• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东营凹陷基底断裂走滑活动对油气成藏的影响

    周维维 董有浦 肖安成 吴磊 毛黎光 李洪革

    周维维, 董有浦, 肖安成, 吴磊, 毛黎光, 李洪革, 2023. 东营凹陷基底断裂走滑活动对油气成藏的影响. 地球科学, 48(7): 2718-2732. doi: 10.3799/dqkx.2022.398
    引用本文: 周维维, 董有浦, 肖安成, 吴磊, 毛黎光, 李洪革, 2023. 东营凹陷基底断裂走滑活动对油气成藏的影响. 地球科学, 48(7): 2718-2732. doi: 10.3799/dqkx.2022.398
    Zhou Weiwei, Dong Youpu, Xiao Ancheng, Wu Lei, Mao Liguang, Li Hongge, 2023. Effect of Strike-Slip Activity of Basement Faults on Hydrocarbon Accumulation in Dongying Sag. Earth Science, 48(7): 2718-2732. doi: 10.3799/dqkx.2022.398
    Citation: Zhou Weiwei, Dong Youpu, Xiao Ancheng, Wu Lei, Mao Liguang, Li Hongge, 2023. Effect of Strike-Slip Activity of Basement Faults on Hydrocarbon Accumulation in Dongying Sag. Earth Science, 48(7): 2718-2732. doi: 10.3799/dqkx.2022.398

    东营凹陷基底断裂走滑活动对油气成藏的影响

    doi: 10.3799/dqkx.2022.398
    基金项目: 

    国家自然科学基金项目 41802215

    国家自然科学基金项目 41762017

    国家自然科学基金项目 41672206

    详细信息
      作者简介:

      周维维(1986-),男,讲师,主要从事构造地质、油气地质研究.ORCID:0000-0009-8269-8796. E-mail:605316200@qq.com

      通讯作者:

      董有浦,E-mail: dongypsd@126.com

    • 中图分类号: P618.13

    Effect of Strike-Slip Activity of Basement Faults on Hydrocarbon Accumulation in Dongying Sag

    • 摘要: 弱变形构造带是沉积盆地盖层中客观存在的构造现象,并且与油气聚集关系密切,一般可以通过不同地质单元(次级断层、油藏、圈闭、相带、凹陷、岩体、潜山等)的有规律排列等现象进行识别.为了初步揭示盖层变形带变形强度与油气聚集规模这一问题,首先在渤海湾盆地初步识别出40条盖层变形带,然后应用变盖层厚度和变剪切强度的构造物理模拟实验方法研究基底断裂走滑活动对盆地沉积盖层产生断层的过程.应用SPSS软件,对基底走向滑动量、横向滑动量、实验盖层厚度、雁列缝长度等参数进行了多元二次函数拟合.根据东营凹陷八面河、王家岗地区古近系各时期地层厚度、构造图R剪切长度、实验估算的张扭角度,计算出了各个时期的基底断裂走滑量;在模拟实验各阶段充注染色石油,结合凹陷实例建立了基底断裂走滑早期R剪切单一通道运移‒孤立聚集、早中期R剪切主通道运移‒雁列串珠状聚集(王家岗)、P剪切主通道运移‒断续带状聚集、全通道运移‒连续带状聚等成藏模式(八面河);最后指出盖层变形带上的R剪切增压变形段,R、P剪切交汇段是油气勘探有利目标区.

       

    • 图  1  渤海湾盆地前古近系基底断裂分布略图

      F.郯庐断裂;F.兰聊‒盐山断裂;F.霸县‒束鹿‒邯郸断裂;F.张家口‒蓬莱断裂;F1.太行山前断裂;F2.沧东断裂;F3.宁无断裂;F4.埕南断层;F5.陈南断层;F6.齐广断层;F7.大洼‒台安断层;F8.营口‒佟二堡断层;F9.献县断层;F10.埕北断层;F11.泰山‒铜冶店断层;F12.甘霖断层

      Fig.  1.  Outline of the distribution of basement faults in the Pre-Paleogene in the Bohai Bay Basin

      图  2  东营凹陷基底断裂及油气分布

      Fig.  2.  Basement faults and oil and gas distribution in Dongying Sag

      图  3  八面河、王家岗变形带构造特征

      a.王家岗变形带平面构造特征;b.八面河变形带平面构造特征;c.王家岗变形带南段剖面构造特征;d.王家岗变形带中段剖面构造特征;e.王家岗变形带北段剖面构造特征;f.八面河变形带剖面构造特征

