• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    泥石流防治措施与冲击力研究进展

    石振明 吴彬 郑鸿超 彭铭

    石振明, 吴彬, 郑鸿超, 彭铭, 2022. 泥石流防治措施与冲击力研究进展. 地球科学, 47(12): 4339-4349. doi: 10.3799/dqkx.2022.376
    引用本文: 石振明, 吴彬, 郑鸿超, 彭铭, 2022. 泥石流防治措施与冲击力研究进展. 地球科学, 47(12): 4339-4349. doi: 10.3799/dqkx.2022.376
    Shi Zhenming, Wu Bin, Zheng Hongchao, Peng Ming, 2022. State of the Art on Prevention and Control Measures and Impact Model for Debris Flow. Earth Science, 47(12): 4339-4349. doi: 10.3799/dqkx.2022.376
    Citation: Shi Zhenming, Wu Bin, Zheng Hongchao, Peng Ming, 2022. State of the Art on Prevention and Control Measures and Impact Model for Debris Flow. Earth Science, 47(12): 4339-4349. doi: 10.3799/dqkx.2022.376

    泥石流防治措施与冲击力研究进展

    doi: 10.3799/dqkx.2022.376
    基金项目: 

    国家重点研发计划 2019YFC1509702

    国家自然科学基金青年基金 42007252

    详细信息
      作者简介:

      石振明(1968-), 男, 教授, 博士, 主要从事地质灾害与防治技术方面研究工作.E-mail: shi_tongji@tongji.edu.cn

      通讯作者:

      郑鸿超, E-mail: 1410274@tongji.edu.cn

    • 中图分类号: P642

    State of the Art on Prevention and Control Measures and Impact Model for Debris Flow

    • 摘要:

      泥石流是一种世界范围内各个历史时期均普遍发生的地质灾害现象,尤其频发于地震多发的山地地区,每年均给人民的生命财产造成重大损失.为了应对这种暴发突然,来势凶猛,破坏力强的泥石流灾害,一系列防治措施应运而生.系统总结泥石流的防治措施.泥石流的防治措施可分为结构化措施和非结构化措施.其中结构化措施包括拦挡坝、拦挡网、导流渠、沉淀池和植被防护措施等,其设计依据可通过泥石流冲击力模型获取.泥石流冲击力模型可分为静力模型、动力模型.非结构化措施即建立泥石流预警和预报系统体系.

       

    • 图  1  我国泥石流分布范围

      地形底图来自Esri ArcGIS;地理底图来自自然资源部标准地图服务系统,审图号:国审受字(2022)第05285号

      Fig.  1.  Debris flow distribution of China

      图  2  泥石流阶梯拦挡坝群(据Cui and Lin, 2013)

      Fig.  2.  Step⁃check dams for controlling debris flow (modified from Cui and Lin, 2013)

      图  3  开口拦挡坝和梳子坝(据Theule et al., 2012)

      Fig.  3.  Open type check dam and slit dam (modified from Theule et al., 2012)

      图  4  柔性拦挡网

      a.据Lee et al.(2008);b.据Brighenti et al.(2013)

      Fig.  4.  Flexible net barriers

      图  5  导流渠和消能结构

      a.据Chen et al.(2015); b.据Chen et al.(2014)

      Fig.  5.  Drainage channel and energy dissipation cabinet

      图  6  泥石流静力、动力模型参数与弗劳德数关系

      Fig.  6.  The relationship between empirical coefficient and Froude number

      图  7  泥石流预警系统(修改自Kung et al., 2008)

      Fig.  7.  Debris flow warning system (modified from Kung et al., 2008)

      表  1  kaFr的拟合关系

      Table  1.   The fitting relationship between empirical coefficient and Froude number

