• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    浙西北地区上奥陶统物源及古地理意义:来自沉积学、碎屑组成及年代学的证据

    于涛 王宗起 王东升 刘宣妤 马收先 聂潇 马昌前

    于涛, 王宗起, 王东升, 刘宣妤, 马收先, 聂潇, 马昌前, 2023. 浙西北地区上奥陶统物源及古地理意义:来自沉积学、碎屑组成及年代学的证据. 地球科学, 48(10): 3649-3670. doi: 10.3799/dqkx.2022.410
    引用本文: 于涛, 王宗起, 王东升, 刘宣妤, 马收先, 聂潇, 马昌前, 2023. 浙西北地区上奥陶统物源及古地理意义:来自沉积学、碎屑组成及年代学的证据. 地球科学, 48(10): 3649-3670. doi: 10.3799/dqkx.2022.410
    Yu Tao, Wang Zongqi, Wang Dongsheng, Liu Xuanyu, Ma Shouxian, Nie Xiao, Ma Changqian, 2023. Provenance and Paleogeographic Significance of Upper Ordovician in NW Zhejiang: Evidence from Sedimentology, Clastic Composition and Chronology. Earth Science, 48(10): 3649-3670. doi: 10.3799/dqkx.2022.410
    Citation: Yu Tao, Wang Zongqi, Wang Dongsheng, Liu Xuanyu, Ma Shouxian, Nie Xiao, Ma Changqian, 2023. Provenance and Paleogeographic Significance of Upper Ordovician in NW Zhejiang: Evidence from Sedimentology, Clastic Composition and Chronology. Earth Science, 48(10): 3649-3670. doi: 10.3799/dqkx.2022.410

    浙西北地区上奥陶统物源及古地理意义:来自沉积学、碎屑组成及年代学的证据

    doi: 10.3799/dqkx.2022.410
    基金项目: 

    国家自然科学基金项目 41902042

    战略性矿产重点远景区矿产地质调查 DD20221684

    浙闽粤火山岩区铜金矿产地质调查 DD20201173

    国家重点研发计划 2016YFC0600202

    详细信息
      作者简介:

      于涛(1990-),男,助理研究员,博士,主要从事沉积大地构造研究.ORCID:0000-0002-7977-2470. E-mail:yutaoyt@cug.edu.cn

    • 中图分类号: P534.42;P597.3

    Provenance and Paleogeographic Significance of Upper Ordovician in NW Zhejiang: Evidence from Sedimentology, Clastic Composition and Chronology

    • 摘要: 华南板块早古生代构造-沉积演化存在诸多争议.浙西北地区位于毗邻江山-绍兴断裂带的扬子地块,晚奥陶世扬子地块东南缘发生碳酸盐岩与碎屑岩的沉积相转变,其沉积相时空展布与物源分析可为重建扬子地块东南缘古地理格局提供证据.通过沉积相详细解剖,砂岩碎屑组成、重矿物组合、地球化学及碎屑锆石U-Pb年代学分析,综合分析浙西北地区上奥陶统沉积物源,为重建该地区古地理格局及构造演化提供证据.浙西北地区晚奥陶世地层主要由砾岩、瘤状灰岩、砂岩、粉砂岩、泥岩组成,沉积序列、沉积相标志研究表明,研究区沉积于深海斜坡-浅海环境,沉积基底向北西方向倾斜.岩石学特征表明,砂岩以岩屑砂岩和长石岩屑砂岩为主,成分成熟度和结构成熟度较低,主要由石英(29%)、长石(18%)和岩屑(53%)组成.砂岩碎屑及砾石成分为安山岩、流纹岩、凝灰岩、花岗岩、板岩、千枚岩、石英岩、粉砂岩和燧石,表明混合物源的性质.砂岩碎屑重矿物中出现的辉石、铬铁矿、磁铁矿和石榴石颗粒,表明源区岩石含有镁铁质岩石和变质岩.地球化学分析表明,砂岩和粉砂岩沉积于活动陆缘环境,物源具有中酸性岛弧性质.碎屑锆石U-Pb年龄显示812 Ma和460 Ma的混合物源,早古生代物源可与陈蔡群配套.古水流方向指示物源方向为南东,主要来自于岛弧,扬子地块东南缘沉积于活动大陆边缘.

       

    • 图  1  华南地块大地构造简图(a)及扬子地块东南缘区域地质图(b)

      图a据Zhao et al.(2012);图b据Xu et al.(2012)

      Fig.  1.  Tectonic framework of South China block (a) and regional geological map of the SE Yangtze block (b)

      图  2  研究区地质图及野外剖面位置(据浙江省区测队, 1967

      Fig.  2.  Geological map and field profile location of the study area (after Zhejiang Provincial Survey Team, 1967)

      图  3  浙西北地区上奥陶统沉积相组合及地层对比(饼图代表碎屑重矿物含量,玫瑰花图代表古流向)

      Fig.  3.  Sedimentary characteristics and stratigraphic correlation of the Upper Ordovician in the NW Zhejiang (pie chart represents detrital heavy mineral content and rose chart represents paleocurrent)

      图  4  研究区上奥陶统沉积特征

      a. 同沉积砾岩,钙质泥岩为基质,泥灰岩为砾石,龙潭剖面;b. 瘤状灰岩,瘤体成层状分布,新桥剖面;c. 纹层状灰黑色硅质泥岩,新桥剖面;d. 鲍马序列Tabd组合,堰口剖面;e. 鲍马序列Tcd、Tbd组合,箭头指示底侵蚀面,上骆家剖面;f. 包卷层理,新桥剖面;g. 重荷模构造,堰口剖面;h. 同沉积褶皱,上骆家剖面