      Fig.  3.  Structural characteristics of the Bamianhe and Wangjiagang fault deformation zones

      图  4  构造变形与烃类充注物理模拟实验

      a. 注油总量43 mL模拟实验结果与油气聚集模式;b. 注油总量80 mL模拟实验结果与油气聚集模式

      Fig.  4.  Physical simulation experiment of structural deformation and hydrocarbon charging

      图  5  盖层变形带结构、演化及控藏模式

      a. R剪切单一通道运移‒孤立聚集成藏模式;b. R剪切主通道运移‒雁列串珠状聚集成藏模式;c. P剪切主通道运移‒断续带状聚集成藏模式;d. 全通道运移‒连续带状聚集成藏模式

      Fig.  5.  The structure, evolution, and reservoir control model of the fault deformation zone.R-shear single-channel migration-isolated accumulation model

      图  6  王家岗、八面河盖层变形带断裂活动期和生排烃期匹配关系

      Fig.  6.  Matching between faulting stages and the main stages of hydrocarbon generation and expulsion (wangjiagang and bamianhe concealed fault zone)

      表  1  渤海湾盆地识别变形带

      Table  1.   Summary of identification of fault deformation zones in the Bohai Bay Basin

      分布位置 断层名称 走向 长度(km) 宽度(km) 级别
      东营凹陷 八面河变形带 北东向 18~20 < 10 圈闭级
      东营凹陷 王家岗变形带 北东向 15~17 < 10 圈闭级
      东营凹陷 滨南‒平方王变形带 北东向 22~26 < 12 凹陷级
      东营凹陷 胜坨‒大芦湖变形带 北东向 25~29 < 15 凹陷级
      东营凹陷 永安镇‒东辛‒梁家楼变形带 北东向 35~39 < 12 凹陷级
      东营凹陷 胜坨‒东辛‒广利变形带 北西向 40~45 < 15 凹陷级
      东营凹陷 滨南‒王家岗变形带 北西向 50~55 < 17 凹陷级
      东营凹陷 林樊家‒纯化‒乐安变形带 北西向 65~70 < 20 凹陷级
      东营凹陷 平方王‒正理庄‒金家变形带 南北向 35~40 < 15 凹陷级
      惠民凹陷 肖庄‒临商变形带 北东东 40~45 < 10 凹陷级
      惠民凹陷 夏口变形带 北东东 40~45 < 10 凹陷级
      济阳坳陷 罗家‒胜坨‒乐安变形带 南北向 90~100 < 20 坳陷级
      济阳坳陷 垦利‒渤南‒大王庄变形带 北西西 93~98 < 20 坳陷级
      济阳坳陷 垦东变形带 北北东 24~30 < 10 凹陷级
      济阳坳陷 滩海变形带 北西向 63~65 15~20 坳陷级
      济阳坳陷 临盘‒玉皇庙‒英雄滩 北东向 102~107 < 20 坳陷级
      青东凹陷 青东变形带 北北东向 31~35 1‒8 洼陷级
      渤中坳陷 渤东变形带 北东向 40 30 洼陷级
      渤中坳陷 蓬莱变形带 北北东 34 10 洼陷级
      南堡凹陷 南堡2号‒林雀变形带 北西向 40~45 < 15 凹陷级
      南堡凹陷 高柳‒蛤坨变形带 北西向 47~50 < 15 凹陷级
      南堡凹陷 沙北变形带 北东向 32~35 < 12 凹陷级
      南堡凹陷 南堡‒高柳变形带 北东向 31~35 < 12 凹陷级
      南堡凹陷 沙垒田变形带 北东向 22~25 < 10 凹陷级
      饶阳凹陷 赵黄庄变形带 北西向 22~25 < 10 凹陷级
      黄骅坳陷 海河变形带 北西向 25~30 < 10 坳陷级
      黄骅坳陷 小站变形带 北西向 22~27 < 10 坳陷级
      黄骅坳陷 增福台变形带 北西向 22~27 < 15 坳陷级
      黄骅坳陷 埕北变形带 北西向 21~25 < 15 坳陷级
      黄骅坳陷 扣村变形带 北北西 32~38 < 20 坳陷级
      黄骅坳陷 北塘变形带 北北西 32~35 < 20 坳陷级
      黄骅坳陷 孔店‒小集‒乌马营变形带 北东向 110~120 < 24 坳陷级
      黄骅坳陷 歧口变形带 北北东 170~180 > 100 坳陷级
      渤海湾盆地 徐水‒安新变形带 北西向 130~140 < 30 盆地级
      渤海湾盆地 衡水变形带 北西向 100~110 < 30 盆地级
      渤海湾盆地 夏津‒腰站变形带 北西向 80~90 < 30 盆地级
      渤海湾盆地 塘沽‒蓬莱变形带 北西向 160~180 < 50 盆地级
      渤海湾盆地 回隆镇‒马陵变形带 北西向 60~70 < 30 盆地级
      渤海湾盆地 秦皇岛‒旅顺变形带 北西向 40~50 20‒30 盆地级
      渤海湾盆地 封丘‒兰考变形带 北西向 80~90 20‒30 盆地级
      下载: 导出CSV