      模型 表达式 拟合度(R2) 来源
      Fr-k k=9.1Fr 0.77 Scheidl et al.(2013)
      k=4.86Fr 0.84 Scheidl et al.(2013)
      k=Fr2 Huang and Zhang(2022)
      Fr-a a=7.23Fr-0.74 0.60 Scheidl et al.(2013)
      a=5.44Fr-1.08 0.86 Scheidl et al.(2013)
      a=5.3Fr-1.3 0.91 Cui et al.(2015)
      a=3.476Fr-2.389 0.845 Wang et al.(2018)
      a=4.2Fr-1.2 0.89 Li et al.(2020)
      下载: 导出CSV
    • Abancó, C., Hürlimann, M., Fritschi, B., et al., 2012. Transformation of Ground Vibration Signal for Debris-Flow Monitoring and Detection in Alarm Systems. Sensors, 12(4): 4870-4891. https://doi.org/10.3390/s120404870
      Arattano, M., 1999. On the Use of Seismic Detectors as Monitoring and Warning Systems for Debris Flows. Natural Hazards, 20(2-3): 197-213.
      Arattano, M., Moia, F., 1999. Monitoring the Propagation of a Debris Flow along a Torrent. Hydrological Sciences Journal, 44(5): 811-823. https://doi.org/10.1080/02626669909492275
      Armanini, A., 2007. On the Dynamic Impact of Debris Flows. In: Armanini, A., Masanori, M., eds., Recent Developments on Debris Flows. Springer, Berlin, 208-226. https://doi.org/10.1007/bfb0117770
      Badoux, A., Graf, C., Rhyner, J., et al., 2009. A Debris-Flow Alarm System for the Alpine Illgraben Catchment: Design and Performance. Natural Hazards, 49(3): 517-539. https://doi.org/10.1007/s11069-008-9303-x
      Berger, C., McArdell, B.W., Fritschi, B., et al., 2010. A Novel Method for Measuring the Timing of Bed Erosion during Debris Flows and Floods. Water Resources Research, 46(2). https://doi.org/10.1029/2009wr007993
      Bisson, M., Favalli, M., Fornaciai, A., et al., 2005. A Rapid Method to Assess Fire-Related Debris Flow Hazard in the Mediterranean Region: An Example from Sicily (Southern Italy). International Journal of Applied Earth Observation and Geoinformation, 7(3): 217-231. https://doi.org/10.1016/j.jag.2005.04.003
      Brighenti, R., Segalini, A., Ferrero, A.M., 2013. Debris Flow Hazard Mitigation: A Simplified Analytical Model for the Design of Flexible Barriers. Computers and Geotechnics, 54: 1-15. https://doi.org/10.1016/j.compgeo.2013.05.010
      Bugnion, L., McArdell, B.W., Bartelt, P., et al., 2012. Measurements of Hillslope Debris Flow Impact Pressure on Obstacles. Landslides, 9(2): 179-187. https://doi.org/10.1007/s10346-011-0294-4
      Chai, B., Tao, Y.Y., Du, J., et al., 2020. Hazard Assessment of Debris Flow Triggered by Outburst of Jialong Glacial Lake in Nyalam County, Tibet. Earth Science, 45(12): 4630-4639(in Chinese with English abstract)
      Chen, H., Lee, C.F., 2004. Geohazards of Slope Mass Movement and Its Prevention in Hong Kong. Engineering Geology, 76(1-2): 3-25. https://doi.org/10.1016/j.enggeo.2004.06.003
      Chen, J.G., Chen, X.Q., Li, Y., et al., 2015. An Experimental Study of Dilute Debris Flow Characteristics in a Drainage Channel with an Energy Dissipation Structure. Engineering Geology, 193: 224-230. https://doi.org/10.1016/j.enggeo.2015.05.004
      Chen, J.G., Chen, X.Q., Wang, T., et al., 2014. Types and Causes of Debris Flow Damage to Drainage Channels in the Wenchuan Earthquake Area. Journal of Mountain Science, 11(6): 1406-1419. https://doi.org/10.1007/s11629-014-3045-x