      Fig.  4.  Sedimentary characteristics of the Upper Ordovician in the study area

      图  5  研究区上奥陶统沉积特征

      a.同沉积断层,上骆家剖面;b. 底侵蚀面,河沥溪剖面;c. 薄层砂岩与泥岩互层组成韵律,新桥剖面;d.潮汐层理,桐君山剖面;图e、d文昌组发育砾岩,砾石成分为凝灰岩(V)、砂岩/粉砂岩(S)、石英岩(Q)和燧石(C),桐君山剖面

      Fig.  5.  Sedimentary characteristics of the Upper Ordovician in the study area

      图  6  上奥陶统砂岩碎屑类型显微照片(正交偏光)

      矿物名称见表 1

      Fig.  6.  Photomicrographs of grain types of NW Zhejiang (crossed nicol)

      图  7  上奥陶统砂岩分类判别图(据Pettijohn et al., 1987; Herron, 1988

      Fig.  7.  Chemical classifications of the Upper Ordovician samples (after Pettijohn et al., 1987; Herron, 1988)

      图  8  上奥陶统碎屑岩微量元素上地壳标准化配分模式

      数据引自Rollinson(1993);上地壳标准化值据Taylor and Mclennan(1985)

      Fig.  8.  Spider diagrams of the Upper Ordovician samples

      图  9  上奥陶统碎屑岩球粒陨石标准化稀土元素分布模式

      球粒陨石数据、UCC、PAAS数据引自Taylor and McLennan(1985),NASC数据引自Gromet et al.(1984)

      Fig.  9.  REE patterns of the Upper Ordovician samples

      图  10  浙西北地区长坞组下段砂岩碎屑锆石U-Pb谐和年龄图、相对概率和密度直方图

      Fig.  10.  Zircon U-Pb age concordia diagram and relative probability and density histogram plots

      图  11  上奥陶统砂岩碎屑组分源区判别图解

      Fig.  11.  Ternary diagrams for sandstones of the Upper Ordovician

      图  12  浙西北地区碎屑岩A-CN-K图解(a)及Th/Sc-Zr/Sc图解(b)

      图a据Nesbitt and Young(1982);图b据McLennan et al.(1993)

      Fig.  12.  Discrimination diagrams on A-CN-K (a) and Th/Sc vs. Zr/Sc (b) diagram

      图  13  浙西北地区碎屑岩物源区及构造背景判别图

      a. La/Th-Hf判别图,据Floyd and Leveridge(1987);b. Co/Th-La/Sc图解,据Gu et al.(2002);c. TiO2-Ni图解,据Floyd et al.(1991);d. Ti/Zr-La/Sc图解,据Bhatia and Crook(1986)

      Fig.  13.  Source rock and tectonic setting discrimination diagrams

      图  14  浙西北地区上奥陶统长坞组样品与邻区碎屑锆石年龄图谱对比

      赣南-闽西南(据Wan et al., 2007Wang et al., 2010Wu et al., 2010Xu et al., 2010Yu et al., 2010Yao et al., 2011, 2015);赣中东-闽西北据资料(据Wan et al., 2007Li et al., 2011Wang et al., 2014);皖南-赣东北(据Li et al., 2007Wang et al., 2013b, 2013c, 2014Cui et al., 2015

      Fig.  14.  Comparison of age spectra of detrital zircons between Upper Ordovician Changwu Formation samples and adjacent areas

      图  15  浙西北地区与邻区碎屑锆石样品位置

      Fig.  15.  Location of detrital zircon samples in NW Zhejiang and adjacent areas

      表  1  浙西北地区上奥陶统砂岩碎屑组成统计结果(颗粒数:个)

      Table  1.   Raw point-count data for Upper Ordvician sandstones from the NW Zhejiang