      表  2  模型拟合度分析结果

      Table  2.   Model fit analysis results

      R(%) R2(%) 调整R2(%) 标准估计的误差(%)
      0.902 0.813 0.809 0.370 19
      下载: 导出CSV

      表  3  显著性分析结果

      Table  3.   Significance analysis results

      平方和 df 均方 F Sig
      回归 51.326 2 25.663 187.268 0
      残差 11.785 86 0.137
      总计 63.111 88
      下载: 导出CSV

      表  4  模型系数分析结果

      Table  4.   Model coefficient analysis results

      非标准化系数 标准系数 t Sig
      B 标准误差 试用版
      常量 0.184 0.092 2.004 0.048
      走滑位移量 1.071 0.095 0.532 11.322 0
      横向位移量 1.840 1.840 0.660 14.027 0
      注:表格中的走滑位移量DNBD=基底断裂走滑位移量/盖层厚度,横向位移量HNBD=基底断裂横向位移量/盖层厚度.
      下载: 导出CSV

      表  5  八面河变形带走滑量计算结果

      Table  5.   Strike-slip calculation results of the Bamianhe fault trend zone

      层位 地层厚度(m) 雁列式断层长度(km) 基底断裂走滑位移量(km) 基底断裂走滑位移量/盖层厚度 所处演化阶段
      Es2-Ed
      Es3 190 3.00,已贯通 1.62 8.48 显性阶段
      Es4 260 2.76,已贯通 1.36 6.39 显性阶段
      Ek 460 2.63,已贯通 1.34 2.89 显性阶段
      下载: 导出CSV

      表  6  王家岗变形带走滑量计算结果

      Table  6.   Calculation results of strike-slip in Wangjiagang fault trend zone

      层位 地层厚度(m) 雁列式断层长度(km) 基底断裂走滑位移量(km) 基底断裂走滑位移量/盖层厚度 所处演化阶段
      Es2-Ed
      Es3 820 4.20 2.00 2.53 变形带阶段
      Es4 650 3.00 1.59 2.22 变形带阶段
      Ek 1 600 2.58 0.66 0.42 变形带阶段
      下载: 导出CSV

      表  7  盖层变形带变形强度与油气富集程度定量参数(累计注油量43 mL)

      Table  7.   Quantitative parameters of deformation strength and hydrocarbon enrichment degree of fault trend zone (cumulative oil injection volume 43 mL)

      阶段 盖层变形带变形强度(cm) 注油量(mL) 损耗量(mL) 压力(kPa) 累计充注时间(min) 充注次数(次) 油注高度(cm) 圈闭面积充满度(%)
      a 1.69 6 2 70 3 2 0.20 10
      b 3.81 11 2 70 7 3 1.60 20
      c 7.6 14 5 45 9 3 1.93 45
      d 11.95 14 6 15 10 2 2.27 70
      下载: 导出CSV

      表  8  盖层变形带变形强度与油气富集程度定量参数(累计注油量80 mL)

      Table  8.   Quantitative parameters of deformation strength and hydrocarbon enrichment degree of fault trend zone (cumulative oil injection volume 80 mL)

