Characteristics and Genetic Mechanisms of Gas-Water Distribution in Deep-Buried Continuous Superimposed Tight Sandstone Gas Reservoirs in Western Sichuan Depression, Sichuan Basin
-
摘要: 川西坳陷深层叠覆型致密砂岩气藏气水分布特征及其形成机理和演化规律认识不清, 已经成为制约天然气勘探和开发的关键问题.利用钻井、测井、地震、录井、生产测试等资料, 在对上三叠统须家河组致密气藏气水分特征分析的基础上, 综合研究了气水分布的控制因素、形成机理和成因演化.结果表明, 须四上亚段气水呈“层状”分布但气水边界模糊;须四下亚段和须二段地层水呈“孤立状”分布.烃源岩供烃能力对气水分布具有宏观控制作用, 断裂对天然气和地层水具有沟通和破坏双重作用, 储层非均质对气水分布进一步调整.孔隙流体状态控制下的3个流体动力场内地层水的赋存特征存在明显差异, 并形成不同的气水分布样式.依据流体动力场演化、源岩生排烃史及构造演化特征, 划分出气水分异期、气水各异期、气水调整期及气水定型期4个阶段.Abstract: Deep-buried superimposed tight sandstone gas reservoirs in the western Sichuan Depression are characterized by intensive heterogeneity with obvious water production. However, the mechanisms of gas-water distribution and its evolutionary processes are still unclear, which constrains the natural gas exploration and exploitation severely. Based on the data of drilling, well-logging, production and laboratory experiments, this study reveals the distribution characteristics, controlling factors and mechanisms of gas-water distribution of the tight gas reservoirs in upper Triassic Xujiahe Formation. Furthermore, this study also establishes a genetic evolution model of gas-water distribution. The research results show obvious disparity of gas-water distribution between different members of Xujiahe Formation. The gas-water distribution in the upper 4th Member of the Xujiahe Formation shows "layer-like" pattern, which is characterized by vague gas-water interface, while the regular distribution pattern (gas over water) and reverse distribution pattern (water over gas) with obvious gas-water interface only occur in part of the reservoirs. The gas-water distribution in lower 4th Member and 2nd Member of the Xujiahe Formations is characterized by "water surrounded by gas" pattern, the formation water is characterized by "island-like" distribution pattern. The hydrocarbon generating capacity of source rocks controlled the gas-water distribution at macroscopic level, while faults had dual influences of connecting and disrupting on the gas-water distribution. The reservoir heterogeneity further adjusted the water-gas distribution. The distribution of microscopic pore fluids had significant influence on water-gas distribution of the tight sandstone gas reservoirs, the three hydrodynamic fields controlled by pore fluids led to different occurrence characteristics of formation water and hence the different gas-water distribution. According to the evolution of hydrodynamic fields, hydrocarbon generating and expelling history and characteristics of tectonic evolution, the formation and evolutionary processes of formation water distribution were divided into four stages. The first stage was gas-water differentiation stage controlled by free hydrodynamic field with early-period hydrocarbon expulsion before the end of Early Jurassic. The second stage was formation water distinction stage controlled by different hydrodynamic fields with hydrocarbon expulsion peak from Early Jurassic to the end of Late Jurassic. The third stage was formation water adjustment period controlled by different hydrodynamic fields with hydrocarbon expulsion peak from Early Cretaceous to the end of Cretaceous. The fourth stage was gas-water distribution stereotype stage at present.
