Reservoir Landslide Susceptibility Prediction Considering Non-Landslide Sampling and Ensemble Machine Learning Methods
-
摘要: 准确的滑坡易发性建模对预警预报和风险管控具有重要意义.针对机器学习技术建模中非滑坡样本随机选取和单个分类器存在的精度不高问题,提出了一种耦合多模型的区域滑坡易发性建模框架.以三峡库区秭归-巴东段为例,选取高程、坡度等12个因子构建评价指标体系,应用信息量法定量分析各指标对滑坡空间发育的影响程度.随机选取70%的滑坡作为训练样本,剩余的30%作为验证样本;应用逻辑回归模型(LR)制作研究区的初始易发性分区图,确定非滑坡随机采样的约束范围.随后,分别采用LR模型约束和无约束条件下随机选取的非滑坡样本,应用单个分类回归树(LR-CART和No-CART)及分类回归树-Bagging组合模型(LR-CART-Bagging和No-CART-Bagging)开展滑坡易发性建模,并应用多个指标进行精度评估.结果发现:高程和水系等是滑坡发育的主控因素;LR-CART-Bagging模型精度为0.973,高于LR-CART模型的0.889;相比于No-CART和No-CART-Bagging模型,LR-CART和LR-CART-Bagging模型精度分别提升了0.057和0.047.LR模型可以有效约束非滑坡样本的选取范围,提升样本的选取质量;CART-Bagging模型综合了机器学习和集成学习的优势,预测性能更强,提出的LR-CART-Bagging模型是一种准确可靠的滑坡易发性建模方法.Abstract: Landslide susceptibility evaluation is important for its early warning and forecasting and risk management.To address the problems of a random selection of non-landslide samples and low accuracy of individual classifiers in modeling by machine learning techniques, a coupled multi-model regional landslide susceptibility modeling framework is proposed.Taking the Zigui-Badong section of the Three Gorges reservoir area as an example, 12 factors such as elevation and slope were selected to construct an evaluation index system, and the information quantity method was applied to quantify the influence degree of each factor on landslide spatial development. 70% of the landslides were randomly selected as training samples and the remaining 30% as validation samples; the Logistic Regression model (LR) was applied to produce an initial susceptibility zoning map of the study area and to determine the constraint range for random sampling of non-landslides. Subsequently, a single Classification and Regression Tree (LR-CART and No-CART) and combined Classification and Regression Tree-Bagging model (LR-CART-Bagging and No-CART-Bagging) were applied to model landslide susceptibility using randomly selected non-landslide samples under the constrained and unconstrained conditions of LR model, respectively, and multiple metrics were applied for accuracy assessment.The results show that elevation and water system are the main controlling factors for landslide development; the accuracy of the LR-CART-Bagging model is 0.973, higher than 0.889 of the LR-CART model; compared with No-CART and No-CART-Bagging models, the accuracy of LR-CART and LR-CART-Bagging models is improved by 0.057 and 0.047, respectively.LR model can effectively constrain the selection range of non-landslide samples and improve the quality of sample selection; the CART-Bagging model integrates the advantages of machine learning and ensemble learning with better prediction performance, and the proposed LR-CART-Bagging model is an accurate and reliable method for landslide susceptibility modeling.