      阶段 盖层变形带变形强度(cm) 注油量(mL) 损耗量(mL) 压力(kPa) 累计充注时间(min) 充注次数(次) 油注高度(cm) 圈闭面积充满度(%)
      A 1.56 12 4 90 3 2 1.64 20
      B 3.76 20 4 90 7 3 2.32 55
      C 7.32 24 10 70 9 3 3.10 75
      D 11.60 24 10 45 10 2 3.35 90
      下载: 导出CSV
    • Atmaoui, N., Kukowski, N., Stöckhert, B., et al., 2006. Initiation and Development of Pull-Apart Basins with Riedel Shear Mechanism: Insights from Scaled Clay Experiments. International Journal of Earth Sciences, 95(2): 225-238. https://doi.org/10.1007/s00531-005-0030-1
      Bellahsen, N., Daniel, J. M., 2005. Fault Reactivation Control on Normal Fault Growth: An Experimental Study. Journal of Structural Geology, 27(4): 769-780. https://doi.org/10.1016/j.jsg.2004.12.003
      Chi, Y. L., Zhao, W. Z., 2000. Strike-Slip Deformation during the Cenozoic and Its Influence on Hydrocarbon Accumulation in the Bohai Bay Basin. Acta Petrolei Sinica, 21(2): 14-20 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2000.02.003
      Coelho, S., Passchier, C., Marques, F., 2006. Riedel-Shear Control on the Development of Pennant Veins: Field Example and Analogue Modelling. Journal of Structural Geology, 28(9): 1658-1669. https://doi.org/10.1016/j.jsg.2006.05.009
      Cunningham, W. D., Mann, P., 2007. Tectonics of Strike-Slip Restraining and Releasing Bends. Geological Society, London, Special Publications, 290(1): 1-12. https://doi.org/10.1144/sp290.1
      Davis, G. H., Bump, A. P., Garcı́a, P. E., et al., 2000. Conjugate Riedel Deformation Band Shear Zones. Journal of Structural Geology, 22(2): 169-190. https://doi.org/10.1016/s0191-8141(99)00140-6
      Di, L. J., 2006. Controlling of Petrophysical Fractures on Extra-Low Permeability Oil and Gas Reservoirs in Ordos Basin. Petroleum Exploration and Development, 33(6): 667-670 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2006.06.005
      Dooley, T. P., Schreurs, G., 2012. Analogue Modelling of Intraplate Strike-Slip Tectonics: A Review and New Experimental Results. Tectonophysics, 574-575: 1-71. https://doi.org/10.1016/j.tecto.2012.05.030
      Fredman, N., Tveranger, J., Cardozo, N., et al., 2008. Fault Facies Modeling: Technique and Approach for 3-D Conditioning and Modeling of Faulted Grids. AAPG Bulletin, 92(11): 1457-1478. https://doi.org/10.1306/06090807073
      Fu, G., Wang, Y. P., 2018. Controlling Factors of Hydrocarbon Enrichment with the Type of "below Source and Upper Reservoir" in Fault Concentrated Zones and Nearby. Lithologic Reservoirs, 30(2): 23-29 (in Chinese with English abstract).
      Fu, X. F., Fang, D. Q., Lü, Y. F., et al., 2005. Method of Evaluating Vertical Sealing of Faults in Terms of the Internal Structure of Fault Zones. Earth Science, 30(3): 328-336 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2005.03.008
      Fusseis, F., Xiao, X., Schrank, C., et al., 2014. A Brief Guide to Synchrotron Radiation-Based Microtomography in (Structural) Geology and Rock Mechanics. Journal of Structural Geology, 65: 1-16. https://doi.org/10.1016/j.jsg.2014.02.005
      Ghosh, N., Chattopadhyay, A., 2008. The Initiation and Linkage of Surface Fractures above a Buried Strike-Slip Fault: an Experimental Approach. Journal of Earth System Science, 117(1): 23-32. https://doi.org/10.1007/s12040-008-0009-y
      Hardy, S., 2011. Cover Deformation above Steep, Basement Normal Faults: Insights from 2D Discrete Element Modeling. Marine and Petroleum Geology, 28(5): 966-972. https://doi.org/10.1016/j.marpetgeo.2010.11.005