-
图 3 川西坳陷马井‒新场气田气藏剖面图(剖面位置见图 1)
Fig. 3. Gas section across the Majing-Xinchang Oilfield in the western Sichuan Depression
图 4 川西坳陷孝泉‒新场‒丰谷构造带须四段气藏剖面图(剖面位置见图 1)
Fig. 4. Gas section of the 4th Member of Xujiahe Formation across the Xiaoquan-Xinchang-Fenggu Oilfield in the western Sichuan Depression
图 5 川西坳陷孝泉‒新场‒丰谷构造带须二段气藏剖面图(剖面位置见图 1)
Fig. 5. Gas section of the 2nd Member of Xujiahe Formation across the Xiaoquan-Xinchang-Fenggu Oilfield in the western Sichuan Depression
图 7 川西坳陷川鸭子河‒马井‒新都气藏剖面及天然气运移路径(剖面位置见图 1)
Fig. 7. Gas section and gas migration pathway across the Yazihe-Majing-Xindu Oilfield in the western Sichuan Depression
图 8 川西坳陷新场‒合兴场‒丰谷气藏剖面及天然气运移路径(剖面位置见图 1)
Fig. 8. Gas section and gas migration pathway across the Xinchang-Hexingchang-Fenggu Oilfield in the western Sichuan Depression
表 1 测试井分类特征
Table 1. The test well classification characteristics
层段 平均孔隙度(%) 井型 测试井数 日产气量(104m3/d) 日产水量(m3/d) 水气比 范围 平均 范围 平均 T3x4上 7.78 产气井 9 0.10~4.13 0.90 0 0 0 产水井 2 0~0.07 0.36 0.57~19.20 9.89 27.47 气水同产井 14 0.12~3.80 0.73 1.86~358 45.28 62.03 总计 25 0~4.13 0.74 0~358 26.15 35.34 T3x4下 5.64 产气井 15 0.10~32.6 5.86 0 0 0 产水井 5 0~0.20 0.07 1.21~72 27.35 390.71 气水同产井 12 0.26~36.69 7.33 0.21~24.80 10.23 1.40 总计 32 0~36.69 5.51 0~72 8.37 1.52 T3x2 4.32 产气井 13 0.01~35.97 11.32 0 0 0 产水井 4 0~0.20 0.15 1.54~25 8.41 56.07 气水同产井 23 0.30~73.55 11.77 0.50~648 79.26 6.73 总计 40 0~73.55 10.46 0~648 46.42 4.44 表 2 川西坳陷须家河组主力烃源岩性质
Table 2. The main source rock properties of the Xujiahe Formation in western Sichuan Depression
主力烃源岩 岩石类型 暗色泥岩厚度(m) TOC(%) 成熟度Ro(%) 类型 须四中亚段 黑色泥页岩、碳质页岩、煤 49~169108.5 0.64~6.301.80 1.10~1.731.40 Ⅲ型 须三段 黑色泥页岩、碳质页岩、煤 125~700313.9 0.64~6.572.30 1.35~2.271.76 Ⅲ型 马鞍塘‒小塘子组 深灰色页岩, 局部夹薄煤层 50~350169.5 0.45~8.162.17 0.75~3.781.85 Ⅲ型 表 3 川西坳陷致密砂岩储层孔隙度、含水饱和度、产能及综合解释结论
Table 3. Saturation of water, productivity and interpretation from well logs of WSD tight sandstone gas reservoirs
层段 井名 孔隙度(%) 深度(m) 含水饱和度(%) 产能(m3/d) 解释结论 总饱和度 可动水 束缚水 气 水 须四段 川合148 11.83 3 581.4 55.21 9.23(16.72) 45.98(83.28) 0.24 6.20 含水气层 川丰125 5.12 3 579.8 44.36 4.22(9.51) 40.14(90.49) 0.03 1.21 含气层 川丰125 7.07 3 844.3 37.25 0.15(0.40) 37.10(99.60) 0.03 0 含气层 川丰125 6.48 3 848.4 42.25 0.41(0.97) 41.84(99.03) 0.01 0 含气层 川丰125 11.04 3 886.9 37.62 3.25(8.64) 34.37(91.36) 0.01 1.80 含水气层 川丰125 6.10 3 892.0 47.25 0.34(0.72) 46.91(99.28) 34.93 13 裂缝型气层 川孝560 2.88 3 435.6 56.96 8.62(15.24) 48.28(84.76) 0.50 4.28 气水同层 川孝560 7.28 3 523.3 51.31 0.55(1.07) 50.76(98.93) 5.94 0.21 含水气层 新882 6.35 4 373.0 64.33 14.02(22.57) 49.81(77.43) 2.38 62.30 气水同层 川高561 5.91 3 632.3 55.21 9.24(16.72) 45.98(83.28) 0.24 3.20 含水气层 新场23 2.54 4 010.0 57.50 6.21(10.87) 51.25(89.13) 0.80 6.80 水层 丰谷21 11.81 3 776.1 67.32 16.08(24.08) 51.11(75.92) 1.94 64.80 气水同层 须二段 川丰125 4.21 3 875.6 58.62 0.32(0.55) 58.30(99.45) 0 0 干层 川丰125 5.27 4 442.5 47.41 2.14(4.51) 45.27(95.49) 79.35 0 气层 川孝560 3.25 4 911.9 62.33 