-
表 1 易发性影响因素信息量值
Table 1. Information value of conditioning factors
评价指标 状态分级 信息量I/bit 评价指标 状态分级 信息量I/bit 坡度(°) 0~9 ‒0.90 坡向 平 ‒1.93 9~18 0.37 北 0.47 18~27 0.42 东北 0.23 27~36 ‒0.28 东 ‒0.27 > 36 ‒1.63 东南 ‒0.31 地表粗糙度 1~1.1 0.37 南 0.43 1.1~1.2 ‒0.04 西南 ‒0.29 1.2~1.3 ‒0.88 西 ‒0.71 1.3~1.4 ‒1.90 西北 ‒0.03 1.4~1.5 ‒2.48 构造距离(m) 0~500 ‒0.04 > 1.5 ‒2.49 500~1 000 0.08 水系距离(m) 0~300 0.92 1 000~1 500 0.24 300~600 0.29 1 500~2 000 0.23 600~900 ‒0.57 > 2 000 ‒0.22 900~1 200 ‒1.70 高程(m) < 240 1.49 > 1 200 ‒2.95 240~450 0.54 地层岩性 L1 ‒3.94 450~650 ‒1.36 L2 ‒0.3 650~1 200 ‒3.84 L3 0.17 > 1 200 ‒∞ L4 ‒0.34 斜坡形态 X/X 0.16 L5 0.42 X/V ‒0.96 地形湿度指数 1.37~3 ‒2.49 X/GE ‒1.45 3~4.5 ‒0.37 V/X 0.04 4.5~6 ‒0.20 V/V ‒1.74 6~7.5 0.47 V/GE ‒1.19 7.5~9 0.72 GR/X 0.01 > 9 0.02 GR/V ‒1.02 地形起伏度(m) 0~14 ‒0.63 GR/GE ‒1.46 14~35 0.47 斜坡结构 B1 ‒∞ 35~42 0.08 B2 0.14 42~49 ‒0.47 B4 0.13 > 49 ‒1.70 B5 0.08 土地利用类型 山地 ‒0.59 B6 ‒0.17 耕地 0.12 B7 ‒0.34 水体 0.43 B8 ‒0.67 建设用地 0.85 注:地层岩性、斜坡结构和斜坡形态的缩写含义请查看表 2~表 4. 表 2 斜坡形态划分依据(彭令, 2013)
Table 2. Basis for slope type classification (Peng, 2013)
剖面曲率
平面曲率凸形坡
(X)凹形坡
(V)直线坡
(GE)外向形坡(X) X/X X/V X/GE 内向形坡(V) V/X V/V V/GE 直坡(GR) GR/X GR/V GR/GE 表 3 斜坡结构分类
Table 3. Classification of slope structure
类别 定义(坡度:θ,坡向:σ,地层倾角:α,岩层倾角:β) 近水平层面坡(B1) α < 5° 顺向飘倾坡(B2) (|α-β|)∈(0, 30°]||(|α-β|)∈(330°, 360°]&&(α > 5°)&&(θ > α) 顺向层面坡(B3) (|α-β|)∈(0, 30°]||(|α-β|)∈(330°, 360°]&&(α > 5°)&&(θ=α) 顺向伏倾坡(B4) (|α-β|)∈(0, 30°]||(|α-β|)∈(330°, 360°]&&(α > 5°)&&(θ < α) 顺斜坡(B5) (|α-β|)∈ [30°, 60°)||(|α-β|)∈[300°, 330°) 横向坡(B6) (|α-β|)∈ [60°, 120°)||(|α-β|)∈[240°, 300°) 逆斜坡(B7) (|α-β|)∈ [90°, 150°)||(|α-β|)∈[210°, 240°) 逆向坡(B8) (|α-β|)∈ [150°, 180°)||(|α-β|)∈[180°, 210°) 表 4 地层岩性分类
Table 4. Stratigraphic lithology classification
类型 分布地层 主要岩性 L1 δ22‒1、Pt 花岗岩、闪长岩 L2 Z、ε1、ε2+3、O、T1j、T2b3 灰岩、页岩、砂岩 L3 T1d、T2b4+5、J1x、J2s、J3s 泥灰岩、泥岩 L4 S、J2x 页岩,泥岩与石英砂岩,泥质粉砂岩等 L5 T3s、J1‒2n、J3p 砂岩(长石砂岩、石英砂岩等)夹煤层 表 5 评价指标共线性分析
Table 5. Multi-collinearity analysis of contributing factors
评价指标 T VIF 高程 0.43 2.30 坡度 0.26 3.80 坡向 0.96 1.04 地表粗糙度 0.31 3.18 地形起伏度 0.32 3.12 斜坡形态 0.64 1.52 土地利用类型 0.81 1.22 斜坡结构 0.26 3.80 地层岩性 0.94 1.06 地形湿度指数 0.75 1.34 水系距离 0.45 2.25 断层距离 0.95 1.05 表 6 不同树深与子模型数量下的精度统计
Table 6. Accuracy statistics under different tree depths and numbers of submodels
4 6 8 10 12 4 0.947 0.955 0.957 0.957 0.955 5 0.948 0.955 0.957 0.956 0.956 6 0.950 0.955 0.959 0.963 0.962 7 0.950 0.955 0.961 0.967 0.965 8 0.950 0.958 0.963 0.968 0.966 9 0.952 0.968 0.969 0.970 0.968 10 0.952 0.960 0.973 0.967 0.967 11 0.954 0.955 0.969 0.967 0.957 12 0.954 0.955 0.961 0.966 0.957 表 7 易发性分区统计结果
Table 7. Statistical results of susceptibility zoning