      Chen, N.S., Li, T.C., Gao, Y.C., 2005. A Great Disastrous Debris Flow on 11 July 2003 in Shuikazi Valley, Danba County, Western Sichuan, China. Landslides, 2(1): 71-74. https://doi.org/10.1007/s10346-004-0041-1
      Chen, S.C., Wu, C.Y., 2014. Debris Flow Disaster Prevention and Mitigation of Non-Structural Strategies in Taiwan. Journal of Mountain Science, 11(2): 308-322. https://doi.org/10.1007/s11629-014-2987-3
      Chen, X.Q., Cui, P., You, Y., et al., 2015. Engineering Measures for Debris Flow Hazard Mitigation in the Wenchuan Earthquake Area. Engineering Geology, 194: 73-85. doi: 10.1016/j.enggeo.2014.10.002
      Collins, T.K., 2008. Debris Flows Caused by Failure of Fill Slopes: Early Detection, Warning, and Loss Prevention. Landslides, 5(1): 107-120. https://doi.org/10.1007/s10346-007-0107-y
      Cui, P., Lin, Y.M., 2013. Debris-Flow Treatment: The Integration of Botanical and Geotechnical Methods. Journal of Resources and Ecology, 4(2): 97-104. https://doi.org/10.5814/j.issn.1674-764x.2013.02.001
      Cui, P., Zeng, C., Lei, Y., 2015. Experimental Analysis on the Impact Force of Viscous Debris Flow. Earth Surface Processes and Landforms, 40(12): 1644-1655. https://doi.org/10.1002/esp.3744
      Decaulne, A., 2007. Snow-Avalanche and Debris-Flow Hazards in the Fjords. Natural Hazards, 41(1): 81-98. https://doi.org/10.1007/s11069-006-9025-x
      DeWolfe, V.G., Santi, P.M., Ey, J., et al., 2008. Effective Mitigation of Debris Flows at Lemon Dam, La Plata County, Colorado. Geomorphology, 96(3-4): 366-377. https://doi.org/10.1016/j.geomorph.2007.04.008
      Fei, X.J., Shu, A.P., 2004. Movemet Mechanism and Disaster Control for Debris Flow. Tsinghua University Press, Beijing, 26-32(in Chinese)
      Han, W.B., Ou, G.Q., 2006. Efficiency of Slit Dam Prevention against Non-Viscous Debris Flow. Wuhan University Journal of Natural Sciences, 11(4): 865-869. https://doi.org/10.1007/bf02830178
      Hong, Y., Wang, J.P., Li, D.Q., et al., 2015. Statistical and Probabilistic Analyses of Impact Pressure and Discharge of Debris Flow from 139 Events during 1961 and 2000 at Jiangjia Ravine, China. Engineering Geology, 187: 122-134. https://doi.org/10.1016/j.enggeo.2014.12.011
      Hou, R.N., Li, Z., Chen, N.S., et al., 2022. Modeling of Debris Flow Susceptibility Assessment in Tianshan Based on Watershed Unit and Stacking Ensemble Algorithm. Earth Science (in press)(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2022.271
      Hu, K.H., Wei, F.Q., Li, Y., 2011. Real-Time Measurement and Preliminary Analysis of Debris-Flow Impact Force at Jiangjia Ravine, China. Earth Surface Processes and Landforms, 36(9): 1268-1278. https://doi.org/10.1002/esp.2155
      Huang, H.P., Yang, K.C., Lai, S.W., 2007. Impact Force of Debris Flow on Filter Dam. Momentum, 9(2): 03218.
      Huang, J., Huang, R.Q., Ju, N.P., et al., 2015.3D WebGIS-Based Platform for Debris Flow Early Warning: A Case Study. Engineering Geology, 197: 57-66. https://doi.org/10.1016/j.enggeo.2015.08.013
      Huang, M.L., Hong, J.H., 2010. A Geospatial Service Approach towards the Development of a Debris Flow Early-Warning Systems. Advances in Information Sciences and Service Sciences, 2(2): 107-117. https://doi.org/10.4156/aiss.vol2.issue2.13
