• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    不同深度岩性差异对库车坳陷构造分段特征的影响

    徐振平 杨庚兄 罗浩渝 尹宏伟 吴少军 汪伟 赵凤全 徐雯峤

    徐振平, 杨庚兄, 罗浩渝, 尹宏伟, 吴少军, 汪伟, 赵凤全, 徐雯峤, 2024. 不同深度岩性差异对库车坳陷构造分段特征的影响. 地球科学, 49(8): 3029-3042. doi: 10.3799/dqkx.2022.391
    引用本文: 徐振平, 杨庚兄, 罗浩渝, 尹宏伟, 吴少军, 汪伟, 赵凤全, 徐雯峤, 2024. 不同深度岩性差异对库车坳陷构造分段特征的影响. 地球科学, 49(8): 3029-3042. doi: 10.3799/dqkx.2022.391
    Xu Zhenping, Yang Gengxiong, Luo Haoyu, Yin Hongwei, Wu Shaojun, Wang Wei, Zhao Fengquan, Xu Wenqiao, 2024. The Influence Lithologic Differences at Different Depths on the Segmentation between the Eastern and the Western zones of Kuqa Depression. Earth Science, 49(8): 3029-3042. doi: 10.3799/dqkx.2022.391
    Citation: Xu Zhenping, Yang Gengxiong, Luo Haoyu, Yin Hongwei, Wu Shaojun, Wang Wei, Zhao Fengquan, Xu Wenqiao, 2024. The Influence Lithologic Differences at Different Depths on the Segmentation between the Eastern and the Western zones of Kuqa Depression. Earth Science, 49(8): 3029-3042. doi: 10.3799/dqkx.2022.391

    不同深度岩性差异对库车坳陷构造分段特征的影响

    doi: 10.3799/dqkx.2022.391
    基金项目: 

    国家自然科学基金项目 41972219

    国家自然科学基金项目 41572187

    国家自然科学基金项目 41927802

    国家科技重大专项课题 2017ZX05008-001

    国家科技重大专项课题 2016ZX05003-001

    详细信息
      作者简介:

      徐振平(1979-),男,高级工程师,主要从事前陆盆地构造研究. ORCID:0000-0002-0805-0008. E-mail:xuzenp-tlm@petrochina.com.cn

      通讯作者:

      杨庚兄,E-mail:yanggx@smail.nju.edu.cn

    • 中图分类号: P548

    The Influence Lithologic Differences at Different Depths on the Segmentation between the Eastern and the Western zones of Kuqa Depression

    • 摘要: 为了进一步明确库车坳陷东西段构造差异发育的成因机制,采用构造物理模拟的方法探讨了东西段膏岩层粘度差异和基底性质差异对其构造分段特征的控制作用.构造模拟结果显示硅胶流变强度和基底强度的差异对实验演化过程的运动学特征有较大影响,构造样式也在不同的区域表现出差异性.实验结果与库车坳陷的构造特征对比分析认为:膏岩层粘度以及古生代基底强度差异是其东西构造分段的重要控制因素. 膏岩层粘度对盐上构造样式具有较强的控制作用,影响了盐上构造的传播范围和构造样式. 盐下构造样式主要依赖于基底强度,强度较弱的基底对盐下构造变形的传播有一定的抑制作用. 二者的共同影响下,库车坳陷的盐上和盐下构造样式均表现出东西分段特征.

       

    • 图  1  库车坳陷构造纲要图

      参考自塔里木油田研究院

      Fig.  1.  The geological frame of the Kuqa Depression

      图  2  库车坳陷典型构造剖面与地震解析

      剖面位置见图 1;a. 库车坳陷西段典型地震剖面和构造解析;b. 库车坳陷东段典型地震剖面和构造解析

      Fig.  2.  Tectonic profiles in the western and eastern zones of the Kuqa Depression

      图  3  库车坳陷东西部构造分段影响因素模型设计图

      Fig.  3.  Analog modeling ofthe factors affecting the structural segmentation in Kuqa Depression