      样号 N Qm Qpt P K Lvf Lvmi Lvl Lmv Lmm Lms Lmp Lsa Lsc Lsch Lsi Lg
      文昌组
      19JD56-1 426 106 9 40 20 105 37 16 30 3 6 22 6 1 20 4 1
      19JD55-1 496 125 11 55 26 103 50 14 25 5 7 20 13 1 31 7 3
      19XL11-1 507 120 11 60 30 88 43 10 27 8 12 35 18 0 42 2 1
      20SLJ-3 480 110 20 66 21 110 48 7 19 1 14 15 20 3 20 1 5
      20HG-25 428 90 21 41 34 79 55 3 20 9 4 19 11 2 27 13 0
      20SLJ-5 427 87 15 59 27 91 31 9 18 4 4 27 9 4 33 3 6
      20HLX-41 451 95 14 62 33 74 61 11 22 7 15 13 17 0 19 8 0
      18TL1-18 430 136 17 42 25 52 21 13 29 11 23 21 5 0 18 8 9
      20HG-24 451 151 19 50 22 63 14 8 11 25 14 15 7 3 31 9 9
      20HG-23 417 122 53 18 44 35 12 6 25 20 22 23 5 4 17 7 4
      长坞组
      19JD71-1 463 112 28 58 18 100 25 5 33 2 14 20 12 4 21 9 2
      19JD68-1 422 99 16 62 33 71 34 11 19 3 5 17 14 0 20 17 1
      20XYZ-26 430 101 11 66 28 88 41 8 24 5 3 25 5 1 17 7 0
      20XYZ-29 514 117 25 79 22 91 28 10 38 7 12 19 7 2 33 20 4
      20XYZ-30 480 93 20 57 39 84 54 7 21 7 10 24 18 3 23 16 4
      20HLX-37 398 86 13 60 40 76 39 8 15 4 1 16 9 3 12 13 3
      注:N. 总碎屑颗粒数;Qm. 单晶石英颗粒;Qp. 多晶石英颗粒;P. 斜长石;K. 钾长石;Lvf. 长英质火山岩岩屑(霏细结构火山岩岩屑);Lvmi. 微晶结构火山岩(安山岩)岩屑;Lvl. 板条状火山岩(玄武岩)岩屑;Lmv. 变火山岩岩屑;Lmm. 板岩岩屑;Lms. 云母石英片岩岩屑;Lmp. 千枚岩岩屑;Lsa. 泥岩、页岩岩屑;Lsc. 灰岩岩屑;Lsch. 硅质岩岩屑;Lsi. 粉砂岩岩屑;Lg. 花岗岩岩屑.
      下载: 导出CSV
    • Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. https://doi.org/10.1007/BF00375292
      Cawood, P. A., Wang, Y. J., Xu, Y. J., et al., 2013. Locating South China in Rodinia and Gondwana: A Fragment of Greater India Lithosphere? Geology, 41(8): 903-906. https://doi.org/10.1130/g34395.1
      Charvet, J., 2013. The Neoproterozoic-Early Paleozoic Tectonic Evolution of the South China Block: An Overview. Journal of Asian Earth Sciences, 74: 198-209. https://doi.org/10.1016/j.jseaes.2013.02.015
      Charvet, J., Shu, L. S., Faure, M., et al., 2010. Structural Development of the Lower Paleozoic Belt of South China: Genesis of an Intracontinental Orogen. Journal of Asian Earth Sciences, 39(4): 309-330. https://doi.org/10.1016/j.jseaes.2010.03.006
      Chen, J.J., Xu, X.B., Liang, C.H., et al., 2021. Provenance Analysis and Tectonic Implications of Middle Devonian Quartzose Conglomerate and Sandstone in Southeastern Hunan Province, South China. Earth Science, 46(10): 3421-3434(in Chinese with English abstract).
      Chen, Q., Fan, J. X., Zhang, L. N., et al., 2018. Paleogeographic Evolution of the Lower Yangtze Region and the Break of the "Platform-Slope-Basin" Pattern during the Late Ordovician. Scientia Sinica (Terrae), 48(6): 767-777(in Chinese). doi: 10.1360/N072018-00002
      Cox, R., Lowe, D. R., 1996. Quantification of the Effects of Secondary Matrix on the Analysis of Sandstone Composition, and a Petrographic-Chemical Technique for Retrieving Original Framework Grain Modes of Altered Sandstones. SEPM Journal of Sedimentary Research, 66(3): 548-558. https://doi.org/10.1306/d42683a1-2b26-11d7-8648000102c1865d
      Cui, X., Zhu, W.B., Fitzsimons, I., et al., 2015. U-Pb Age and Hf Isotope Composition of Detrital Zircons from Neoproterozoic Sedimentary Units in Southern Anhui Province, South China: Implications for the Provenance, Tectonic Evolution and Glacial History of the Eastern Jiangnan Orogen. Precambrian Research, 271: 65-82. https://doi.org/10.1016/j.precamres.2015.10.004
      Dickinson, W. R., 1970. Interpreting Detrital Modes of Graywacke and Arkose. SEPM Journal of Sedimentary Research, 40(2): 695-707. https://doi.org/10.1306/74d72018-2b21-11d7-8648000102c1865d
      Dickinson, W. R., 1979. Plate Tectonics and Sandstone Compositions. AAPG Bulletin, 63(12): 2164-2182. https://doi.org/10.1306/2f9188fb-16ce-11d7-8645000102c1865d
      Dickinson, W.R., 1985. Interpreting Provenance Relations from Detrital Modes of Sandstones. Springer, Dordrecht.
      Dickinson, W. R., Beard, L. S., Brakenridge, G. R., et al., 1983. Provenance of North American Phanerozoic Sandstones in Relation to Tectonic Setting. Geological Society of America Bulletin, 94(2): 222. https://doi.org/10.1130/0016-7606(1983)94222: ponaps>2.0.co;2 doi: 10.1130/0016-7606(1983)94222:ponaps>2.0.co;2
      Dickinson, W.R., Gehrels, G.E., 2008. Sediment Delivery to the Cordilleran Foreland Basin: Insights from U-Pb Ages of Detrital Zircons in Upper Jurassic and Cretaceous Strata of the Colorado Plateau. American Journal of Science, 308(10): 1041-1082.
      Ekdale, A. A., Bromley, R. G., Pemberton, S. G., 1984. Deep-Water Slope Environments. Ichnology: The Use of Trace Fossils in Sedimentology and Stratigraphy. Society for Sedimentary Geology, Tulsa, Oklahoma, 232-247. https://doi.org/10.2110/scn.84.15.0232
      Fan, D.D., Li, C.X., Cai, J.G., et al., 2003. Sedimentary Successions and Environments of the Late Ordovician Wenchang Formation in Tonglu, Zhejiang. Acta Sedimentologica Sinica, 21(2): 247-254 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2003.02.009
      Floyd, P. A., Leveridge, B. E., 1987. Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones. Journal of the Geological Society, 144(4): 531-542. https://doi.org/10.1144/gsjgs.144.4.0531