1.16(1.86) 61.17(98.14) 6.82 0 裂缝型气层 川孝560 4.12 4 803.3 44.32 0.44(0.99) 43.88(99.01) 0 0 干层 川高561 3.53 4 808.6 55.21 2.14(3.88) 53.07(96.12) 10.46 2.80 气层 川合100 5.16 5 060.5 55.21 1.18(2.14) 54.03(97.86) 9.69 0 气层 川合100 5.34 5 060.5 47.25 0.77(1.63) 46.48(98.37) 34.93 0 裂缝型气层 马深1 4.72 5 427.8 62.31 1.01(1.62) 61.30(98.38) 0 0 干层 新856 3.74 4 723.4 51.47 0.55(1.07) 50.92(98.93) 55.46 0 裂缝型气层 川高561 5.52 4 941.3 62.37 9.90(15.97) 52.41(84.03) 0 6.20 水层 注:3.73(8.81)表示绝对饱和度(相对饱和度). -
Cai, X. Y., 2010. Gas Accumulation Patterns and Key Exploration Techniques of Deep Gas Reservoirs in Tight Sandstone: An Example from Gas Exploration in the Xujiahe Formation of the Western Sichuan Depression, the Sichuan Basin. Oil & Gas Geology, 31(6): 707-714 (in Chinese with English abstract). Chen, D. X., Huang, X. H., Li, L. T., et al., 2010a. Characteristics and History of Hydrocarbon Expulsion of the Upper Tertiary Source Rocks in the Western Sichuan Depression. Natural Gas Industry, 30(5): 41-45, 138-139 (in Chinese with English abstract). Chen, D. X., Pang, X. Q., Li, L. T., et al., 2010b. Gas- Water Distribution Characteristics and Genetic Mechanism of the Second Sector of the Upper Triassic Xujiahe Formation in the Middle of the Western Sichuan Depression. Geoscience, 24(6): 1117-1125 (in Chinese with English abstract). Chen, D. X., Pang, X. Q., Yang, K. M., et al., 2012. Porosity Evolution History of Tight Sandstone in the Second Member of Upper Triassic in the Middle Part of Western Sichuan Depression. Journal of Jilin University (Earth Science Edition), 42(S1): 42-51 (in Chinese with English abstract). Dou, W. T., Liu, X. S., Wang, T., 2010. The Origin of Formation Water and the Regularity of Gas and Water Distribution for the Sulige Gas Field, Ordos Basin. Acta Petrolei Sinica, 31(5): 767-773 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-8719.2010.05.018 Hao, R. L., Huang, W. H., Bo, J., et al., 2024. Fractal Characteristics and Main Controlling Factors of High-Quality Tight Sandstone Reservoirs in the Southeastern Ordos Basin. Journal of Earth Science, 35(2): 631-641. https://doi.org/10.1007/s12583-021-1514-z He, D. B., Ji, G., Jiang, Q. F., et al., 2022. Differential Development Technological Measures for High-Water- Cut Tight Sandstone Gas Reservoirs in Western Area of Sulige Gas Field. Natural Gas Industry, 42(1): 73-82 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2022.01.007 Jia, A. L., Wei, Y. S., Guo, Z., et al., 2022. Development Status and Prospect of Tight Sandstone Gas in China. Natural Gas Industry, 42(1): 83-92 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2022.01.008 Jiang, F. J., Chen, X., Wang, P. W., et al., 2024. Genesis and Accumulation of Paleo-Oil Reservoir in Dabei Area, Kuqa Depression, Northwest China: Implications for Tight-Gas Accumulation. Journal of Earth Science, 35(2): 