      Hu, J. S., Sui, Z. Q., Liu, C. Z., 2009. Geologic Origin of Gravity Anomaly in Southern Dongying Depression. Petroleum Geology and Recovery Efficiency, 16(2): 39-42, 113 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-9603.2009.02.012
      Hu, S. Y., Yu, Y. J., Dong, D. Z., et al., 2006. Control of Fault Activity on Hydrocarbon Accumulation in Central Junggar Basin. Acta Petrolei Sinica, 27(1): 1-7 (in Chinese with English abstract). doi: 10.1111/j.1745-7254.2006.00255.x
      Jiang, M. M., Fu, X. F., Shi, L., et al., 2022. Physical Analogue Experiment of Microstructure and Variation Law of Permeability within Faults in High-Porosity Sandstone. Earth Science, 47(5): 1805-1818 (in Chinese with English abstract).
      Jiang, Y. L., Liu, H., Zhang, L., et al., 2005. Characteristics of Petroleum System in Dongying Depression. Acta Petrolei Sinica, 26(5): 33-37 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2005.05.007
      Jiang, Y. L., Zhai, Q. L., Rong, Q. H., et al., 2003. Main Factors for Controlling Hydrocarbon Accumulation in South-West Part of Dongying Depression. Journal of the University of Petroleum, China, 27(4): 11-14, 36 (in Chinese with English abstract).
      Le Guerroué, E., Cobbold, P. R., 2006. Influence of Erosion and Sedimentation on Strike-Slip Fault Systems: Insights from Analogue Models. Journal of Structural Geology, 28(3): 421-430. https://doi.org/10.1016/j.jsg.2005.11.007
      Li, H. Y., Niu, C. M., Xu, P., et al., 2021. Discovery of Bozhong 13-2 Archean Large Monoblock Volatile Buried Hill Oilfield and Its Oil and Gas Exploration Significance. Natural Gas Industry, 41(2): 19-26 (in Chinese with English abstract).
      Liu, H., Jiang, Y. L., Ren, J. L., 2009. Characteristics of Petroleum System and Oil-Source in Dongying Depression. Geological Journal of China Universities, 15(1): 93-99 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2009.01.009
      Lu, K. Z., Qi, J. F., Dai, J. S., et al., 1997. Tectonic Model of Cenozoic Oil-Bearing Basin in Bohai Bay. Geological Publishing House, Beijing (in Chinese).
      Luo, Q., 2010. Concept, Principle, Model and Significance of the Fault Controlling Hydrocarbon Theory. Petroleum Exploration and Development, 37(3): 316-324 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60035-3
      Ma, B. J., Qi, J. F., Niu, S. Y., et al., 2009. The Influence of Basement Fault on the Deformation of Complex Cover Blocks in a Uniform Stress Field—Enlightenment from Sandbox Experiment. Earth Science Frontiers, 16(4): 105-116 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2009.04.011
      Mollema, P. N., Antonellini, M. A., 1996. Compaction Bands: A Structural Analog for Anti-Mode Ⅰ Cracks in Aeolian Sandstone. Tectonophysics, 267(1-4): 209-228. https://doi.org/10.1016/S0040-1951(96)00098-4
      Morley, C. K., 1999. How Successful Are Analogue Models in Addressing the Influence of Pre-Existing Fabrics on Rift Structure? Journal of Structural Geology, 21(8-9): 1267-1274. https://doi.org/10.1016/S0191-8141(99)00075-9
      Qi, J. F., 2004. Two Tectonic Systems in the Cenozoic Bohai Bay Basin and Their Genetic Interpretation. Chinese Geology, 31(1): 15-22 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2004.01.002