      Huang, Y., Zhang, B., 2022. Challenges and Perspectives in Designing Engineering Structures against Debris-Flow Disaster. European Journal of Environmental and Civil Engineering, 26(10): 4476-4497. https://doi.org/10.1080/19648189.2020.1854126
      Hübl, J., Suda, J., Proske, D., et al., 2009. Debris Flow Impact Estimation. In: Proceedings of the 11th International Symposium on Water Management and Hydraulic Engineering. Ohrid, Macedonia.
      Ikeya, H., 1989. Debris Flow and Its Countermeasures in Japan. Bulletin of the International Association of Engineering Geology, 40(1): 15-33. https://doi.org/10.1007/bf02590339
      Imaizumi, F., Sidle, R.C., Kamei, R., 2008. Effects of Forest Harvesting on the Occurrence of Landslides and Debris Flows in Steep Terrain of Central Japan. Earth Surface Processes and Landforms, 33(6): 827-840. https://doi.org/10.1002/esp.1574
      Jaeggi, M.N.R., Pellandini, S., 2007. Torrent Check Dams as a Control Measure for Debris Flows. In: Recent Developments on Debris Flows. Springer, Berlin, Heidelberg, 186-207. https://doi.org/10.1007/bfb0117769
      Jakob, M., Hungr, O., 2005. Debris-Flow Hazards and Related Phenomena. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27129-5_1
      Kim, Y., Nakagawa, H., Kawaike, K., et al., 2017. Study on Hydraulic Characteristics of Sabo Dam with a Flap Structure for Debris Flow. International Journal of Sediment Research, 32(3): 452-464. https://doi.org/10.1016/j.ijsrc.2017.05.001
      Kung, H.Y., Ku, H.H., Wu, C.I., et al., 2008. Intelligent and Situation-Aware Pervasive System to Support Debris-Flow Disaster Prediction and Alerting in Taiwan. Journal of Network and Computer Applications, 31(1): 1-18. https://doi.org/10.1016/j.jnca.2006.06.008
      Lee, S.U., Choi, S.I., Choi, Y.K., 2008. Hazard Prevention Using Multi-Level Debris Flow Barriers. Korean Society for Railway, (2008): 815-829.
      Lichtenhahn, C., 1973. Berechnung Von Sperren in Beton Und Eisenbeton. Mitteilungen der Forstlichen Bundesanstalt Wien, 102: 91-127.
      Lin, X.C., Zhang, H.Y., Chen, H.F., et al., 2015. Field Investigation on Severely Damaged Aseismic Buildings in 2014 Ludian Earthquake. Earthquake Engineering and Engineering Vibration, 14(1): 169-176. https://doi.org/10.1007/s11803-015-0014-5
      Liu, C.R., Zhao, S.G., 2016. Experimental Study on Mechanism of Large River Blocking by Debris Flow. Journal of Chongqing Jiaotong University (Natural Science), 35(1): 90-95(in Chinese with English abstract).
      Liu, D.L., Leng, X.P., Wei, F.Q., et al., 2015. Monitoring and Recognition of Debris Flow Infrasonic Signals. Journal of Mountain Science, 12(4): 797-815. https://doi.org/10.1007/s11629-015-3471-4
      Liu, J.F., You, Y., Chen, X.C., et al., 2010. Identification of Potential Sites of Debris Flows in the Upper Min River Drainage, Following Environmental Changes Caused by the Wenchuan Earthquake. Journal of Mountain Science, 7(3): 255-263. https://doi.org/10.1007/s11629-010-2017-z
