• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    曼达岬海盆渐新世‒中新世沉积物的稀土元素组成及其物源指示意义

    孙天琪 徐兆凯 万世明 李铁刚 常凤鸣

    孙天琪, 徐兆凯, 万世明, 李铁刚, 常凤鸣, 2023. 曼达岬海盆渐新世‒中新世沉积物的稀土元素组成及其物源指示意义. 地球科学, 48(7): 2764-2777. doi: 10.3799/dqkx.2022.412
    引用本文: 孙天琪, 徐兆凯, 万世明, 李铁刚, 常凤鸣, 2023. 曼达岬海盆渐新世‒中新世沉积物的稀土元素组成及其物源指示意义. 地球科学, 48(7): 2764-2777. doi: 10.3799/dqkx.2022.412
    Sun Tianqi, Xu Zhaokai, Wan Shiming, Li Tiegang, Chang Fengming, 2023. Rare Earth Element Compositions for Oligocene-Miocene Sediments in Mentalle Basin of Southeastern Indian Ocean: Characteristics and Provenance Implications. Earth Science, 48(7): 2764-2777. doi: 10.3799/dqkx.2022.412
    Citation: Sun Tianqi, Xu Zhaokai, Wan Shiming, Li Tiegang, Chang Fengming, 2023. Rare Earth Element Compositions for Oligocene-Miocene Sediments in Mentalle Basin of Southeastern Indian Ocean: Characteristics and Provenance Implications. Earth Science, 48(7): 2764-2777. doi: 10.3799/dqkx.2022.412

    曼达岬海盆渐新世‒中新世沉积物的稀土元素组成及其物源指示意义

    doi: 10.3799/dqkx.2022.412
    基金项目: 

    中国科学院战略性先导科技专项 XDB42000000

    中国科学院战略性先导科技专项 XDB40010100

    国家自然科学基金项目 41876034

    国家自然科学基金项目 41676038

    详细信息
      作者简介:

      孙天琪(1995-),女,博士研究生,主要从事海洋地质研究.ORCID:0000-0002-0693-1709.E-mail:suntianqi17@mails.ucas.edu.cn

      通讯作者:

      徐兆凯, E-mail: zhaokaixu@qdio.ac.cn

    • 中图分类号: P736

    Rare Earth Element Compositions for Oligocene-Miocene Sediments in Mentalle Basin of Southeastern Indian Ocean: Characteristics and Provenance Implications

    • 摘要: 为了探究东南印度洋曼达岬海盆(Mentelle Basin)内沉积物的源‒汇过程,利用国际大洋发现计划(IODP)369航次在该海盆内获取的渐新世‒中新世岩心沉积物,进行了稀土元素(REE)组成特征及其控制因素和物源指示意义的研究.结果显示,与球粒陨石、上地壳(UCC)和澳大利亚后太古代页岩(PAAS)这三种标准物质相比,所研究沉积物的稀土元素含量(ΣREE)与轻/重稀土含量比值(ΣLREE/ΣHREE)等总体特征与UCC最为相近,其UCC标准化后的稀土元素配分模式则呈现出轻稀土稍富集的整体平缓特征.样品的ΣREE与稀土分馏指标(La/Yb)UCC和(Gd/Yb)UCC明显受控于粒度效应与风化作用,而ΣLREE/ΣHREE、δEu、(La/Sm)UCC和(Sm/Nd)UCC则基本不受上述两种作用的影响.UCC标准化后的稀土元素配分模式、基于稀土元素组成的物源判别函数以及Zr-Th-Sc物源判别三角图均表明伊尔冈克拉通是所研究沉积物最可能的物源区,并且该物源区的主要源岩在13 Ma时由中基性岩向酸性岩转变.上述物源研究结果有望为东南印度洋地区渐新世‒中新世时期的古气候与古环境重建工作奠定坚实的基础.

       

    • 图  1  U1514站位位置与研究区域地质概况

      红点为研究站位U1514,白线圈定了附近主要构造单元的大致范围(http://www.ga.gov.au/map/national

      Fig.  1.  The location of Site U1514 and geological background of the study area

      图  2  U1514站位的年龄框架

      Hobbs et al.(2019);虚线表示存在沉积间断的大致层位

      Fig.  2.  Age model of the Site U1514

      图  3  U1514站位渐新世‒中新世沉积物粒度与REE组成特征剖面

      阴影表示存在沉积间断的大致层位,虚线表示阶段二开始的最晚时间

      Fig.  3.  Grain size and REE compositions of the Oligocene-Miocene sediments at the Site U1514