      Qi, J. F., Deng, R. J., Zhou, X. H., et al., 2008. Structure of Tancheng-Lujiang Fault Zone in Cenozoic Basin in Bohai Sea. Scientia Sinica Terrae, 38(S1): 19-29 (in Chinese).
      Richard, P., 1991. Experiments on Faulting in a Two-Layer Cover Sequence Overlying a Reactivated Basement Fault with Oblique-Slip. Journal of Structural Geology, 13(4): 459-469. https://doi.org/10.1016/0191-8141(91)90018-E
      Richard, P., Krantz, R. W., 1991. Experiments on Fault Reactivation in Strike-Slip Mode. Tectonophysics, 188(1-2): 117-131. https://doi.org/10.1016/0040-1951(91)90318-M
      Richard, P., Mocquet, B., Cobbold, P. R., 1991. Experiments on Simultaneous Faulting and Folding above a Basement Wrench Fault. Tectonophysics, 188(1-2): 133-141. https://doi.org/10.1016/0040-1951(91)90319-N
      Song, G. Q., Li, J. Y., Jia, G. H., et al., 2013. Structural Characteristics and Its Control on Hydrocarbon Accumulation of the Kongdian Formation in the Wangjiagang Structural Zone, Dongying Depression. Oil & Gas Geology, 34(2): 207-214 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-9829.2013.02.003
      Thomas, G. E., 1974. Lineament-Block Tectonics: Williston-Blood Creek Basin. AAPG Bulletin, 58: 1305-1322. https://doi.org/10.1306/83d9166e-16c7-11d7-8645000102c1865d
      Wang, W. F., Zhou, W. W., Shan, X. J., et al., 2015a. Characteristics of Hidden Fault Zone and Its Significance in Geology in Sedimentary Basin. Journal of Central South University (Science and Technology), 46(6): 2236-2243 (in Chinese with English abstract).
      Wang, W. F., Zhou, W. W., Liu, Y. R., 2015b. Evolution of Subtle Fault Zone and Its Control Function of Reservoirs Forming in Jinhu Sag. Chinese Journal of Geology (Scientia Geologica Sinica), 50(3): 911-925 (in Chinese with English abstract).
      Wang, Z. C., Zhao, W. Z., Li, Z. Y., et al., 2008. Role of Basement Faults in Gas Accumulation of Xujiahe Formation, Sichuan Basin. Petroleum Exploration and Development, 35(5): 541-547 (in Chinese with English abstract). doi: 10.1016/S1876-3804(09)60087-2
      Xie, Y. H., 2021. Major Achievements in Oil and Gas Exploration of CNOOC in the 13th Five-Year Plan Period and Prospects in the 14th Five-Year Plan Period. China Petroleum Exploration, 26(1): 43-54 (in Chinese with English abstract).
      Xu, X. Y., Wang, W. F., 2020. The Recognition of Potential Fault Zone in Ordos Basin and Its Reservoir Control. Earth Science, 45(5): 1754-1768 (in Chinese with English abstract).
      Xue, Y. A., Li, H. Y., Xu, P., et al., 2021. Recognition of Oil and Gas Accumulation of Mesozoic Covered Buried Hills in Bohai Sea Area and the Discovery of BZ13-2 Oilfield. China Offshore Oil and Gas, 33(1): 13-22 (in Chinese with English abstract).
      Zhao, W. Z., Hu, S. Y., Wang, Z. C., et al., 2003. Key Role of Basement Fault Control on Oil Accumulation of Yanchang Formation, Upper Triassic, Ordos Basin. Petroleum Exploration and Development, 30(5): 1-5 (in Chinese with English abstract).
      Zhou, W. W., Wang, W. F., An, B., et al., 2014a. Genetic Types of Potential Fault Zone and Its Significance on Hydrocarbon Accumulation. Natural Gas Geoscience, 25(11): 1727-1734 (in Chinese with English abstract).
      Zhou, W. W., Wang, W. F., An, B., et al., 2014b. Identification of Potential Fault Zones and Its Geological Significance in Bohai Bay Basin. Earth Science, 39(11): 1627-1638 (in Chinese with English abstract).