      Ng, C.W.W., Song, D., Choi, C.E., et al., 2017. Impact Mechanisms of Granular and Viscous Flows on Rigid and Flexible Barriers. Canadian Geotechnical Journal, 54(2): 188-206. https://doi.org/10.1139/cgj-2016-0128
      Osanai, N., Mizuno, H., Mizuyama, T., et al., 2010. Design Standard of Control Structures against Debris Flow in Japan. Journal of Disaster Research, 5(3): 307-314. https://doi.org/10.20965/jdr.2010.p0307
      Proske, D., Suda, J., Hübl, J., 2011. Debris Flow Impact Estimation for Breakers. Georisk, 5(2): 143-155. https://doi.org/10.1080/17499518.2010.516227
      Remaître, A., Malet, J.P., 2011. The Effectiveness of Torrent Check Dams to Control Channel Instability: Example of Debris-Flow Events in Clay Shales. Check Dams, Morphological Adjustements and Erosion Control in Torrential Streams. Nova Science Publishers Inc., New York, 211-237.
      Scheidl, C., Chiari, M., Kaitna, R., et al., 2013. Analysing Debris-Flow Impact Models, Based on a Small Scale Modelling Approach. Surveys in Geophysics, 34(1): 121-140. https://doi.org/10.1007/s10712-012-9199-6
      Scotton, P., Deganutti, A., 1997. Phreatic Line and Dynamic Impact in Laboratory Debris Flow Experiments. In: International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment. American Society of Civil Engineers, New York, 777-786.
      Shi, Z.M., Ma, X.L., Peng, M., et al., 2014. Statistical Analysis and Efficient Dam Burst Modelling of Landslide Dams Based on a Large-Scale Database. Chinese Journal of Rock Mechanics and Engineering, 33(9): 1780-1790(in Chinese with English abstract).
      Shi, Z.M., Xiong, Y.F., Peng, M., et al., 2016. An Efficient Risk Assessment Method for Landslide Dam Breach: Taking the Hongshiyan Landslide Dam Formed by the 2014 Ludian Earthquake as an Example. Journal of Hydraulic Engineering, 47(6): 742-751(in Chinese with English abstract).
      Shieh, C.L., Ting, C.H., Pan, H.W., 2008. Impulsive Force of Debris Flow on a Curved Dam. International Journal of Sediment Research, 23(2): 149-158. https://doi.org/10.1016/s1001-6279(08)60014-1
      Shima, J., Moriyama, H., Kokuryo, H., et al., 2016. Prevention and Mitigation of Debris Flow Hazards by Using Steel Open-Type Sabo Dams. International Journal of Erosion Control Engineering, 9(3): 135-144. https://doi.org/10.13101/ijece.9.135
      Suwa, H., Okano, K., Kanno, T., 2009. Behavior of Debris Flows Monitored on Test Slopes of Kamikamihorizawa Creek, Mount Yakedake, Japan. International Journal of Erosion Control Engineering, 2(2): 33-45. https://doi.org/10.13101/ijece.2.33
      Takahashi, T., 2007. Debris Flow: Mechanics, Prediction and Countermeasures. Taylor & Francis, London.
      Tang, B.X., Zhou, B.F., Wu, J.S., 2000. Debris Flow of China. The Commercial Press, Beijing (in Chinese)
      Tang, C., Rengers, N., van Asch, T.W.J., et al., 2011a. Triggering Conditions and Depositional Characteristics of a Disastrous Debris Flow Event in Zhouqu City, Gansu Province, Northwestern China. Natural Hazards and Earth System Sciences, 11(11): 2903-2912. https://doi.org/10.5194/nhess-11-2903-2011
      Tang, C., Zhu, J., Ding, J., et al., 2011b. Catastrophic Debris Flows Triggered by a 14 August 2010 Rainfall at the Epicenter of the Wenchuan Earthquake. Landslides, 8(4): 485-497. https://doi.org/10.1007/s10346-011-0269-5