      Floyd, P. A., Shail, R., Leveridge, B. E., et al., 1991. Geochemistry and Provenance of Rhenohercynian Synorogenic Sandstones: Implications for Tectonic Environment Discrimination. Geological Society, London, Special Publications, 57(1): 173-188. https://doi.org/10.1144/gsl.sp.1991.057.01.14
      Flügel, E., 2004. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application (2nd Edition). Springer Verlag, Berlin.
      Gan, X.C., Li, H.M., Sun, D.Z., et al., 1993. Geochronological Study on the Precambrian Metamorphic Basement in Northern Fujian. Geology of Fujian, 12(1): 17-32 (in Chinese with English abstract).
      Gao, L.Z., Yang, M.G., Ding, X.Z., et al., 2008. SHRIMP U-Pb Zircon Dating of Tuff in the Shuangqiaoshan and Heshangzhen Groups in South China—Constraints on the Evolution of the Jiangnan Neoproterozoic Orogenic Belt. Geological Bulletin of China, 27(10): 1744-1751 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2008.10.017
      Gardner, R. L., Daczko, N. R., Halpin, J. A., et al., 2015. Discovery of a Microcontinent (Gulden Draak Knoll) Offshore Western Australia: Implications for East Gondwana Reconstructions. Gondwana Research, 28(3): 1019-1031. https://doi.org/10.1016/j.gr.2014.08.013
      Gromet, L.P., Haskin, L.A., Korotev, R.L., et al., 1984. The "North American Shale Composite": Its Compilation, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta, 48(12): 2469-2482. https://doi.org/10.1016/0016-7037(84)90298-9
      Gu, X. X., Liu, J. M., Zheng, M. H., et al., 2002. Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China: Geochemical Evidence. Journal of Sedimentary Research, 72(3): 393-407. https://doi.org/10.1306/081601720393
      Guo, J.Q., Zhang, X.H., Zhang, Z.J., 2004. Turbitidy Current Sediments of Shuangqiaoshan Group in Middle Proterozoic in Xiushui Area, Jiangxi Province. Geological Science and Technology Information, 23(1): 27-32 (in Chinese with English abstract).
      He, W.H., Tang, T.T., Le, M.L., et al., 2014. Sedimentary and Tectonic Evolution of Nanhuan-Permian in South China. Earth Science, 39(8): 929-953 (in Chinese with English abstract).
      He, Y. Y., Niu, Z. Z., Yao, H. Z., et al., 2020. Provenance and Tectonic Setting of the Ordovician Sedimentary Succession at the Southeastern Margin of the Yangtze Block, South China: Implications for Paleotopographic Evolution of Northestern Gondwana. Journal of Asian Earth Sciences, 202: 104532. https://doi.org/10.1016/j.jseaes.2020.104532
      Herron, M. M., 1988. Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data. SEPM Journal of Sedimentary Research, 58: 820-829. https://doi.org/10.1306/212f8e77-2b24-11d7-8648000102c1865d
      Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28: 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
      Hsü, K.J., Li, J.L., Chen, H.H., et al., 1990. Tectonics of South China: Key to Understanding West Pacific Geology. Tectonophysics, 183(1-4): 9-39. https://doi.org/10.1016/0040-1951(90)90186-C
      Hu, X.J., Xu, J.K., Tong, C.X., et al., 1991. Geological Characteristics and Genesis of Palaeoproterozoic Granites from Longquan, Southwest Zhejiang. Journal of Mineralogy and Petrology, 11(3): 29-39 (in Chinese with English abstract).
      Huang, R., Liu, J., Yang, Z., et al., 2021. Ediacaran-Ordovician Landscape of Eastern South China: Constraints from Sedimentary Indices and Detrital Zircon U-Pb-Hf Isotopes from the Southeastern Margin of the Yangtze Block. Sedimentary Geology, 416: 105865. https://doi.org/10.1016/j.sedgeo.2021.105865
      Ingersoll, R. V., Suczek, C. A., 1979. Petrology and Provenance of Neogene Sand from Nicobar and Bengal Fans, DSDP Sites 211 and 218. Journal of Sedimentary Research, 49(4): 1217-1228. https://doi.org/10.1306/212f78f1-2b24-11d7-8648000102c1865d
      Ingersoll, R.V., Bullard, T.F., Ford, R.L., et al., 1984. The Effect of Grain Size on Detrital Modes: A Test of the Gazzi-Dickinson Point-Counting Method. Journal of Sedimentary Research, 54: 103-116. https://doi.org/10.1306/212f83b9-2b24-11d7-8648000102c1865d
      Jackson, S.E., Pearson, N.J., Griffin, W.L., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1/2): 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017
      Johnsson, M. J., 1993. The System Controlling the Composition of Clastic Sediments. Processes Controlling the Composition of Clastic Sediments. Geological Society of America Special Paper, 284(3): 1-19. . https://doi.org/10.1130/spe284-p1
      Li, C., Hu, X.M., Wang, J.G., 2020. Sandstone Provenance Analysis in Longyan Supports the Existence of a Late Paleozoic Continental Arc in South China. Tectonophysics, 780: 228400. https://doi.org/10.1016/j.tecto.2020.228400
      Li, H. B., Jia, D., Wu, L., et al., 2013. Detrital Zircon Provenance of the Lower Yangtze Foreland Basin Deposits: Constraints on the Evolution of the Early Palaeozoic Wuyi-Yunkai Orogenic Belt in South China. Geological Magazine, 150(6): 959-974. https://doi.org/10.1017/s0016756812000969