      池英柳, 赵文智, 2000. 渤海湾盆地新生代走滑构造与油气聚集. 石油学报, 21(2): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200002002.htm
      邸领军, 2006. 鄂尔多斯盆地储集层物性断裂对超低渗油气藏的控制作用. 石油勘探与开发, 33(6): 667-670. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200606004.htm
      付广, 王宇鹏, 2018. 断裂密集带及附近下生上储式油气富集的控制因素. 岩性油气藏, 30(2): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201802003.htm
      付晓飞, 方德庆, 吕延防, 等, 2005. 从断裂带内部结构出发评价断层垂向封闭性的方法. 地球科学, 30(3): 328-336. http://www.earth-science.net/article/id/1414
      胡加山, 隋志强, 刘成斋, 2009. 东营凹陷南部重力异常地质成因. 油气地质与采收率, 16(2): 39-42, 113. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200902014.htm
      胡素云, 蔚远江, 董大忠, 等, 2006. 准噶尔盆地腹部断裂活动对油气聚集的控制作用. 石油学报, 27(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200601000.htm
      姜明明, 付晓飞, 石磊, 等, 2022. 高孔砂岩断层内部微观结构及渗透性变化规律物理模拟. 地球科学, 47(5): 1805-1818. doi: 10.3799/dqkx.2021.113
      蒋有录, 刘华, 张乐, 等, 2005. 东营凹陷含油气系统的划分及评价. 石油学报, 26(5): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200505006.htm
      蒋有录, 翟庆龙, 荣启宏, 等, 2003. 东营凹陷博兴地区油气富集的主要控制因素. 石油大学学报(自然科学版), 27(4): 11-14, 36. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200304002.htm
      李慧勇, 牛成民, 许鹏, 等, 2021. 渤中13-2大型整装覆盖型潜山油气田的发现及其油气勘探意义. 天然气工业, 41(2): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202102005.htm
      刘华, 蒋有录, 任景伦, 2009. 东营凹陷油‒源特征与含油气系统划分. 高校地质学报, 15(1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200901009.htm
      陆克政, 漆家福, 戴俊生, 等, 1997. 渤海湾新生代含油气盆地构造模式. 北京: 地质出版社.
      罗群, 2010. 断裂控烃理论的概念、原理、模式与意义. 石油勘探与开发, 37(3): 316-324. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201003010.htm
      马宝军, 漆家福, 牛树银, 等, 2009. 统一应力场中基底断裂对盖层复杂断块变形的影响——来自砂箱实验的启示. 地学前缘, 16(4): 105-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200904013.htm
      漆家福, 2004. 渤海湾新生代盆地的两种构造系统及其成因解释. 中国地质, 31(1): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200401001.htm
      漆家福, 邓荣敬, 周心怀, 等, 2008. 渤海海域新生代盆地中的郯庐断裂带构造. 中国科学: 地球科学, 38(S1): 19-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2008S1003.htm
      宋国奇, 李继岩, 贾光华, 等, 2013. 东营凹陷王家岗构造带孔店组构造特征及其控藏作用. 石油与天然气地质, 34(2): 207-214. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201302013.htm
      王伟锋, 周维维, 单新建, 等, 2015a. 沉积盆地隐性断裂带特征及其地质意义. 中南大学学报(自然科学版), 46(6): 2236-2243. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201506035.htm
      王伟锋, 周维维, 刘玉瑞, 2015b. 张扭性盆地隐性断裂带识别、演化及控藏作用——以苏北盆地金湖凹陷为例. 地质科学, 50(3): 911-925.
      汪泽成, 赵文智, 李宗银, 等, 2008. 基底断裂在四川盆地须家河组天然气成藏中的作用. 石油勘探与开发, 35(5): 541-547.
      谢玉洪, 2021. 中国海油"十三五"油气勘探重大成果与"十四五"前景展望. 中国石油勘探, 26(1): 43-54. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202101004.htm
      徐兴雨, 王伟锋, 2020. 鄂尔多斯盆地隐性断裂识别及其控藏作用. 地球科学, 45(5): 1754-1768. doi: 10.3799/dqkx.2019.175
      薛永安, 李慧勇, 许鹏, 等, 2021. 渤海海域中生界覆盖型潜山成藏认识与渤中13-2大油田发现. 中国海上油气, 33(1): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202101002.htm
      赵文智, 胡素云, 汪泽成, 等, 2003. 鄂尔多斯盆地基底断裂在上三叠统延长组石油聚集中的控制作用. 石油勘探与开发, 30(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200305000.htm
      周维维, 王伟锋, 安邦, 等, 2014a. 渤海湾盆地隐性断裂带成因类型特征及其对油气聚集的控制作用. 天然气地球科学, 25(11): 1727-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201411007.htm
      周维维, 王伟锋, 安邦, 等, 2014b. 渤海湾盆地隐性断裂带识别及其地质意义. 地球科学, 39(11): 1627-1638. doi: 10.3799/dqkx.2014.145
    • 加载中
    图(6) / 表(8)
    计量
    • 文章访问数:  416
    • HTML全文浏览量:  816
    • PDF下载量:  76
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-18
    • 刊出日期:  2023-07-25

    目录

      /

      返回文章
      返回