      图  4  U1514站位渐新世‒中新世沉积物的稀土元素标准化配分模式

      a.球粒陨石标准化的稀土元素配分模式;b.澳大利亚后太古代页岩(PAAS)标准化的稀土元素配分模式;c.上地壳(UCC)标准化的稀土元素配分模式

      Fig.  4.  Normalized REE patterns of the Oligocene-Miocene sediments at the Site U1514

      图  5  U1514站位渐新世‒中新世沉积物稀土元素组成及其潜在制约因素间的相关性分析结果

      Fig.  5.  Correlation analysis results between REE compositions and their potential controlling factors of Oligocene-Miocene sediments at the Site U1514

      图  6  U1514站位渐新世‒中新世的ΣLREE/ΣHREE与(La/Sm)UCC特征及其与潜在物源区比较

      Fig.  6.  The ΣLREE/ΣHREE and (La/Sm)UCC of the Oligocene-Miocene sediments at the Site U1514 and their comparison with those of the potential provenances

      图  7  U1514站位渐新世‒中新世沉积物的UCC标准化配分模式及其与潜在物源区比较

      Fig.  7.  UCC-normalized REE patterns of the Oligocene-Miocene sediments at the Site U1514 and their comparison with those of the potential provenances

      图  8  U1514站位渐新世‒中新世的Zr、Th与Sc元素组成及其与潜在物源区比较

      Fig.  8.  The Zr, Th, and Sc compositions of the Oligocene-Miocene sediments at the Site U1514 and their comparison with those of the potential provenances

      表  1  U1514站位渐新世‒中新世沉积物粒度及各粒级组分分布

      Table  1.   The sediment grain sizes and grain size composi- tions of the Oligocene-Miocene cores from the Site U1514

      中值粒径(µm) 砂(%) 粉砂(%) 粘土(%)
      阶段一渐新世与早中新世 平均值 15.26 9 80 11
      标准偏差 2.32 3.81 3.87 4.33
      变异系数 15 43 5 41
      阶段二晚中新世 平均值 8.79 3 72 25
      标准偏差 1.99 3.87 7.16 7.01
      变异系数 23 145 10 28
      全段 平均值 12.32 6 77 17
      标准偏差 3.89 4.90 6.89 9.07
      变异系数 32 81 9 53
      下载: 导出CSV

      表  2  U1514站位渐新世‒中新世沉积物样品REE(10-6)平均组成及其潜在物源区平均值比较

      Table  2.   Average REE compositions (10-6) of the Oligocene-Miocene sediments at the Site U1514 and comparison with those of the potential provenances

