Urban Road Network Matching Model Based on Fuzzy Hierarchy Theory and Its Application
-
摘要: 随着国家城市群基础设施建设步伐的加快,对城市道路网数据现势性的需求急剧增加. 针对当前以位置和长度为主要参数的道路网匹配算法的不稳定性,以及分析结果的不确定性和可靠性差等问题,提出了一种新的基于模糊层次理论的路网匹配模型,该模型通过融合多个评价指标进行构建,并对其指标权重进行优化,采用该模型对路网的一致性进行评价. 以长株潭城市群道路网为实验对象进行实验验证. 实验结果表明:提出的匹配模型能够有效改善道路网匹配精度,且具有较好的稳定性和可靠性. 道路匹配的准确率和召回率分别达到了92.9%和86.2%,比现有的典型匹配方法的86.7%和83.8%均有了显著提高. 研究成果为道路网匹配与评价提供一种新的更为有效之方法.Abstract: With the acceleration of the infrastructure construction of national urban agglomeration, the demand for the current situation of urban road network data has increased sharply. Aiming at the instability of the current road network matching algorithm with location and length as the main parameters, as well as the uncertainty and poor reliability of the analysis results, a new road network matching model based on fuzzy hierarchy theory is proposed. The model is constructed by integrating multiple evaluation indexes, and the index weight is optimized. The model is used to evaluate the consistency of the road network. The road network of Changsha Zhuzhou Xiangtan Urban Agglomeration is taken as the experimental object for experimental verification. The experimental results show that the matching model proposed in this paper can effectively improve the matching accuracy of road network, and has good stability and reliability. The accuracy and recall of road matching have reached 92.9% and 86.2% respectively, which is significantly higher than 86.7% and 83.8% of the existing typical matching methods. The research results provide a new and more effective method for road network matching and evaluation.
-
Key words:
- urban group /
- road network /
- matching model /
- Fuzzy hierarchy process /
- Chang-Zhu-Tan city group /
- geography
-
表 1 优先判断矩阵表
Table 1. Priority judgment matrix table
A B1 B2 B3 B4 B1 0.5 1 1 1 B2 0 0.5 1 1 B3 0 0 0.5 1 B4 0 0 0 0.5 表 2 模糊一致阵变换结果
Table 2. Results of fuzzy uniform matrix transformation
A B1 B2 B3 B4 B1 0.500 0.625 0.750 0.875 B2 0.375 0.500 0.625 0.750 B3 0.250 0.375 0.500 0.625 B4 0.125 0.250 0.375 0.500 表 3 初始道路网数据要素统计结果
Table 3. Statistical results of data elements of initial road network
初始数据 预处理后数据 弧段数量 结点数量 弧段数量 结点数量 规划数据 2 856 3 358 2 367 2 614 现状数据 3 267 3 754 2 849 3 243 表 4 道路网数据Stroke处理结果
Table 4. Stroke processing results of road network data
预处理后数据 Stroke构建结果 弧段数量 结点数量 Stroke数量 规划数据 2 367 2 614 507 现状数据 2 849 3 243 538 表 5 匹配结果统计表
Table 5. Quantitative statistical analysis of matching results
统计指标 正确匹配 错误匹配 漏匹配 匹配正确率(%) 匹配召回率(%) 结点-弧段匹配数量 4 106 630 794 86.7 83.8 模糊层次匹配数量 421 32 67 92.9 86.2 -
Dong, S. F., 2019. Research on Road Network Matching Method Based on VGI Data(Dissertation). Hunan University of Science and Technology, Changsha(in Chinese with English abstract). Fu, Z. L., Zhao, X. Y. Yang, Y. W., et al., 2016. Road Networks Matching Using Multiple Logistic Regrssion. Geomatics and Information Science of Wuhan University, 2: 171-177(in Chinese with English abstract). Gong, X. Y., Wu, f., Ji, C. W., et al., 2014. Ant Colony Optimization Approach to Road Network Matching. Geomatics and Information Science of Wuhan University, 2: 191-195(in Chinese with English abstract). Huang, B. H., 2015. Research on Matching Method of Urban Road Networks Based on Hierarchical Area Partitioning(Dissertaion). Information Engineering University, Zhengzhou(in Chinese with English abstract). Hu, Y. J., Chen, Y. M., Lan, G. C., et al., 2021. A Study of Capacity Matching to Urban Road Network. Journal of Zhejiang Normal University(Natural Sciences), 44(2): 206-211(in Chinese with English abstract). Ji, H. M., 2020. Research on Road Network Matching Algorithm Based on Hidden Markov Model(Dissertaion). Shenyang Ligong University, Shenyang(in Chinese with English abstract). Li, H., 2020. Research on Constructing Road Network Hierarchy Model and Its Application on Road Matching(Dissertation). Information Engineering University, Zhengzhou(in