      Li, L.M., Sun, M., Wang, Y. J., et al., 2011. U-Pb and Hf Isotopic Study of Detrital Zircons from the Meta-Sedimentary Rocks in Central Jiangxi Province, South China: Implications for the Neoproterozoic Tectonic Evolution of South China Block. Journal of Asian Earth Sciences, 41(1): 44-55. https://doi.org/10.1016/j.jseaes.2010.12.004
      Li, W. X., Li, X. H., Li, Z. X., 2008. Middle Neoproterozoic Syn-Rifting Volcanic Rocks in Guangfeng, South China: Petrogenesis and Tectonic Significance. Geological Magazine, 145(4): 475-489. https://doi.org/10.1017/s0016756808004561
      Li, X.H., Li, W.X., Li, Z.X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1/2): 117-128. https://doi.org/10.1016/j.precamres.2009.07.004
      Li, X.H., Zhao, J.X., Mcculloch, M.T., et al., 1997. Geochemical and Sm-Nd Isotopic Study of Neoproterozoic Ophiolites from Southeastern China: Petrogenesis and Tectonic Implications. Precambrian Research, 81(1-2): 129-144. https://doi.org/10.1016/S0301-9268(96)00032-0
      Li, X.H., Zhou, G.Q., Zhao, J.X., 1994. SHRIMP Ion Microprobe Zircon U-Pb Age of the Ne Jiangxi Ophiolite and Its Tectonic Implications. Geochimica, 23(2): 125-131 (in Chinese with English abstract).
      Li, Z. X., Li, X. H., Wartho, J. A., et al., 2010. Magmatic and Metamorphic Events during the Early Paleozoic Wuyi-Yunkai Orogeny, Southeastern South China: New Age Constraints and Pressure-Temperature Conditions. Geological Society of America Bulletin, 122(5-6): 772-793. https://doi.org/10.1130/b30021.1
      Li, Z. X., Li, X. H., Zhou, H. W., et al., 2002. Grenvillian Continental Collision in South China: New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 30(2): 163-166. https://doi.org/10.1130/0091-7613(2002)0300163: gccisc>2.0.co;2 doi: 10.1130/0091-7613(2002)0300163:gccisc>2.0.co;2
      Li, Z.X., Wartho, J.A., Occhipinti, S., et al., 2007. Early History of the Eastern Sibao Orogen (South China) during the Assembly of Rodinia: New Mica 40Ar/39Ar Dating and SHRIMP U-Pb Detrital Zircon Provenance Constraints. Precambrian Research, 159(1/2): 79-94. https://doi.org/10.1016/j.precamres.2007.05.003
      Lin, S. F., Xing, G. F., Davis, D. W., et al., 2018. Appalachian-Style Multi-Terrane Wilson Cycle Model for the Assembly of South China. Geology, 46(4): 319-322. https://doi.org/10.1130/g39806.1
      Liu, R., 2009. Prehercynian Deep Crustal Melting in the Cathaysia Block: A Case Study in Zhejiang and Fujian Regions (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Liu, S.W., Yang, P.T., Wang, Z.Q., et al., 2013. LA-ICPMS Zircon U-Pb Ages and Geochemistry of Neoproterozoic Low-Grade Metavolcanic Rocks in Wuyuan-Dexing Area of Northeastern Jianxi Province. Acta Petrologica Sinica, 29(2): 581-593 (in Chinese with English abstract).
      Liu, W., Liu, Y., Zeng, Z. X., et al., 2020. K-Bentonites in Ordovician-Silurian Transition from South China: Implications for Tectonic Evolution in the Northern Margin of Gondwana. Journal of the Geological Society, 177(6): 1245-1260. https://doi.org/10.1144/jgs2020-049
      Lowe, D. R., 1982. Sediment Gravity Flows: Ⅱ Depositional Models with Special Reference to the Deposits of High-Density Turbidity Currents. Journal of Sedimentary Petrology, 52: 279-297. https://doi.org/10.1306/212f7f31-2b24-11d7-8648000102c1865d
      Lu, K.J., Li, L.M., Lin, S.F., et al., 2020. Geochronological and Geochemical Data of Paragneiss and Amphibolite from the Chencai Group in South China: Implications for Petrogenesis and Tectonic Significance. Geological Journal, 55(10): 6823-6840. doi: 10.1002/gj.3845
      Ludwig, K., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Spec. Publ., Berkeley.
      Mange, M.A., Maurer, H.F.W., 1992. Heavy Minerals in Colour. Chapman & Hall., London.
      Marsaglia, K. M., Ingersoll, R. V., 1992. Compositional Trends in Arc-Related, Deep-Marine Sand and Sandstone: A Reassessment of Magmatic-Arc Provenance. Geological Society of America Bulletin, 104(12): 1637-1649. https://doi.org/10.1130/0016-7606(1992)1041637: ctiard>2.3.co;2 doi: 10.1130/0016-7606(1992)1041637:ctiard>2.3.co;2
      McLennan, S. M., Hemming, S., McDaniel, D. K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Processes Controlling the Composition of Clastic Sediments. Geological Society of America Special Paper, 21-40. https://doi.org/10.1130/spe284-p21
      Mclennan, S. M., Taylor, S. R., Mcculloch, M. T., et al., 1990. Geochemical and Nd-Sr Isotopic Composition of Deep-Sea Turbidites: Crustal Evolution and Plate Tectonic Associations. Geochimica et Cosmochimica Acta, 54(7): 2015-2050. https://doi.org/10.1016/0016-7037(90)90269-Q
      Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
      Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016. Early Paleozoic Subduction in Cathaysia (Ⅰ): New Evidence from Nuodong Ophiolite. Earth Science, 41(5): 765-778 (in Chinese with English abstract).
      Pettijohn, F. J., Potter, P. E., Siever, R., 1987. Sand and Sandstone (Second Edition). Springer-Verlag, Berlin.
      Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical London, London
      Rong, J. Y., Zhan, R. B., Xu, H. G., et al., 2010. Expansion of the Cathaysian Oldland through the Ordovician-Silurian Transition: Emerging Evidence and Possible Dynamics. Science in China (Series D), 53(1): 1-17. https://doi.org/10.1007/s11430-010-0005-3
      Shu, L.S., 2006. Predevonian Tectonic Evolution of South China: From Cathaysian Block to Caledonian Period Folded Orogenic Belt. Geological Journal of China Universities, 12(4): 418-431 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2006.04.002
      Shu, L.S., Chen, X.Y., Lou, F.S., 2020. Pre-Jurassic Tectonics of the South China. Acta Geologica Sinica, 94(2): 333-360 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.02.001
      Shu, L.S., Faure, M., Yu, J.H., et al., 2011. Geochronological and Geochemical Features of the Cathaysia Block (South China): New Evidence for the Neoproterozoic Breakup of Rodinia. Precambrian Research, 187(3-4): 263-276. https://doi.org/10.1016/j.precamres.2011.03.003
      Sun, Z.M., Wang, X. L, Qi, L., et al., 2017. Formation of the Neoproterozoic Ophiolites in Southern China: New Constraints from Trace Element and PGE Geochemistry and Os Isotopes. Precambrian Research, 309: 88-101. https://doi.org/10.1016/j.precamres.2017.12.042
      Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.
      Tong, L.X., Li, C., Liu, Z., et al., 2021. First Report of Phengites in the Longyou Paragneiss in the Northern Early Paleozoic Wuyi-Yunkai Orogen, South China: P-T Conditions, Zircon U-Pb Ages and Tectonic Implications. Journal of Asian Earth Sciences, 214: 104754. https://doi.org/10.1016/j.jseaes.2021.104754
      Wan, Y.S., Liu, D.Y., Xu, M.H., et al., 2007. SHRIMP U-Pb Zircon Geochronology and Geochemistry of Metavolcanic and Metasedimentary Rocks in Northwestern Fujian, Cathaysia Block, China: Tectonic Implications and the Need to Redefine Lithostratigraphic Units. Gondwana Research, 12(1/2): 166-183. https://doi.org/10.1016/j.gr.2006.10.016
      Wang X.L., Zhou, J.C., Griffin, W.L., et al., 2014. Geochemical Zonation across a Neoproterozoic Orogenic Belt: Isotopic Evidence from Granitoids and Metasedimentary Rocks of the Jiangnan Orogen, China. Precambrian Research, 242: 154-171. https://doi.org/10.1016/j.precamres.2013.12.023
      Wang, D., Wang, X.L., Zhou, J.C., et al., 2013a. Unraveling the Precambrian Crustal Evolution by Neoproterozoic Conglomerates, Jiangnan Orogen: U-Pb and Hf Isotopes of Detrital Zircons. Precambrian Research, 233: 223-236. https://doi.org/10.1016/j.precamres.2013.05.005
      Wang, W., Zhou, M.F., Yan, D.P., et al. 2013b. Detrital Zircon Record of Neoproterozoic Active-Margin Sedimentation in the Eastern Jiangnan Orogen, South China. Precambrian Research, 235: 1-19. https://doi.org/10.1016/j.precamres.2013.05.013
      Wang, Y.J., Zhang, A.M., Cawood, P.A., et al., 2013c. Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-back-Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia. Precambrian Research, 231: 343-371. https://doi.org/10.1016/j.precamres.2013.03.020
      Wang, J., Li, Z.X., 2001. Sequence Stratigraphy and Evolution of the Neoproterozoic Marginal Basins along Southeastern Yangtze Craton, South China. Gondwana Research, 4(1): 17-26. https://doi.org/10.1016/S1342-937X(05)70651-1
      Wang, L.W., Zhang, J.F., Chen, J.H., et al., 2015. Characteristics of Katian (Late ordovician) K-Bentonites from Anji, Zhejiang Province. Journal of Stratigraphy, 39(2): 155-168 (in Chinese with English abstract).
      Wang, W., Cawood, P. A., Pandit, M. K., et al., 2021. Fragmentation of South China from Greater India during the Rodinia-Gondwana Transition. Geology, 49(2): 228-232. https://doi.org/10.1130/g48308.1
      Wang, X.F., 2016. Ordovician Tectonic-Paleogeography in South China and Chrono- and Bio-Stratigraphic Division and Correlation. Earth Science Frontiers, 23(6): 253-267 (in Chinese with English abstract).
      Wang, X.L., Zhou, J.C., Chen, X., et al., 2017. Formation and Evolution of the Jiangnan Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714-735, 696 (in Chinese with English abstract).
      Wang, Y. J., Zhang, F. F., Fan, W. M., et al., 2010. Tectonic Setting of the South China Block in the Early Paleozoic: Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology. Tectonics, 29(6): TC6020. https://doi.org/10.1029/2010tc002750
      Wu, L., Jia, D., Li, H. B., et al., 2010. Provenance of Detrital Zircons from the Late Neoproterozoic to Ordovician Sandstones of South China: Implications for Its Continental Affinity. Geological Magazine, 147(6): 974-980. https://doi.org/10.1017/s0016756810000725
      Xiang, H., 2008. Phanerozoic Metamorphism of Precambrian Metamorphic Basement in Southwestern Zhejiang (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Xiao, W. J., Sun, S., Li, J. L., et al., 2001. Early Mesozoic Collapse of the Late Paleozoic Archipelago in South China. Paradoxes in Geology. Elsevier, Amsterdam: 15-37. https://doi.org/10.1016/b978-044450560-6/50003-5
