地水循环研究. 人民黄河, 42(8): 88-92, 99. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH202008019.htm
      李绍恒, 陈建耀, Dioni, C., 等, 2022. 基于多同位素联用的雷州半岛中深层地下水年龄初探. 中山大学学报(自然科学版(中英文)), 61(4): 95-103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ202204020.htm
      秦大军, 2002. 用氟里昂(CFC)数据确定地下水的补给年龄. 地质论评, 48(S1): 210-214. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1036.htm
      石旭飞, 董维红, 李满洲, 等, 2012. 河南平原浅层地下水年龄. 吉林大学学报(地球科学版), 42(1): 190-197. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201201026.htm
      苏晨, 2021. 伊犁河谷地下水年龄和补给流动模式的多元同位素示踪研究(博士学位论文). 北京: 中国地质科学院.
      孙立群, 张鑫, 梁杏, 等, 2021. 洞庭盆地资水三角洲地区第四纪沉积环境判别及其特征. 地球科学, 46(9): 3245-3257. doi: 10.3799/dqkx.2020.357
      王恒纯, 1991. 同位素水文地质概论. 北京: 地质出版社, 86.
      王建军, 2020. 干旱内陆盆地地下水流模式与典型系统数值模拟(博士学位论文). 武汉: 中国地质大学.
      王俊霖, 黄兵, 郑颖, 等, 2020. 环洞庭湖区地下水位空间分布特征研究. 长江流域资源与环境, 29(4): 919-927. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY202004013.htm
      王军霞, 2015. 江汉‒洞庭平原流域水文模型与地下水数值模型耦合模拟研究(博士学位论文). 武汉: 中国地质大学.
      危润初, 曹阳, 唐仕明, 等, 2022. 洞庭湖区浅层地下水水质指标空间分异及其控制因素研究. 湿地科学, 20(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD202201013.htm
      危润初, 唐仕明, 吴长山, 等, 2020. 洞庭湖区浅层地下水氧化还原分带规律. 中国环境科学, 40(4): 1715-1722. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202004041.htm
      吴秉钧, 1986. 我国大气降水中氚的数值推算. 水文地质工程地质, (4): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198604017.htm
      中国地质调查局武汉地质调查中心, 2016. 江汉‒洞庭平原地下水数值模拟专题研究报告. 武汉: 中国地质调查局武汉地质调查中心.
      袁瑞强, 章良玉, 龙西亭, 2021a. 洞庭湖上游平原浅层地下水的铁锰污染. 水文, 41(5): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ202105019.htm
      袁瑞强, 钟钰翔, 龙西亭, 2021b. 洞庭湖上游平原浅层地下水水质综合评价. 水资源保护, 37(6): 121-127. https://www.cnki.com.cn/Article/CJFDTOTAL-SZYB202106018.htm
      曾文, 2018. 洞庭湖区环境治理与保护研究(1949-2016)(博士学位论文). 长沙: 湖南师范大学.
      张兵, 宋献方, 张应华, 等, 2014. 基于氚和CFCs的三江平原浅层地下水更新能力估算. 自然资源学报, 29 (11): 1859-1868. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201411005.htm
      张婧玮, 2021. 江汉平原地下水流系统演化及其对高砷劣质水分布的影响(博士学位论文). 武汉: 中国地质大学.
      张人权, 梁杏, 靳孟贵, 等, 2011. 水文地质学基础. 北京: 地质出版社, 98.
      章艳红, 叶淑君, 吴吉春, 2011. 全球大气降水中年平均氚浓度的恢复模型. 地质论评, 57(3): 409-418. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201103012.htm
      赵振华, 吴吉春, 袁革新, 等, 2017. 塔里木盆地东北部大气降水氚浓度的恢复及应用. 水文地质工程地质, 44(1): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201701003.htm
    • 加载中
    图(8) / 表(8)
    计量
    • 文章访问数:  276
    • HTML全文浏览量:  341
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-06
    • 网络出版日期:  2023-11-30
    • 刊出日期:  2023-11-25

    目录

      /

      返回文章
      返回