655-665. https://doi.org/10.1007/s12583-021-1562-4 Li, N., Zhou, K. M., Zhang, Q. X., et al., 2002. Experimental Research on Irreducible Water Saturation. Natural Gas Industry, 22(S1): 110-113, 2 (in Chinese with English abstract). Li, W. P., Liu, Z. Q., Hu, Z. Q., et al., 2021. Characteristics of and Main Factors Controlling the Tight Sandstone Reservoir Fractures in the 2nd Member of Xujiahe Formation in Xinchang Area, Western Sichuan Depression, Sichuan Basin. Oil & Gas Geology, 42(4): 884-897, 1010 (in Chinese with English abstract). Luo, X. Q., Guo, D. X., 2004. Relationship between Distribution Characteristic of Faults Fractures and Oil-Gas Reservoirs in West Sichuan. Journal of Southwest Petroleum Institute, 26(6): 17-20, 98 (in Chinese with English abstract). Nelson, P. H., 2009. Pore-Throat Sizes in Sandstones, Tight Sandstones, and Shales. AAPG Bulletin, 93(3): 329-340. https://doi.org/10.1306/10240808059 Pang, X. Q., Jia, C. Z., Wang, W. Y., et al., 2021. Buoyance-Driven Hydrocarbon Accumulation Depth and Its Implication for Unconventional Resource Prediction. Geoscience Frontiers, 12(4): 101133. https://doi.org/10.1016/j.gsf.2020.11.019 Pang, X. Q., Jiang, Z. X., Huang, H. D., et al., 2014. Formation Mechanisms, Distribution Models, and Prediction of Superimposed, Continuous Hydrocarbon Reservoirs. Acta Petrolei Sinica, 35(5): 795-828 (in Chinese with English abstract). Wang, X. M., Zhao, J. Z., Liu, X. S., 2012. Occurrence State and Production Mechanism of Formation Water in Tight Sandstone Reservoirs of Sulige Area, Ordos Basin. Petroleum Geology & Experiment, 34(4): 400-405 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2012.04.010 Wang, X. Z., Qiao, X. Y., Zhang, L., et al., 2022. Innovation and Scale Practice of Key Technologies for the Exploration and Development of Tight Sandstone Gas Reservoirs in Yan'an Gas Field of Southeastern Ordos Basin. Natural Gas Industry, 42(1): 102-113 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2022.01.010 Wei, Y. S., Shao, H., Jia, A. L., et al., 2009. Gas Water Distribution Model and Control Factors in Low Permeability High Water Saturation Sandstone Gas Reservoirs. Natural Gas Geoscience, 20(5): 822-826 (in Chinese with English abstract). Yang, H., Fu, J. H., Liu, X. S., et al., 2012. Accumulation Conditions and Exploration and Development of Tight Gas in the Upper Paleozoic of the Ordos Basin. Petroleum Exploration and Development, 39(3): 295-303 (in Chinese with English abstract). doi: 10.1016/S1876-3804(12)60045-7 Yang, K. M., Pang, X. Q., 2012. Formation Mechanism and Prediction Method of Tight Sandstone Gas Reservoir: A Case Study of the West Sichuan Depression. Science Press, Beijing (in Chinese). Yang, K. M., Zhu, H. Q., 2013. Geological Characteristics of Superposed Tight Sandstone Gas-Bearing Areas in Western Sichuan. Petroleum Geology & Experiment, 35(1): 1-8 (in Chinese with