      图  4  模型一构造模拟演化过程

      A~F:相机拍摄挤压过程;a~f:PIV技术速度场分析

      Fig.  4.  The tectonic evolution of analog model 1

      图  5  模型二构造模拟演化过程

      A~F:相机拍摄挤压过程;a~f:PIV技术速度场分析

      Fig.  5.  The tectonic evolution of the analog model 2

      图  6  实验结果与库车坳陷地质原型对比分析图

      Fig.  6.  Comparative analysis of model results and natural prototypes from the plane and section

      表  1  实验材料参数和模型的比例化

      Table  1.   Analogue material parameters and scaling ratios in the analogue experiments

      参数 单位 模型(m) 自然界(n) 相似比(m/n)
      重力加速度(g) m/s2 9.81 9.81 1
      长度(L m 0.01 2 000 5×10-6
      速度(v m/s 2×10-6 8.90×10-11~1.17×10-10 1.70×104~2.25×104
      脆性层密度(ρ kg/m3 1 297 2 400 0.54
      膏岩层密度(ρ kg/m3 987 2 200 0.45
      脆性层摩擦系数(μ - 0.73 0.60~0.85 0.858
      膏岩层粘度(η Pa·s 8×10-4 1020 8×10-16
      聚合强度(C Pa 90~127 4.3×107~4.7×107 2.5×10-6
      下载: 导出CSV
    • Cotton, J. T., Koyi, H. A., 2000. Modeling of Thrust Fronts above Ductile and Frictional Detachments: Application to Structures in the Salt Range and Potwar Plateau, Pakistan. Geological Society of America Bulletin, 112(3): 351-363. https://doi.org/10.1130/0016-7606(2000)112<351:motfad>2.0.co;2 doi: 10.1130/0016-7606(2000)112<351:motfad>2.0.co;2
      Davis, D. M., Engelder, T., 1985. The Role of Salt in Fold-and-Thrust Belts. Tectonophysics, 119(1/2/3/4): 67-88. https://doi.org/10.1016/0040-1951(85)90033-2
      Davy, P., Cobbold, P. R., 1991. Experiments on Shortening of a 4-Layer Model of the Continental Lithosphere. Tectonophysics, 188(1/2): 1-25. https://doi.org/10.1016/0040-1951(91)90311-f
      Guan, S. W., Chen, Z. X., Li, B. L., et al., 2010. Discussions on the Character and Interpretation Model of Kelasu Deep Structures in the Kuqa Area. Petroleum Exploration and Development, 37(5): 531-536(in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60053-5
      He, D. F., Zhou, X. Y., Yang, H. J., et al., 2009. Geological Structure and Its Controls on Giant Oil and Gas Fields in Kuqa Depression, Tarim Basin: A Clue from New Shot Seismic Data. Geotectonica et Metallogenia, 33(1): 19-32(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2009.01.003
      Higgins, S., Davies, R. J., Clarke, B., 2007. Antithetic Fault Linkages in a Deep Water Fold and Thrust Belt. Journal of Structural Geology, 29(12): 1900-1914. https://doi.org/10.1016/j.jsg.2007.09.004
      Hubbert, M. K., 1937. Theory of Scale Models as Applied to the Study of Geologic Structures. Geological Society of America Bulletin, 48(10): 1459-1520. https://doi.org/10.1130/gsab-48-1459
      Li, J. H., Zhang, Y., Wang, H. H., et al., 2020. Three-Dimensional Discrete Element Numerical Simulation of Paleogene Salt Structures in the Western Kuqa Foreland Thrust Belt. Petroleum Exploration and Development, 47(1): 68-79(in Chinese with English abstract). doi: 10.1016/S1876-3804(20)60006-4
      Li, S. Q., Wang, X., Suppe, J., 2012. Compressional Salt Tectonics and Synkinematic Strata of the Western Kuqa Foreland Basin, Southern TianShan, China. Basin Research, 24(4): 475-497. https://doi.org/10.1111/j.1365-2117.2011.00531.x
      Li, Y., Qi, J. 2013. Structural Segmentation and Mechanism in Dabei-Keshen area of Kelasu Structural Belt, Kuqa Depression. Chinese Journal of Geology, 48(4): 1177-1186(in Chinese with English abstract).
      Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of Recent Continental Tectonics in Asia can be Interpreted as Results of the India-Eurasia Collision. Science, 189(4201): 419-426. https://doi.org/10.1126/science.189.4201.419
      Mukherjee, S., Talbot, C. J., Koyi, H. A., 2010. Viscosity Estimates of Salt in the Hormuz and Namakdan Salt Diapirs, Persian Gulf. Geological Magazine, 147(4): 497-507. https://doi.org/10.1017/s001675680999077x
      Neng, Y., Xie, H. W., Yin, H. W., et al., 2018. Effect of Basement Structure and Salt Tectonics on Deformation Styles along Strike: An Example from the Kuqa Fold-thrust Belt, West China. Tectonophysics, 730(5): 114-131. https://doi.org/10.1016/j.tecto.2018.02.006
      Qi, J. F., Lei, G. L., & Li, M. G., et al., 2009. Analysis of Structure Model and Formation Mechanism of Kelasu Structure Zone, Kuqa Depression. Geotectonica et Metallogenia, 33(1): 49-56(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2009.01.007
      Reiter, K., Kukowski, N., Ratschbacher, L., 2011. The Interaction of Two Indenters in Analogue Experiments and Implications for Curved Fold-and-Thrust Belts. Earth and Planetary Science Letters, 302(1/2): 132-146. https://doi.org/10.1016/j.epsl.2010.12.002
      Schrank, C. E., Boutelier, D. A., Cruden, A. R., 2008. The Analogue Shear Zone: From Rheology to Associated Geometry. Journal of Structural Geology, 30(2): 177-193. https://doi.org/10.1016/j.jsg.2007.11.002
      Shen, L., Jia, D., Yin, H. W., et al., 2012. Analogue Modeling of Fold-and-Thrust Structures Based on Particle Image Velocimetry (PIV). Geological Review, 58(3): 471-480(in Chinese with English abstract). doi: 10.3969/j.issn.0371-5736.2012.03.008
      Tang, L. J., Li, J. C., Yu, Y. X., et al., 2006. Differential Salt Tectonic Deformation and Segmentation of the Kuqa Foreland Fold-Thrust Belt, Tarim Basin, Northwest China. Acta Geologica Sinica, (3): 313-320(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2006.03.001
      Tang, P. C., Rao, G., Li, S. Q. et al., 2015. The Impact of Salt Layer Thickness on the Structural Characteristics and Evolution of Detachment Folds in the Leading Edge of Kuqa Fold and Thrust Belt. Earth Science Frontiers, 22(1), 312-327(in Chinese with English abstract).
      Teng, X. Q., Yong, L., Yang, P., et al., 2017. Differential Structural Deformation and Its Control Factors in the Eastern Segment of Kuqa Depression. Petroleum Geology and Recovery Efficienc, 24(2): 15-21(in Chinese with English abstract).
      Wang, C. Y., Cheng, X. G., Chen, H. L., et al., 2016. The Effect of Foreland Palaeo-Uplift on Deformation Mechanism in the Wupoer Fold-and-Thrust Belt, NE Pamir: Constraints from Analogue Modelling. Journal of Geodynamics, 100(2): 115-129. https://doi.org/10.1016/j.jog.2016.03.001
      Wang, F, Deng, X., Zheng, M., et al., 2022. Sedimentary-Geochemical Characteristics and Potash-Prospecting Potential of Gypsum-Salt Layer in Western Kuqa Depression. Earth Science, 47 (1): 56-71 (in Chinese with English abstract).
      Wang, X., Jia, C. Z., Yang, S. F., et al., 2002. The Deformation Time of Kuqa Fold-and-Thrust Belt in the Southern Tianshan. Acta Geologica Sinica, (1): 55-63(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2002.01.008
      Wang, X., Wang, Z. M., Xie, H. W., et al., 2010. Cenozoic Salt Tectonics and Physical Models in the Kuqa Depression of Tarim Basin, China. Sci. Sin. Terrae, 40: 1655-1668 (in Chinese with English abstract). doi: 10.1360/zd2010-40-12-1655