模型 易发性等级 分区内滑坡栅格数a 滑坡百分比b(%) 分区栅格数c 栅格百分比d(%) 滑坡比率(b/d) No-CART 极低易发区 861 3.56 353 136 50.55 0.07 低易发区 1 506 6.22 138 069 19.76 0.31 中易发区 4 882 20.18 101 150 14.48 1.39 高易发区 8 393 34.69 69 174 9.90 3.50 极高易发区 8 553 35.35 37 117 5.31 6.65 No-CART-Bagging 极低易发区 622 2.57 342 258 48.99 0.05 低易发区 1 340 5.54 145 233 20.79 0.26 中易发区 3 750 15.50 107 928 15.45 1.00 高易发区 8 688 35.91 67 105 9.61 3.74 极高易发区 9 795 40.48 36 122 5.17 7.83 LR-CART 极低易发区 645 2.67 341 817 48.93 0.05 低易发区 1 543 6.38 145 048 20.76 0.30 中易发区 4 674 19.32 107 442 15.38 1.26 高易发区 8 726 36.07 68 256 9.77 3.69 极高易发区 8 607 35.57 36 083 5.16 6.89 LR-CART-Bagging 极低易发区 413 1.71 342 258 48.99 0.03 低易发区 1 105 4.57 145 233 20.79 0.22 中易发区 3 786 15.65 107 928 15.45 1.01 高易发区 8 883 36.71 67 105 9.61 3.82 极高易发区 10 008 41.36 36 122 5.17 8.00 -
Breiman, L., 1996. Stacked Regressions. Machine Language, 24(1): 49-64. https://doi.org/10.1023/A:1018046112532 Bui, D. T., Tsangaratos, P., Nguyen, V. T., et al., 2020. Comparing the Prediction Performance of a Deep Learning Neural Network Model with Conventional Machine Learning Models in Landslide Susceptibility Assessment. CATENA, 188: 104426. https://doi.org/10.1016/j.catena.2019.104426 Chen, T., Zhong, Z. Y., Niu, R. Q., et al., 2020. Mapping Landslide Susceptibility Based on Deep Belief Network. Geomatics and Information Science of Wuhan University, 45(11): 1809-1817 (in Chinese with English abstract). Chen, W., Pourghasemi, H. R., Kornejady, A., et al., 2017. Landslide Spatial Modeling: Introducing New Ensembles of ANN, MaxEnt, and SVM Machine Learning Techniques. Geoderma, 305: 314-327. https://doi.org/10.1016/j.geoderma.2017.06.020 Dai, F. C., Lee, C. F., Li, J., et al., 2001. Assessment of Landslide Susceptibility on the Natural Terrain of Lantau Island, Hongkong. Environmental Geology, 40(3): 381-391. https://doi.org/10.1007/s002540000163 Dong, X. B., Yu, Z. W., Cao, W. M., et al., 2020. A Survey on Ensemble Learning. Frontiers of Computer Science, 14(2): 241-258. https://doi.org/10.1007/s11704-019-8208-z Fang, Z. C., Wang, Y., Niu, R. Q., et al., 2021. Landslide Susceptibility Prediction Based on Positive Unlabeled Learning Coupled with Adaptive Sampling. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 11581-11592. https://doi.org/10.1109/JSTARS.2021.3125741 Guo, Z. Z., Yin, K. L., Fu, S., et al., 2019a. Evaluation of Landslide Susceptibility Based on GIS and WOE-BP Model. Earth Science, 44(12): 4299-4312 (in Chinese with English abstract). Guo, Z. Z., Yin, K. L., Huang, F. M., et al., 2019b. Evaluation of Landslide Susceptibility Based on Landslide Classification and Weighted Frequency Ratio Model. Chinese Journal of Rock Mechanics and Engineering, 38(2): 287-300 (in Chinese with English abstract). Huang, F. M., Chen, B., Mao, D. X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696-1710 (in Chinese with English abstract). Huang, F. M., Yin, K. L., Jiang, S. H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Chinese Journal of Rock Mechanics and Engineering, 37(1): 156-167 (in Chinese with English abstract). Jacobs, L., Kervyn, M., Reichenbach, P., et al., 2020. Regional Susceptibility Assessments with Heterogeneous Landslide Information: Slope Unit-vs. Pixel-Based Approach. Geomorphology, 356: 107084. https://doi.org10.1016/j.geomorph.2020.107084 Kavzoglu, T., Sahin, E. K., Colkesen, I., 