      Xu, Y. J., Du, Y. S., Yang, J. H., et al., 2010. Sedimentary Geochemistry and Provenance of the Lower and Middle Devonian Laojunshan Formation, the North Qilian Orogenic Belt. Science China Earth Sciences, 53(3): 356-367. https://doi.org/10.1007/s11430-010-0009-z
      Xu, Y.J., Cawood, P.A., Du, Y.S., et al., 2014. Early Paleozoic Orogenesis along Gondwana's Northern Margin Constrained by Provenance Data from South China. Tectonophysics, 636: 40-51. https://doi.org/10.1016/j.tecto.2014.08.022
      Xu, Y.J., Du, Y.S., Cawood, P.A., et al., 2012. Detrital Zircon Provenance of Upper Ordovician and Silurian Strata in the Northeastern Yangtze Block: Response to Orogenesis in South China. Sedimentary Geology, 267/268: 63-72. https://doi.org/10.1016/j.sedgeo.2012.05.009
      Yan, Z., Wang, Z., Chen, J., et al., 2010. Detrital Record of Neoproterozoic Arc-Magmatism along the NW Margin of the Yangtze Block, China: U-Pb Geochronology and Petrography of Sandstones. Journal of Asian Earth Sciences, 37(4): 322-334. https://doi.org/10.1016/j.jseaes.2009.09.001
      Yan, Z., Wang, Z.Q., Li, J.L., et al., 2008. Restoring the Original Tectonic Types of Sedimentary Basins in the Orogenic Belts. Geological Bulletin of China, 27(12): 2001-2013 (in Chinese with English abstract).
      Yao, J.L., Cawood, P.A., Shu, L.S., et al., 2019. Jiangnan Orogen, South China: A ~970-820 Ma Rodinia Margin Accretionary Belt. Earth-Science Reviews, 196: 102872. https://doi.org/10.1016/j.earscirev.2019.05.016
      Yao, J.L., Shu, L.S., Santosh, M., 2011. Detrital Zircon U-Pb Geochronology, Hf-Isotopes and Geochemistry—New Clues for the Precambrian Crustal Evolution of Cathaysia Block, South China. Gondwana Research, 20(2-3): 553-567. https://doi.org/10.1016/j.gr.2011.01.005
      Yao, W. H, Li, Z. X, Li, W.X., et al., 2015. Detrital Provenance Evolution of the Ediacaran-Silurian Nanhua Foreland Basin, South China. Gondwana Research, 28(4): 1449-1465. https://doi.org/10.1016/j.gr.2014.10.018
      Yao, W. H, Li, Z.X., Li, W.X., et al., 2012. Post-Kinematic Lithospheric Delamination of the Wuyi-Yunkai Orogen in South China: Evidence from ca. 435 Ma High-Mg Basalts. Lithos, 154: 115-129. https://doi.org/10.1016/j.lithos.2012.06.033
      Yao, W.H., Li, Z.X., 2016. Tectonostratigraphic History of the Ediacaran-Silurian Nanhua Foreland Basin in South China. Tectonophysics, 674: 31-51. https://doi.org/10.1016/j.tecto.2016.02.012
      Ye, M.F., Li, X.H., Li, W.X., et al., 2007. SHRIMP Zircon U-Pb Geochronological and Whole-Rock Geochemical Evidence for an Early Neoproterozoic Sibaoan Magmatic Arc along the Southeastern Margin of the Yangtze Block. Gondwana Research, 12(1/2): 144-156. https://doi.org/10.1016/j.gr.2006.09.001
      Yin, C., Lin, S., Davis, D. W, et al., 2013. Tectonic Evolution of the Southeastern Margin of the Yangtze Block: Constraints from SHRIMP U-Pb and LA-ICP-MS Hf Isotopic Studies of Zircon from the Eastern Jiangnan Orogenic Belt and Implications for the Tectonic Interpretation of South China. Precambrian Research, 236: 145-156. https://doi.org/10.1016/j.precamres.2013.07.022
      Yu, J. H., O'Reilly, S. Y., Wang, L. J., et al., 2008. Where was South China in the Rodinia Supercontinent?: Evidence from U-Pb Geochronology and Hf Isotopes of Detrital Zircons Precambrian Research, 164(1-2): 1-15. https://doi.org/10.1016/j.precamres.2008.03.002
      Yu, J.H., O'Reilly, S.Y., Wang, L.J., et al., 2010. Components and Episodic Growth of Precambrian Crust in the Cathaysia Block, South China: Evidence from U-Pb Ages and Hf Isotopes of Zircons in Neoproterozoic Sediments. Precambrian Research, 181(1/2/3/4): 97-114. https://doi.org/10.1016/j.precamres.2010.05.016
      Yu, J.H., Wang, L.J., O'Reilly, S.Y., et al., 2009. A Paleoproterozoic Orogeny Recorded in a Long-Lived Cratonic Remnant (Wuyishan Terrane), Eastern Cathaysia Block, China. Precambrian Research, 174(3/4): 347-363. https://doi.org/10.1016/j.precamres.2009.08.009
      Zhai, M.G., 2013. The Formation of Main Ancient Land and United Land in China—Review and Prospect. Scientia Sinica (Terrae), 43(10): 1583-1606(in Chinese). doi: 10.1360/zd-2013-43-10-1583
      Zhang, C.L., Santosh, M., Zhu, Q. B., et al., 2015. The Gondwana Connection of South China: Evidence from Monazite and Zircon Geochronology in the Cathaysia Block. Gondwana Research, 28(3): 1137-1151. https://doi.org/10.1016/j.gr.2014.09.007
      Zhang, F.R., Shu, L.S., Wang, D.Z., et al., 2009. Discussion on the Tectonic Setting of Caledonian Granitoids in Eastern South China. Earth Science Frontiers, 16(1): 13 (in Chinese with English abstract).
      Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. Tectonics of South China Continent and Its Implications. Science China Earth Sciences, 56(11): 1804-1828. https://doi.org/10.1007/s11430-013-4679-1
      Zhang, S.B., Wu, R.X., Zheng, Y.F., 2012. Neoproterozoic Continental Accretion in South China: Geochemical Evidence from the Fuchuan Ophiolite in the Jiangnan Orogen. Precambrian Research, 220/221: 45-64. https://doi.org/10.1016/j.precamres.2012.07.010