      Wu, L., Jia, Y., Wang, G., et al., 2022. Response of Uranium Mineralization in Kuqa Depression Driven by Basin-Mountain Coupling Mechanism. Earth Science, 47(9): 3174-3191 (in Chinese with English abstract).
      Wu, Z. Y., Yin, H. W., Wang, X., et al., 2014. Characteristics and Deformation Mechanism of Salt-Related Structures in the Western Kuqa Depression, Tarim Basin: Insights from Scaled Sandbox Modeling. Tectonophysics, 612-613(8): 81-96. https://doi.org/10.1016/j.tecto. 2013.11.040 doi: 10.1016/j.tecto.2013.11.040
      Weijermars, R., Jackson, M. P. A., Vendeville, B., 1993. Rheological and Tectonic Modeling of Salt Provinces. Tectonophysics, 217(1/2): 143-174. https://doi.org/10.1016/0040-1951(93)90208-2
      Wolf, H., König, D., Triantafyllidis, T., 2003. Experimental Investigation of Shear Band Patterns in Granular Material. Journal of Structural Geology, 25(8): 1229-1240. https://doi.org/10.1016/s0191-8141(2)00163-3
      Xu, W. Q., Wang, W., Yin, H. W., et al., 2020. Numerical Simulation of Different Subsalt Structural Features and Their Evolution in the Eastern and Western Segments of the Kuqa Depression. Acta Geologica Sinica, 94(6): 1740-1751(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.06.007
      Yang, K. J., 2017. Differential Structural Deformations andControlling Factors of Salt Tectonic in the Middle Segment of the Kuqa Depression(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Yang, K. J, Qi, J. F., Ma, B. J., et al., 2018. Differential Tectonic Deformation of Subsalt and Suprasalt Strata in Kuqa Depression and Their Controlling Factors. Geotectonica et Metallogenia. 42(2): 211-224(in Chinese with English abstract).
      Yin, H., Wang, Z., Wang, X., et al., 2011. Characteristics and Mechanics of Cenozoic Salt-Related Structures in Kuqa Foreland Basins: Insights from Physical Modeling and Discussion. Geological Journal of China Universities, 42(2): 211-224(in Chinese with English abstract).
      Yin, A., Nie, S., Craig, P., et al., 1998. Late Cenozoic Tectonic Evolution of the Southern Chinese Tian Shan. Tectonics, 17(1): 1-27. https://doi.org/10.1029/97tc03140
      Yu, Y. X., Tang, L. J., Yang, W. J., et al., 2007. Structural Segmentation of Salt Structures in the Frontal Ranges of the Kuqa Foreland Fold and Thrust Belt, Northern Tarim Basin. Acta Geologica Sinica, 81(2): 166-173(in Chinese with English abstract).
      Yu, Y. X., Tang, L. J., Yin, J. G., et al., 2008. Analysis on Kinematic Characteristics of Salt Structures in KuqaDepression by Using Balanced Section Technology. Acta Petrolei Sinica, 29(3): 378-382(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2008.03.012
      Yu, Y. X., Tang, L. J., Yang, W. J., et al., 2008. Thick‐skinned Contractional Salt Structures in the Kuqa Depression, the Northern Tarim Basin: Constraints from Physical Experiments. Acta Geologica Sinica-English Edition, 82(2): 327-333. https://doi.org/10.1111/j.1755-6724.2008.tb00582.x
      Yu, Y. X., Tang, L. J., Yang, W. J., et al., 2014. Salt Structures and Hydrocarbon Accumulations in the Tarim Basin, Northwest China. AAPG Bulletin, 98(1): 135-159. https://doi.org/10.1306/05301311156