2014. Landslide Susceptibility Mapping Using GIS-Based Multi-Criteria Decision Analysis, Support Vector Machines, and Logistic Regression. Landslides, 11(3): 425-439. https://doi.org/10.1007/s10346-013-0391-7 Kayastha, P., Dhital, M. R., De Smedt, F., 2013. Application of the Analytical Hierarchy Process (AHP) for Landslide Susceptibility Mapping: A Case Study from the Tinau Watershed, West Nepal. Computers & Geosciences, 52: 398-408. https://doi.org/10.1016/j.cageo.2012.11.003 Kornejady, A., Ownegh, M., Bahremand, A., 2017. Landslide Susceptibility Assessment Using Maximum Entropy Model with Two Different Data Sampling Methods. CATENA, 152: 144-162. https://doi.org/10.1016/j.catena.2017.01.010 Lewis, R. J., 2000. An Introduction to Classification and Regression Tree (CART) Analysis. Annual Meeting of the Society for Academic Emergency Medicine in San Francisco, California, 14. Li, S. L., Xu, Q., Tang, M. G., et al., 2020. Study on Spatial Distribution and Key Influencing Factors of Landslides in Three Gorges Reservoir Area. Earth Science, 45(1): 341-354 (in Chinese with English abstract). Lin, R. F., Liu, J. P., Xu, S. H., et al., 2020. Evaluation Method of Landslide Susceptibility Based on Random Forest Weighted Information. Science of Surveying and Mapping, 45(12): 131-138 (in Chinese with English abstract). Liu, L., Yin, K. L., Xu, Y., et al., 2018. Evaluation of Regional Landslide Stability Considering Rainfall and Variation of Water Level of Reservoir. Chinese Journal of Rock Mechanics and Engineering, 37(2): 403-414 (in Chinese with English abstract). Liu, S. H., Yin, K. L., Zhou, C., et al., 2021. Susceptibility Assessment for Landslide Initiated along Power Transmission Lines. Remote Sensing, 13(24): 5068. https://doi.org/10.3390/rs13245068 Peng, L., 2013. Landslide Risk Assessment in the Three Gorges Reservoir (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). Pham, B. T., Tien Bui, D., Prakash, I., et al., 2017. Hybrid Integration of Multilayer Perceptron Neural Networks and Machine Learning Ensembles for Landslide Susceptibility Assessment at Himalayan Area (India) Using GIS. CATENA, 149: 52-63. https://doi.org/10.1016/j.catena.2016.09.007 Sabokbar, H. F., Roodposhti, M. S., Tazik, E., 2014. Landslide Susceptibility Mapping Using Geographically-Weighted Principal Component Analysis. Geomorphology, 226: 15-24. https://doi.org/10.1016/j.geomorph.2014.07.026 Shahabi, H., Hashim, M., 2015. Landslide Susceptibility Mapping Using GIS-Based Statistical Models and Remote Sensing Data in Tropical Environment. Scientific Reports, 5: 9899. https://doi.org/10.1038/srep09899 Tang, H. M., Wasowski, J., Juang, C. H., 2019. Geohazards in the Three Gorges Reservoir Area, China- Lessons Learned from Decades of Research. Engineering Geology, 261: 105267. https://doi.org/10.1016/j.enggeo.2019.105267 Tian, N. M., Lan, H. X., Wu, Y. M., et al., 2020. Performance Comparison of BP Artificial Neural Network and CART Decision Tree Model in Landslide