      Tecca, P.R., Armento, C., Genevois, R., 2006. Debris Flow Hazard and Mitigation Works in Fiames Slope (Dolomites, Italy). WIT Transactions on Ecology and the Environment. WIT Press, UK. https://doi.org/10.2495/deb060021
      Theule, J.I., Liébault, F., Loye, A., et al., 2012. Sediment Budget Monitoring of Debris-Flow and Bedload Transport in the Manival Torrent, SE France. Natural Hazards and Earth System Sciences, 12(3): 731-749. https://doi.org/10.5194/nhess-12-731-2012
      Wang, D.P., Chen, Z., He, S.M., et al., 2018. Measuring and Estimating the Impact Pressure of Debris Flows on Bridge Piers Based on Large-Scale Laboratory Experiments. Landslides, 15(7): 1331-1345. https://doi.org/10.1007/s10346-018-0944-x
      Wang, G.L., 2013. Lessons Learned from Protective Measures Associated with the 2010 Zhouqu Debris Flow Disaster in China. Natural Hazards, 69(3): 1835-1847. https://doi.org/10.1007/s11069-013-0772-1
      Wang, Y.Y., Zhan, Q.D., Yan, B.Y., 2014. Debris-Flow Rheology and Movement. Hunan Science & Technology Press, Changsha, 2-7(in Chinese).
      Watanabe, M., I., 1981. Investigation and Analysis of Volcanic Mud Flows on Mount Sakurajima, Japan. In: International Association on Hydrology, ed., Erosion Sediment Transport Measurement. Science Publication, Florence, 245-256.
      Wendeler, C., Volkwein, A., Denk, M., et al., 2007. Field Measurements Used for Numerical Modelling of Flexible Debris Flow Barriers. 4th International Conference on Debris-Flow Hazards Mitigation-Mechanics, Prediction, and Assessment. Chengdu, China, 681-687 https://doi.org/20.500.11850/57642
      Yang, Q.G., Wang, X.R., Ma, W.F., et al., 2021. Design of Geo-Hazard Early Warning and Forecast System Based on Micro-Service Architecture. Earth Science, 46 (4): 1505-1517(in Chinese with English abstract).
      Yin, H., Huang, C.J., Chen, C.Y., et al., 2011. The Present Development of Debris Flow Monitoring Technology in Taiwan: A Case Study Presentation. Italian Journal of Engineering Geology and Environment. https://doi.org/10.4408/ijege.2011-03.b-068
      You, Y., Pan, H.L., Liu, J.F., et al., 2011. The Optimal Cross-Section Design of the "Trapezoid-V" Shaped Drainage Canal of Viscous Debris Flow. Journal of Mountain Science, 8(1): 103-107. https://doi.org/10.1007/s11629-011-1023-0
      Yu, B., Ma, Y., Wu, Y.F., 2010a. Investigation of Severe Debris Flow Hazards in Wenjia Gully of Sichuan Province after the Wenchuan Earthquake. Journal of Engineering Geology, 18(6): 827-836(in Chinese with English abstract).
      Yu, B., Yang, Y.H., Su, Y.C., et al., 2010b. Research on the Giant Debris Flow Hazards in Zhouqu County, Gansu Province on August 7, 2010. Journal of Engineering Geology, 18(4): 437-444(in Chinese with English abstract).
      Yu, G.A., Huang, H.Q., Wang, Z.Y., et al., 2012. Rehabilitation of a Debris-Flow Prone Mountain Stream in Southwestern China: Strategies, Effects and Implications. Journal of Hydrology, 414-415: 231-243. https://doi.org/10.1016/j.jhydrol.2011.10.036