      La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ΣREE ΣLREE ΣHREE ΣLREE/ΣHREE δCe δEu (La/Yb)UCC (La/Sm)UCC (Gd/ Yb)UCC (Sm/ Nd)UCC
      阶段一 平均值 9.99 17.26 1.82 6.22 1.07 0.26 0.93 0.16 0.86 0.19 0.55 0.09 0.64 0.1 40.14 36.62 3.52 10.57 0.95 1.3 1.15 1.43 0.82 0.99
      标准偏差 3.51 4.71 0.69 2.45 0.45 0.09 0.39 0.06 0.32 0.06 0.18 0.03 0.2 0.03 12.67 11.53 1.24 1.11 0.15 0.38 0.23 0.16 0.14 0.06
      变异系数 35 27 38 39 42 35 42 40 37 35 33 33 31 30 32 31 35 11 16 29 20 11 17 7
      阶段二 平均值 40 59.3 7.31 25.16 4.25 0.91 3.45 0.56 2.83 0.61 1.72 0.28 1.83 0.28 148.49 136.94 11.55 11.82 0.8 1.12 1.59 1.42 1.08 0.98
      标准偏差 7.81 11.67 1.53 5.39 0.95 0.21 0.78 0.12 0.58 0.12 0.32 0.05 0.3 0.05 28.93 26.77 2.28 0.89 0.08 0.12 0.18 0.11 0.11 0.03
      变异系数 20 20 21 21 22 23 22 22 21 19 18 18 16 17 19 20 20 8 10 11 11 8 10 3
      全段 平均值 22.74 35.13 4.15 14.27 2.43 0.54 2 0.33 1.7 0.37 1.05 0.17 1.15 0.17 86.19 79.26 6.93 11.1 0.89 1.23 1.34 1.43 0.93 0.98
      标准偏差 15.91 22.42 2.94 10.18 1.72 0.35 1.38 0.22 1.07 0.23 0.63 0.1 0.64 0.1 57.59 53.29 4.34 1.2 0.15 0.31 0.3 0.14 0.18 0.05
      变异系数 70 64 71 71 71 66 69 66 63 62 60 57 55 55 67 67 63 11 17 25 22 10 20 5
      球粒陨石 0.31 0.81 0.12 0.6 0.2 0.07 0.26 0.05 0.32 0.07 0.21 0.03 0.21 0.03 3.29 2.11 1.18 1.78 / / / / / /
      UCC 30 64 7.1 26 4.5 0.88 3.8 0.64 3.5 0.8 2.3 0.33 2.2 0.32 146.37 132.48 13.89 9.54 / / / / / /
      PAAS 41 83 10 38 7.5 1.61 6.35 1.2 5.49 1.3 3.75 0.55 3.51 0.61 203.87 181.11 22.76 7.96 / / / / / /
      博物家海底高原 ELT55-12站位 5.44 12.63 / 7.69 2.38 0.95 / 0.5 / / / / 1.61 0.24 / / / / / / 0.09 0.16 / 2.34
      264站位 19.47 43.52 5.13 20.78 4.81 1.53 5.09 0.81 4.79 0.91 2.51 0.36 2.1 0.3 112.11 95.24 16.87 5.65 0.99 1.45 0.68 0.61 1.4 1.34
      奥尔巴尼-弗雷泽造山带 8.67 18.72 2.35 10.91 2.67 0.92 2.98 0.46 2.97 0.62 1.73 / 1.59 0.23 54.81 44.24 10.58 3.93 0.83 1.63 0.38 0.48 1.05 1.49
      利文地块 100.64 203.78 24.14 86.83 18.26 3.21 21.33 2.69 13.32 2.63 7.55 1.09 6.65 0.97 493.08 436.85 56.23 8.68 0.95 0.88 1.01 0.83 1.83 1.23
      伊尔冈克拉通 花岗岩 72.57 137.29 / 42.57 7.3 0.89 5.73 0.89 4.97 / 2.84 / 2.61 / / / / / / 0.75 2.39 1.49 1.47 1.03
      绿岩 50.09 93.66 9.82 35.28 6.24 1.2 5.34 0.82 4.83 0.96 2.85 0.39 2.8 0.43 203.06 186.34 16.72 11.08 0.96 1.01 1.33 1.2 1.13 1.02
      珀斯盆地玄武岩 9.65 22.72 3.14 14.81 4.64 1.54 6.14 1.04 6.39 1.36 3.68 0.56 3.22 0.5 79.38 56.5 22.88 2.48 0.94 1.36 0.22 0.32 1.1 1.8
      注:U1514站位数据为本次研究结果;UCC为上地壳,PAAS为澳大利亚后太古代页岩(Taylor and McLennan, 1985);博物家海底高原据Mahoney et al.(1995)Pyle et al.(1995);伊尔冈克拉通据Qiu et al.(1999)Chen et al.(2003);珀斯盆地据Olierook et al.(2016);利文地块据Wilde and Nelson(2001);奥尔巴尼‒弗雷泽造山带据Kirkland et al.(2015)Maier et al.(2016).
      下载: 导出CSV

      表  3  U1514站位渐新世‒中新世沉积物中REE与中值粒径间相关性分析结果

      Table  3.   Correlation analysis results between REE and median grain size of the Oligocene-Miocene sediments at the Site U1514

      中值粒径
      (μm)

      (%)
      粉砂(%) 粘土(%) Al
      (%)
      Th
      (10-6)
      Zr
      (10-6)
      Mg
      (%)
      Th/Al Zr/Al Mg/Al
      中值粒径(μm) 1 0.91 0.63 -0.92 -0.89 -0.87 -0.88 -0.84 -0.59 -0.34 0.85
      ΣREE (10-6) -0.89 -0.77 -0.65 0.85 0.96 0.99 0.97 0.86 0.69 0.46 -0.92
      ΣLREE/ΣHREE -0.52 -0.51 -0.38 0.53 0.48 0.49 0.52 0.37 0.30 0.23 -0.47
      δCe 0.60 0.57 0.33 -0.52 -0.51 -0.52 -0.50 -0.45 -0.41 -0.31 0.47
      δEu 0.35 0.22 0.25 -0.29 -0.35 -0.34 -0.39 -0.38 -0.22 -0.44 0.32
      (La/Yb)UCC -0.76 -0.70 -0.52 0.72 0.71 0.72 0.72 0.63 0.50 0.38 -0.66
      (La/Sm)UCC 0.18 0.08 0.16 -0.15 -0.09 -0.15 -0.11 -0.15 -0.29 -0.19 0.03
      (Gd/Yb)UCC -0.80 -0.69 -0.57 0.76 0.70 0.76 0.73 0.65 0.65 0.45 -0.63
      (Sm/Nd)UCC 0.03 0.13 0.00 -0.07 -0.04 -0.04 -0.04 0.09 -0.02 0.03 0.10
      下载: 导出CSV