English abstract). Yang, S. L., Wei, J. Z., 2008. Physics of Reservoir. Petroleum Industry Press, Beijing, 117 (in Chinese). Zhao, J. Z., Fu, J. H., Yao, J. L., et al., 2012. Quasi- Continuous Accumulation Model of Large Tight Sandstone Gas Field in Ordos Basin. Acta Petrolei Sinica, 33(S1): 37-52 (in Chinese with English abstract). doi: 10.7623/syxb2012S1006 Zhao, S., Yong, Z. Q., 2012. Gas-Water Distribution and Genesis of the Tight Sandstone Gas Field in Member 4 of Xujiahe Formation in Chongxi of Central Sichuan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 39(2): 164-169 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2012.02.008 Zhao, W. Z., Wang, H. J., Xu, C. C., et al., 2010. Reservoir-Forming Mechanism and Enrichment Conditions of the Extensive Xujiahe Formation Gas Reservoirs, Central Sichuan Basin. Petroleum Exploration and Development, 37(2): 146-157 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60022-5 Zou, C. N., Tao, S. Z., Yuan, X. J., et al., 2009. The Formation Conditions and Distribution Characteristics of Continuous Petroleum Accumulations. Acta Petrolei Sinica, 30(3): 324-331 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2009.03.002 蔡希源, 2010. 深层致密砂岩气藏天然气富集规律与勘探关键技术: 以四川盆地川西坳陷须家河组天然气勘探为例. 石油与天然气地质, 31(6): 707-714. 陈冬霞, 黄小惠, 李林涛, 等, 2010a. 川西坳陷上三叠统烃源岩排烃特征与排烃史. 天然气工业, 30(5): 41-45, 138-139. 陈冬霞, 庞雄奇, 李林涛, 等, 2010b. 川西坳陷中段上三叠统须二段气水分布特征及成因机理. 现代地质, 24(6): 1117-1125. 陈冬霞, 庞雄奇, 杨克明, 等, 2012. 川西坳陷中段上三叠统须二段致密砂岩孔隙度演化史. 吉林大学学报(地球科学版), 42(S1): 42-51. 窦伟坦, 刘新社, 王涛, 2010. 鄂尔多斯盆地苏里格气田地层水成因及气水分布规律. 石油学报, 31(5): 767-773. doi: 10.3969/j.issn.1001-8719.2010.05.018 何东博, 冀光, 江乾锋, 等, 2022. 苏里格气田西区高含水致密砂岩气藏差异化开发技术对策. 天然气工业, 42(1): 73-82. doi: 10.3787/j.issn.1000-0976.2022.01.007 贾爱林, 位云生, 郭智, 等, 2022. 中国致密砂岩气开发现状与前景展望. 天然气工业, 42(1): 83-92. doi: 10.3787/j.issn.1000-0976.2022.01.008 李宁, 周克明, 张清秀, 等, 2002. 束缚水饱和度实验研究. 天然气工业, 22(S1): 110-113, 2. 李王鹏, 刘忠群, 胡宗全, 等, 2021. 四川盆地川西坳陷新场须家河组二段致密砂岩储层裂缝发育特征及主控因素. 石油与天然气地质, 42(4): 884-897, 1010. 罗啸泉, 郭东晓, 2004. 川西断裂分布特征与油气的关系. 西南石油学院学报, 26(6): 17-20, 98. 庞雄奇, 姜振学, 黄捍东, 等, 2014. 叠复连续油气藏成因机制、发育模式及分布预测. 石油学报, 35(5): 795-828. 王晓梅, 赵靖舟, 刘新社, 2012. 苏里格地区致密砂岩地层水赋存状态和产出机理探讨. 石油实验地质, 34(4): 400-405. doi: 10.3969/j.issn.1001-6112.2012.04.010 王香增, 乔向阳, 张磊, 等, 2022. 鄂尔多斯盆地东南部致密砂岩气勘探开发关键技术创新及规模实践. 天然气工业, 42(1): 102-113. 位云生, 邵辉, 贾爱林, 等, 2009. 低渗透高含水饱和度砂岩气藏气水分布模式及主控因素研究. 天然气地球科学, 20(5): 822-826. 杨华, 付金华, 刘新社, 等, 2012. 鄂尔多斯盆地上古生界致密气成藏条件与勘探开发. 石油勘探与开发, 39(3): 295-303. 杨克明, 庞雄奇, 2012. 致密砂岩气藏形成机制与预测方法——以川西坳陷为例. 北京: 科学出版社. 杨克明, 朱宏权, 2013. 川西叠覆型致密砂岩气区地质特征. 石油实验地质, 35(1): 1-8. 杨胜来, 魏俊之, 2008. 油层物理学. 北京: 石油工业出版社, 117. 赵靖舟, 付金华, 姚泾利, 等, 2012. 鄂尔多斯盆地准连续型致密砂岩大气田成藏模式. 石油学报, 33(S1): 37-52. 赵爽, 雍自权, 2012. 川中充西须四段致密砂岩气田气水分布特征及成因. 成都理工大学学报(自然科学版), 39(2): 164-169. 赵文智, 王红军, 徐春春, 等, 2010. 川中地区须家河组天然气藏大范围成藏机理与富集条件. 石油勘探与开发, 37(2): 146-157. 邹才能, 陶士振, 袁选俊, 等, 2009. 连续型油气藏形成条件与分布特征. 石油学报, 30(3): 324-331. -