Susceptibility Prediction. Journal of Geo-Information Science, 22(12): 2304-2316 (in Chinese). Wang, C. H., Lin, Q. G., Wang, L. B., et al., 2022. The Influences of the Spatial Extent Selection for Non- Landslide Samples on Statistical-Based Landslide Susceptibility Modelling: A Case Study of Anhui Province in China. Natural Hazards, 112(3): 1967-1988. https://doi.org/10.1007/s11069-022-05252-8 Wang, J. J., Yin, K. L., Xiao, L. L., 2014. Landslide Susceptibility Assessment Based on GIS and Weighted Information Value: A Case Study of Wanzhou District, Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 33(4): 797-808 (in Chinese). Wu, Y. C., Zhou, H. X., Che, A. L., 2021. Susceptibility of Landslides Caused by IBURI Earthquake Based on Rough Set-Neural Network. Chinese Journal of Rock Mechanics and Engineering, 40(6): 1226-1235 (in Chinese). Wu, Y. L., Ke, Y. T., Chen, Z., et al., 2020. Application of Alternating Decision Tree with AdaBoost and Bagging Ensembles for Landslide Susceptibility Mapping. CATENA, 187: 104396. https://doi.org/10.1016/j.catena.2019.104396 Yang, Y. G., Yin, K. L., Zhao, H. Y., et al., 2019. Landslide Susceptibility Evaluation for Township Units of Bank Section in Wanzhou District Based on C5.0 Decision Tree and K-Means Cluster Model. Geological Science and Technology Information, 38(6): 189-197 (in Chinese). Yin, K. L., Zhang, Y., Wang, Y., 2022. A Review of Landslide-Generated Waves Risk and Practice of Management of Hazard Chain Risk from Reservoir Landslide. Bulletin of Geological Science and Technology, 41(2): 1-12 (in Chinese). Youssef, A. M., Pourghasemi, H. R., Pourtaghi, Z. S., et al., 2016. Landslide Susceptibility Mapping Using Random Forest, Boosted Regression Tree, Classification and Regression Tree, and General Linear Models and Comparison of Their Performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 13(5): 839-856. https://doi.org/10.1007/s10346-015-0614-1 Yu, L. B., Cao, Y., Zhou, C., et al., 2019. Landslide Susceptibility Mapping Combining Information Gain Ratio and Support Vector Machines: A Case Study from Wushan Segment in the Three Gorges Reservoir Area, China. Applied Sciences, 9(22): 4756. https://doi.org/10.3390/app9224756 Zhou, C., 2018. Landslide Identification and Prediction with the Application of Time Series InSAR(Dissertation). China University of Geosciences, Wuhan (in Chinese). Zhou, C., Cao, Y., Yin, K. L., et al., 2022. Characteristic Comparison of Seepage-Driven and Buoyancy-Driven Landslides in Three Gorges Reservoir Area, China. Engineering Geology, 301: 106590. https://doi.org/10.1016/j.enggeo.2022.106590 Zhou, C., Yin, K. L., Cao, Y., et al., 2018a. Displacement Prediction of Step-Like Landslide by Applying a Novel Kernel Extreme Learning Machine Method. Landslides, 15(11): 2211-2225. https://doi.org/10.1007/s10346-018-1022-0 Zhou, C., Yin, K. L., Cao, Y., et al., 2018b. Landslide Susceptibility Modeling Applying Machine Learning Methods: A Case Study from Longju in the Three