      Zanuttigh, B., Lamberti, A., 2006. Experimental Analysis of the Impact of Dry Avalanches on Structures and Implication for Debris Flows. Journal of Hydraulic Research, 44(4): 522-534. https://doi.org/10.1080/00221686.2006.9521703
      Zhang, B., Huang, Y., Liu, J., 2021. Micro-Mechanism and Efficiency of Baffle Structure in Deceleration of Granular Flows. Acta Geotechnica, 16(11): 3667-3688. https://doi.org/10.1007/s11440-021-01290-x
      Zhang, S.C., 1993. A Comprehensive Approach to the Observation and Prevention of Debris Flows in China. Natural Hazards, 7(1): 1-23. https://doi.org/10.1007/bf00595676
      Zhang, W., Li, H.Z., Chen, J.P., et al., 2011. Comprehensive Hazard Assessment and Protection of Debris Flows along Jinsha River Close to the Wudongde Dam Site in China. Natural Hazards, 58(1): 459-477. https://doi.org/10.1007/s11069-010-9680-9
      Zheng, H.C., Shi, Z.M., de Haas, T., et al., 2022. Characteristics of the Impact Pressure of Debris Flows. Journal of Geophysical Research: Earth Surface, 127(3): e2021JF006488. https://doi.org/10.1029/2021jf006488
      Zhou, G.D., Cui, P., Tang, J.B., et al., 2015. Experimental Study on the Triggering Mechanisms and Kinematic Properties of Large Debris Flows in Wenjia Gully. Engineering Geology, 194: 52-61. https://doi.org/10.1016/j.enggeo.2014.10.021
      Zhuang, J.Q., Cui, P., Hu, K.H., et al., 2010. Characteristics of Earthquake-Triggered Landslides and Post-Earthquake Debris Flows in Beichuan County. Journal of Mountain Science, 7(3): 246-254. https://doi.org/10.1007/s11629-010-2016-0
      Zhuang, J.Q., Cui, P., Peng, J.B., et al., 2013. Initiation Process of Debris Flows on Different Slopes Due to Surface Flow and Trigger-Specific Strategies for Mitigating Post-Earthquake in Old Beichuan County, China. Environmental Earth Sciences, 68(5): 1391-1403. https://doi.org/10.1007/s12665-012-1837-2
      柴波, 陶阳阳, 杜娟, 等, 2020. 西藏聂拉木县嘉龙湖冰湖溃决型泥石流危险性评价. 地球科学, 45(12): 4630-4639. doi: 10.3799/dqkx.2020.294
      费祥俊, 舒安平, 2004. 泥石流运动机理与灾害防治. 北京: 清华大学出版社, 26-32.
      侯儒宁, 李志, 陈宁生, 等, 2022. 基于流域单元和堆叠集成模型的天山地区泥石流易发性评估建模. 地球科学(待刊).
      刘翠容, 赵世刚, 2016. 泥石流阻塞大河机理试验研究. 重庆交通大学学报(自然科学版), 35(1): 90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201601018.htm
      石振明, 马小龙, 彭铭, 等, 2014. 基于大型数据库的堰塞坝特征统计分析与溃决参数快速评估模型. 岩石力学与工程学报, 33(9): 1780-1790. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409008.htm
      石振明, 熊永峰, 彭铭, 等, 2016. 堰塞湖溃坝快速定量风险评估方法: 以2014年鲁甸地震形成的红石岩堰塞湖为例. 水利学报, 47(6): 742-751. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201606004.htm
      唐邦兴, 周必凡, 吴积善, 2000. 中国泥石流. 北京: 商务印书馆.
      王裕宜, 詹钱登, 严璧玉, 2014. 泥石流体的流变特性与运移特征. 长沙: 湖南科学技术出版社, 2-7.
      杨强根, 王晓蕊, 马维峰, 等, 2021. 基于微服务架构的地质灾害监测预警预报系统设计. 地球科学, 46(4): 1505-1517. doi: 10.3799/dqkx.2020.128
      余斌, 马煜, 吴雨夫, 2010a. 汶川地震后四川省绵竹市清平乡文家沟泥石流灾害调查研究. 工程地质学报, 18(6): 827-836. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201006003.htm
      余斌, 杨永红, 苏永超, 等, 2010b. 甘肃省舟曲8·7特大泥石流调查研究. 工程地质学报, 18(4): 437-444. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201004002.htm
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  1505
    • HTML全文浏览量:  486
    • PDF下载量:  188
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-30
    • 刊出日期:  2022-12-25

    目录

      /

      返回文章
      返回