      表  4  U1514站位渐新世与中新世沉积物来源判别函数结果

      Table  4.   Discrimination function results for provenances of Oligocene and Miocene sediments at the Site U1514

      博物家海底高原 奥尔巴尼‒弗雷泽造山带 利文地块 伊尔冈克拉通 珀斯盆地
      花岗岩 绿岩
      阶段一渐新世与早中新世 0.58 0.34 0.20 0.06 0.06 0.45
      阶段二晚中新世 0.58 0.34 0.20 0.05 0.04 0.46
      全段 0.58 0.34 0.20 0.06 0.05 0.45
      下载: 导出CSV
    • Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3
      Chen, H. J., Xu, Z. K., Bayon, G., et al., 2022. Enhanced Hydrological Cycle during Oceanic Anoxic Event 2 at Southern High Latitudes: New Insights from IODP Site U1516. Global and Planetary Change, 209: 103735. https://doi.org/10.1016/j.gloplacha.2022.103735
      Chen, S. F., Riganti, A., Wyche S., et al., 2003. Lithostratigraphy and Tectonic Evolution of Contrasting Greenstone Successions in the Central Yilgarn Craton, Western Australia. Precambrian Research, 127(1-3): 249-266. https://doi.org/10.1016/S0301-9268(03)00190-6
      Condie, K. C., 1991. Another Look at Rare Earth Elements in Shales. Geochimica et Cosmochimica Acta, 55(9): 2527-2531. https://doi.org/10.1016/0016-7037(91)90370-K
      Condie, K. C., Dengate, J., Cullers, R. L., 1995. Behavior of Rare Earth Elements in a Paleoweathering Profile on Granodiorite in the Front Range, Colorado, USA. Geochimica et Cosmochimica Acta, 59(2): 279-294. https://doi.org/10.1016/0016-7037(94)00280-Y
      Cullers, R. L., 1994. The Controls on the Major and Trace Element Variation of Shales, Siltstones, and Sandstones of Pennsylvanian-Permian Age from Uplifted Continental Blocks in Colorado to Platform Sediment in Kansas, USA. Geochimica et Cosmochimica Acta, 58(22): 4955-4972. https://doi.org/10.1016/0016-7037(94)90224-0
      Cullers, R. L., Barrett, T., Carlson, R., et al., 1987. Rare-Earth Element and Mineralogic Changes in Holocene Soil and Stream Sediment: A Case Study in the Wet Mountains, Colorado, USA. Chemical Geology, 63(3-4): 275-297. https://doi.org/10.1016/0009-2541(87)90167-7
      Cullers, R. L., Basu, A., Suttner, L. J., 1988. Geochemical Signature of Provenance in Sand-Size Material in Soils and Stream Sediments near the Tobacco Root Batholith, Montana, USA. Chemical Geology, 70(4): 335-348. https://doi.org/10.1016/0009-2541(88)90123-4
      Dadd, K. A., Kellerson, L., Borissova, I., et al., 2015. Multiple Sources for Volcanic Rocks Dredged from the Western Australian Rifted Margin. Marine Geology, 368: 42-57. https://doi.org/10.1016/j.margeo.2015.07.001
      DeConto, R., Pollard, D., Harwood, D., 2007. Sea Ice Feedback and Cenozoic Evolution of Antarctic Climate and Ice Sheets. Paleoceanography, 22(3): PA3214. https://doi.org/10.1029/2006PA001350
      Dou, Y. G., Li, J., Li, Y., 2012. Rare Earth Element Compositions and Provenance Implication of Surface Sediments in the Eastern Beibu Gulf. Geochimica, 41(2): 147-157 (in Chinese with English abstract). doi: 10.3969/j.issn.0379-1726.2012.02.006
      Fan, Q. C., Xu, Z. K., MacLeod, K. G., et al., 2022. First Record of Oceanic Anoxic Event 1d at Southern High Latitudes: Sedimentary and Geochemical Evidence from International Ocean Discovery Program Expedition 369. Geophysical Research Letters, 49(10): e2021GL097641. https://doi.org/10.1029/2021GL097641
      Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., 2012. The Geologic Time Scale. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-444-59425-9.05001-0
      Groeneveld, J., Henderiks, J., Renema, W., et al., 2017. Australian Shelf Sediments Reveal Shifts in Miocene Southern Hemisphere Westerlies. Science Advances, 3(5): e1602567. https://doi.org/10.1126/sciadv.1602567