Chinese with English abstract). Luan, X. C., Yang, B. S., Li, Q. P., 2014. A Mixed Integer Programming Model of Block Aggregation for Grid Pattern Maintenance in Urban Network. Acta Geodaetica et Cartographica Sinica, 4: 426-434(in Chinese with English abstract). Li, H. T., Zhang, Y., 2020. Improved D-S Evidence Reasoning Map Matching Algorithm. Journal of Northeast Electric Power University, 40(1): 90-96(in Chinese with English abstract). Liu, H. L., Qian, H. Z., Wang, X., et al., 2015. Road Networks Global Matching Method Using Analytical Hierarchy Process. Geomatics and Information Science of Wuhan University, 5: 644-651(in Chinese with English abstract). Qin, Y. L., Guo, B., Sun, X. R., 2020. Improved Hausdorff Distance and Its Application in Multi-Scale Road Network Matching. Journal of Geomatics Science and Technology, 37(3): 313-318(in Chinese with English abstract). Shao, H. T., Zhang, H. J., Cheng, K., 2020. Map Matching Algorithm Based on Hash and Edge Weight of Road Network and Its Application. 30(8): 140-146(in Chinese with English abstract). Wang, P., Zhao, J. X., Cui, H. P., et al., 2019. Method for Complex Road Matching Based on Road Skeleton Line Stroke. Journal of Geomatics Science and Technology. 36(1): 95-99(in Chinese with English abstract). Wan, Y. Y., 2016. The Matching Method Based on Voronoi Diagram for Multi-Scale Polygonal Residential Areas(Dissertation). Jiangxi Normal University, Nanchang(in Chinese with English abstract). Xu, K. R., Wang, X. Y., Yao, X. Z., 2021. A Synergetic Development Analysis of Urban Road Accessibility and Construction Land: Take Luohe City as an Example. Henan Science, 39(3): 502-508 (in Chinese with English abstract). Zhang, J. C., Wang, Y. H., Zhao, W. J., 2018. Matching Road Networks Based on Combination of Global and Local Optimization. Geomatics and Information Science of Wuhan University, 43(8): 1166-1171(in Chinese with English abstract). Zhao, Y. Y., 2008. The Design And Impllementation of a Tool For Patching Ontology Mapping(Dissertation). Southeastern University(in Chinese with English abstract). 董沈峰, 2019. 基于VGI数据的道路网匹配方法研究(博士毕业论文). 长沙: 湖南科技大学. 付仲良, 杨元维, 高贤君, 等, 2016. 利用多元Logistic回归进行道路网匹配. 武汉大学学报(信息科学版), 41(2): 171-177. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201602005.htm 巩现勇, 武芳, 姬存伟, 等, 2014. 道路网匹配的蚁群算法求解模型. 武汉大学学报(信息科学版), 39(2): 191-195. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201402014.htm 黄博华, 2015. 基于层次化面域剖分模型的城市道路网匹配算法研究(博士毕业论文). 郑州: 解放军信息工程大学. 胡永举, 陈燕敏, 蓝光晨, 等, 2021. 城市道路网通行能力匹配度研究. 浙江师范大学学报(自然科学版), 44(2): 206-211. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSZ202102012.htm 吉宏梅, 2020. 基于隐马尔可夫模型的路网匹配算法研究(博士毕业论文). 沈阳: 沈阳理工大学. 李豪, 2020. 路网层次结构模型构建与匹配技术研究. 郑州: 战略支援部队信息工程大学. 栾学晨, 杨必胜, 李秋萍, 2014. 保持城市道路格网模式的街区合并混合整数规划模型. 测绘学报, 43(4): 426-434. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201404017.htm 李昊天, 张宇, 2020. 改进的D-S证据推理地图匹配算法. 东北电力大学学报, 40(1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDL202001012.htm 刘海龙, 钱海忠, 王骁, 等, 2015. 采用层次分析法的道路网整体匹配方法. 武汉大学学报(信息科学版), 40(5): 644-651. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201505015.htm 秦育罗, 郭冰, 孙小荣, 2020. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报, 37(3): 313-318. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC202003016.htm 邵天浩, 张宏军, 程恺, 等, 2020. 基于哈希和路网边权的地图匹配算法及其应用. 计算机技术与发展, 30(8): 140-146. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ202008024.htm 王培, 赵军喜, 崔虎平, 等, 2019. 采用道路骨架线stroke的复杂道路匹配方法. 测绘科学技术学报, 36(1): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201901019.htm 万洋洋, 2016. 基于Voronoi图的多尺度面状居民地匹配方法研究(博士毕业论文). 南昌: 江西师范大学. 徐凯瑞, 王鑫宇, 姚新治, 等, 2021. 城市道路可达性与建设用地的协同发展分析——以漯河市为例. 河南科学, 39(3): 502-508. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX202103022.htm 张建辰, 王艳慧, 赵文吉, 2018. 全局与局部寻优相结合的道路网匹配方法. 武汉大学学报(信息科学版), 43(8): 1166-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201808006.htm 赵媛媛, 胡伟, 瞿裕忠, 2007. 一种基于邻居相似度寻找缺失匹配对的方法. 北京: 2007中国计算机大会. -