Gorges Reservoir Area, China. Computers & Geosciences, 112: 23-37. https://doi.org/10.1016/j.cageo.2017.11.019 Zhou, C., Yin, K. L., Cao, Y., et al., 2020. Landslide Susceptibility Assessment by Applying the Coupling Method of Radial Basis Neural Network and Adaboost: A Case Study from the Three Gorges Reservoir Area. Earth Science, 45(6): 1865-1876 (in Chinese with English abstract). Zhou, C., Yin, K. L., Xiang, Z. B., et al., 2015. Quantitative Evaluation of the Landslide Susceptibility in Chun'an County Based on GIS. Safety and Environmental Engineering, 22(1): 45-50, 55 (in Chinese). Zhou, X. T., Huang, F. M., Wu, W. C., et al., 2022. Regional Landslide Susceptibility Prediction Based on Negative Sample Selected by Coupling Information Value Method. Advanced Engineering Sciences, 54(3): 25-35 (in Chinese). 陈涛, 钟子颖, 牛瑞卿, 等, 2020. 利用深度信念网络进行滑坡易发性评价. 武汉大学学报(信息科学版), 45(11): 1809-1817. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202011018.htm 郭子正, 殷坤龙, 付圣, 等, 2019a. 基于GIS与WOE-BP模型的滑坡易发性评价. 地球科学, 44(12): 4299-4312. doi: 10.3799/dqkx.2018.555 郭子正, 殷坤龙, 黄发明, 等, 2019b. 基于滑坡分类和加权频率比模型的滑坡易发性评价. 岩石力学与工程学报, 38(2): 287-300. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201902007.htm 黄发明, 陈彬, 毛达雄, 等, 2023. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性. 地球科学, 48(5): 1696-1710. doi: 10.3799/dqkx.2022.247 黄发明, 殷坤龙, 蒋水华, 等, 2018. 基于聚类分析和支持向量机的滑坡易发性评价. 岩石力学与工程学报, 37(1): 156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm 李松林, 许强, 汤明高, 等, 2020. 三峡库区滑坡空间发育规律及其关键影响因子. 地球科学, 45(1): 341-354. doi: 10.3799/dqkx.2017.576 林荣福, 刘纪平, 徐胜华, 等, 2020. 随机森林赋权信息量的滑坡易发性评价方法. 测绘科学, 45(12): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD202012020.htm 刘磊, 殷坤龙, 徐勇, 等, 2018. 考虑降雨及库水位变动的区域滑坡灾害稳定性评价研究. 岩石力学与工程学报, 37(2): 403-414. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201802014.htm 彭令, 2013. 三峡库区滑坡灾害风险评估研究(博士学位论文). 武汉: 中国地质大学. 田乃满, 兰恒星, 伍宇明, 等, 2020. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比. 地球信息科学学报, 22(12): 2304-2316. doi: 10.12082/dqxxkx.2020.190766 王佳佳, 殷坤龙, 肖莉丽, 2014. 基于GIS和信息量的滑坡灾害易发性评价: 以三峡库区万州区为例. 岩石力学与工程学报, 33(4): 797-808. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603013.htm 吴雨辰, 周晗旭, 车爱兰, 2021. 基于粗糙集-神经网络的IBURI地震滑坡易发性研究. 岩石力学与工程学报, 40(6): 1226-1235. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106013.htm 杨永刚, 殷坤龙, 赵海燕, 等, 2019. 基于C5.0决策树-快速聚类模型的万州区库岸段乡镇滑坡易发性区划. 地质科技情报, 38(6): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906023.htm 殷坤龙, 张宇, 汪洋, 2022. 水库滑坡涌浪风险研究现状和灾害链风险管控实践. 地质科技通报, 41(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202202001.htm 周超, 2018. 集成时间序列InSAR技术的滑坡早期识别与预测研究(博士学位论文). 武汉: 中国地质大学. 周超, 殷坤龙, 曹颖, 等, 2020. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价. 地球科学, 45(6): 1865-1876. doi: 10.3799/dqkx.2020.071 周超, 殷坤龙, 向章波, 等, 2015. 基于GIS的淳安县滑坡易发性定量评价. 安全与环境工程, 22(1): 45-50, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201501008.htm 周晓亭, 黄发明, 吴伟成, 等, 2022. 基于耦合信息量法选择负样本的区域滑坡易发性预测. 工程科学与技术, 54(3): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202203003.htm -