      Zhao, G.C., Cawood, P.A., 2012. Precambrian Geology of China. Precambrian Research, 222/223: 13-54. https://doi.org/10.1016/j.precamres.2012.09.017
      Zhao, G.C., Wang, Y.J., Huang, B.C., et al., 2018. Geological Reconstructions of the East Asian Blocks: From the Breakup of Rodinia to the Assembly of Pangea. Earth-Science Reviews, 186: 262-286. https://doi.org/10.1016/j.earscirev.2018.10.003
      Zhao, L., Cui, X.H., Zhai, M.G., et al., 2019a Emplacement and Metamorphism of the Mafic Rocks from the Chencai Terrane within the Cathaysia Block: Implications for the Paleozoic Orogenesis of the South China Block. Journal of Asian Earth Sciences, 173: 11-28. https://doi.org/10.1016/j.jseaes.2019.01.019
      Zhao, X. L., Jiang, Y., Xing, G. F., et al., 2019b. The Early Paleozoic Oceanic Island Seamount in the Chencai Area, Zhejiang Province: Implication of the Yangtze-Cathaysia Amalgamation. Geological Journal, 55(2): 1148-1162. https://doi.org/10.1002/gj.3480
      Zhao, L., Zhai, M.G., Zhou, X.W., et al., 2015. Geochronology and Geochemistry of a Suite of Mafic Rocks in Chencai Area, South China: Implications for Petrogenesis and Tectonic Setting. Lithos, 236/237: 226-244. https://doi.org/10.1016/j.lithos.2015.09.004
      Zhejiang Provincial Bureau of Geology and Mineral Resources, 1996. Rock Stratigraphy in Zhejiang Province. China University of Geosciences Press, Wuhan (in Chinese with English abstract).
      Zhejiang Provincial Survey Team, 1967. 1: 200 000 Lin'an Area Geological and Mineral Survey Report. Geological Bureau of Zhejiang Province, Hangzhou (in Chinese with English abstract).
      Zhou, X. H., Hu, X. M., Jiang, R., et al., 2020. Sedimentary Facies, Provenance and Geochronology of the Heshangzhen Group: Implications for the Tectonic Evolution of the Eastern Jiangnan Orogen, South China. Acta Geologica Sinica, 94(4): 1138-1158. https://doi.org/10.1111/1755-6724.14570
      陈家驹, 徐先兵, 梁承华, 等, 2021. 湘东南中泥盆统石英砂砾岩物源分析及其大地构造意义. 地球科学, 46(10): 3421-3434. doi: 10.3799/dqkx.2021.022
      陈清, 樊隽轩, 张琳娜, 等, 2018. 下扬子区奥陶纪晚期古地理演变及华南"台-坡-盆"格局的打破. 中国科学: 地球科学, 48(6): 767-777. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201806009.htm
      范代读, 李从先, 蔡进功, 等, 2003. 浙江桐庐晚奥陶世晚期沉积层序和沉积环境分析. 沉积学报, 21(2): 247-254. doi: 10.3969/j.issn.1000-0550.2003.02.009
      甘晓春, 李惠民, 孙大中, 等, 1993. 闽北前寒武纪基底的地质年代学研究. 福建地质, 12(1): 17-32. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ199301001.htm
      高林志, 杨明桂, 丁孝忠, 等, 2008. 华南双桥山群和河上镇群凝灰岩中的锆石SHRIMP U-Pb年龄: 对江南新元古代造山带演化的制约. 地质通报, 27(10): 1744-1751. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202309005.htm
      郭建秋, 张雄华, 章泽军, 2004. 江西修水地区中元古界双桥山群浊流沉积. 地质科技情报, 23(1): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200401006.htm
      何卫红, 唐婷婷, 乐明亮, 等, 2014. 华南南华纪-二叠纪沉积大地构造演化. 地球科学, 39(8): 929-953. doi: 10.3799/dqkx.2014.087
      胡雄健, 许金坤, 童朝旭, 等, 1991. 浙西南龙泉地区早元古代花岗岩类的地质特征及其成因探讨. 矿物岩石, 11(3): 29-39. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS199103004.htm
      李献华, 周国庆, 赵建新, 1994. 赣东北蛇绿岩的离子探针锆石U-Pb年龄及其构造意义. 地球化学, 23(2): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX402.002.htm
      刘锐, 2009. 华夏地块前海西期地壳深熔作用——以浙闽地区为例(博士学位论文). 武汉: 中国地质大学.
      刘树文, 杨朋涛, 王宗起, 等, 2013. 赣东北婺源—德兴地区新元古代浅变质火山岩的地球化学和锆石U-Pb年龄. 岩石学报, 29(2): 581-593. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302017.htm
      彭松柏, 刘松峰, 林木森, 等, 2016. 华夏早古生代俯冲作用(Ⅰ): 来自糯垌蛇绿岩的新证据. 地球科学, 41(5): 765-778. doi: 10.3799/dqkx.2016.065
      舒良树, 2006. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带. 高校地质学报, 12(4): 418-431. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200604002.htm
      舒良树, 陈祥云, 楼法生, 2020. 华南前侏罗纪构造. 地质学报, 94(2): 333-360. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202002001.htm
      汪隆武, 张建芳, 陈津华, 等, 2015. 浙江安吉上奥陶统钾质斑脱岩特征. 地层学杂志, 39(2): 155-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201502004.htm
      汪啸风, 2016. 中国南方奥陶纪构造古地理及年代与生物地层的划分与对比. 地学前缘, 23(6): 253-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201606026.htm
      王孝磊, 周金城, 陈昕, 等, 2017. 江南造山带的形成与演化. 矿物岩石地球化学通报, 36(5): 714-735, 696. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201705004.htm
      向华, 2008. 浙西南前寒武纪变质基底岩系显生宙变质作用研究(硕士学位论文). 武汉: 中国地质大学.
      闫臻, 王宗起, 李继亮, 等, 2008. 造山带沉积盆地构造原型恢复. 地质通报, 27(12): 2001-2013. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200812007.htm
      翟明国, 2013. 中国主要古陆与联合大陆的形成: 综述与展望. 中国科学: 地球科学, 43(10): 1583-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202305011.htm
      张芳荣, 舒良树, 王德滋, 等, 2009. 华南东段加里东期花岗岩类形成构造背景探讨. 地学前缘, 16(1): 13. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200901034.htm
      浙江省地质矿产局, 1996. 浙江省岩石地层. 武汉: 中国地质大学出版社.
      浙江省区测队, 1967. 1: 20万临安幅区域地质矿产调查报告. 杭州: 浙江省地质局.
    • dqkxzx-48-10-3649-附表1-3.docx
    • 加载中
    图(15) / 表(1)
    计量
    • 文章访问数:  501
    • HTML全文浏览量:  639
    • PDF下载量:  95
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-10-29
    • 网络出版日期:  2023-10-31
    • 刊出日期:  2023-10-25

    目录

      /

      返回文章
      返回