      Zhao, S. J., Zhao, X. K., Yang, S. C., 2005. Similar Analysis of Geological Structure Physical Model. Northwestern Geology, 295(1): 1-20(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2005.01.001
      Zhou, Y., Li, Y., Li, J. B., et al., 2015. Sandbox Modeling of Fold and Thrust Belt Based on Particle Image Velocimetry (PIV). Geoscience, 29(4): 755-764(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2015.04.005
      管树巍, 陈竹新, 李本亮, 等, 2010. 再论库车克拉苏深部构造的性质与解释模型. 石油勘探与开发, 37: 531-536. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201005003.htm
      何登发, 周新源, 杨海军, 等, 2009. 库车坳陷的地质结构及其对大油气田的控制作用. 大地构造与成矿学, 33(1): 19-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200901004.htm
      李江海, 章雨, 王洪浩, 等, 2020. 库车前陆冲断带西部古近系盐构造三维离散元数值模拟. 石油勘探与开发, 47(1): 65-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001007.htm
      李艳友, 漆家福, 2013. 库车坳陷克拉苏构造带大北-克深区段差异变形特征及其成因分析. 地质科学, 48(4): 1177-1186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201304015.htm
      漆家福, 雷刚林, 李明刚, 等, 2009. 库车坳陷克拉苏构造带的结构模型及其形成机制. 大地构造与成矿学, 49-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200901008.htm
      沈礼, 贾东, 尹宏伟, 等, 2012. 基于粒子成像测速(PIV)技术的褶皱冲断构造物理模拟. 地质论评, 58(3): 471-480. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201203009.htm
      汤良杰, 李京昌, 余一欣, 等, 2006. 库车前陆褶皱-冲断带盐构造差异变形和分段性特征探讨. 地质学报, (3): 313-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200603001.htm
      唐鹏程, 饶刚, 李世琴, 等, 2015. 库车褶皱-冲断带前缘盐层厚度对滑脱褶皱构造特征及演化的影响. 地学前缘, 22(1): 312-327. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501030.htm
      滕学清, 李勇, 杨沛, 等, 2017. 库车坳陷东段差异构造变形特征及控制因素. 油气地质与采收率, 24(2): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201702003.htm
      王凡, 邓小林, 郑绵平, 等, 2022. 新疆库车坳陷西段膏盐层沉积、地球化学特征及找钾方向. 地球科学, 47(1): 56-71. doi: 10.3799/dqkx.2021.245
      汪新, 贾承造, 杨树锋, 等, 2002. 南天山库车冲断褶皱带构造变形时间——以库车河地区为例. 地质学报, (1): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200201010.htm
      汪新, 王招明, 谢会文, 等, 2010. 塔里木库车坳陷新生代盐构造解析及其变形模拟. 中国科学: 地球科学, 40(12): 1655-1668. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201012004.htm
      吴立群, 焦养泉, 王国荣, 等, 2022. 盆山耦合机制驱动下的库车坳陷铀成矿作用响应. 地球科学, 47(9): 3174-3191. doi: 10.3799/dqkx.2022.100
      徐雯峤, 汪伟, 尹宏伟, 等, 2020. 库车坳陷东西段盐下构造变形差异演化数值模拟分析. 地质学报, 94(6): 1740-1751. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202006007.htm
      杨克基, 2017. 库车坳陷中段盐构造差异变形及其控制因素研究(博士毕业论文). 北京: 中国石油大学(北京).
      杨克基, 漆家福, 马宝军, 等, 2018. 库车坳陷克拉苏构造带盐上和盐下构造变形差异及其控制因素分析. 大地构造与成矿学, 42(2): 211-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201802002.htm
      尹宏伟, 王哲, 汪新等, 2011. 库车前陆盆地新生代盐构造特征及形成机制: 物理模拟和讨论. 高校地质学报, 17(2): 308-317. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201801007.htm
      余一欣, 汤良杰, 杨文静, 等, 2007. 库车前陆褶皱-冲断带前缘盐构造分段差异变形特征. 地质学报, 166-173. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200702004.htm
      余一欣, 汤良杰, 殷进垠, 等, 2008. 应用平衡剖面技术分析库车坳陷盐构造运动学特征. 石油学报, (3): 378-382. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200803013.htm
      赵仕俊, 赵锡奎, 杨少春, 2005. 地质构造物理模拟实验模型的相似分析. 西北地质, (4): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200504003.htm
      周游, 李勇, 李敬波, 等, 2015. 基于粒子成像测速(PIV)技术的褶皱冲断带砂箱构造物理模拟研究. 现代地质, 29(4): 755-764. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201504004.htm
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  428
    • HTML全文浏览量:  94
    • PDF下载量:  49
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-03
    • 网络出版日期:  2024-08-27
    • 刊出日期:  2024-08-25

    目录

      /

      返回文章
      返回