      Hobbs, R. W., Huber, B. T., Bogus, K. A., et al., 2019. Australia Cretaceous Climate and Tectonics. Proceedings of the International Ocean Discovery Program. https://doi.org/10.14379/iodp.proc.369.2019
      Holbourn, A., Kuhnt, W., Clemens, S., et al., 2013. Middle to Late Miocene Stepwise Climate Cooling: Evidence from a High-Resolution Deep Water Isotope Curve Spanning 8 Million Years. Paleoceanography, 28(4): 688-699. https://doi.org/10.1002/2013PA002538
      Holser, W. T., 1997. Evaluation of the Application of Rare-Earth Elements to Paleoceanography. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1-4): 309-323. https://doi.org/10.1016/S0031-0182(97)00069-2
      Jung, H. S., Lim, D. I., Jeong, D. H., et al., 2016. Discrimination of Sediment Provenance in the Yellow Sea: Secondary Grain-Size Effect and REE Proxy. Journal of Asian Earth Sciences, 123: 78-84. https://doi.org/10.1016/j.jseaes.2016.03.020
      Kennett, J. P., 1977. Cenozoic Evolution of Antarctic Glaciation, the Circum-Antarctic Ocean, and Their Impact on Global Paleoceanography. Journal of Geophysical Research, 82(27): 3843-3860. https://doi.org/10.1029/JC082i027p03843
      Kirkland, C. L., Spaggiari, C. V., Smithies, R. H., et al., 2015. The Affinity of Archean Crust on the Yilgarn- Albany-Fraser Orogen Boundary: Implications for Gold Mineralisation in the Tropicana Zone. Precambrian Research, 266: 260-281. https://doi.org/10.1016/j.precamres.2015.05.023
      Lan, X. H., Zhang, X. J., Zhao, G. T., et al., 2009. Distributions of Rare Earth Elements in Sediments from Core NT1 of the South Yellow Sea and Their Provenance Discrimination. Geochimica, 38(2): 123-132 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2009.02.003
      Lear, C. H., Elderfield, H., Wilson, P. A., 2000. Cenozoic Deep-Sea Temperatures and Global Ice Volumes from Mg/Ca in Benthic Foraminiferal Calcite. Science, 287(5451): 269-272. https://doi.org/10.1126/science.287.5451.269
      Li, S. L., Li, S. Q., 2001. REE Composition and Source Tracing of Sediments from Core YA01 in Yellow Sea. Marine Geology & Quaternary Geology, 21(3): 51-56 (in Chinese with English abstract).
      Li, S. R., 2008. Crystallography and Mineralogy. Geological Publishing House, Beijing (in Chinese).
      Liu, J. G., Chen, Z., Yan, W., et al., 2010. Geochemical Characteristics of Rare Earth Elements in the Fine-Grained Fraction of Surface Sediment from South China Sea. Earth Science, 35(4): 563-571 (in Chinese with English abstract).
      Liu, X. S., Chen, X. G., Sun, K., et al., 2021. Provenance of U1431 Sediments from the Eastern Subbasin of the South China Sea since Middle Miocene. Earth Science, 46(3): 1008-1022 (in Chinese with English abstract).
      Mahoney, J. J., Jones, W. B., Frey, F. A., et al., 1995. Geochemical Characteristics of Lavas from Broken Ridge, the Naturaliste Plateau and Southernmost Kerguelen Plateau: Cretaceous Plateau Volcanism in the Southeast Indian Ocean. Chemical Geology, 120(3-4): 315-345. https://doi.org/10.1016/0009-2541(94)00144-W
      Maier, W. D., Smithies, R. H., Spaggiari, C. V., et al., 2016. Petrogenesis and Ni-Cu Sulphide Potential of Mafic-Ultramafic Rocks in the Mesoproterozoic Fraser Zone within the Albany-Fraser Orogen, Western Australia. Precambrian Research, 281: 27-46. https://doi.org/10.1016/j.precamres.2016.05.004
      McLennan, S. M., 1989. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. In: Lipin B. R., McKay, G. A., eds., Geochemistry and Mineralogy of Rare Earth Elements. De Gruyter, Berlin.
      Miller, K. G., Browning, J. V., Schmelz, W. J., et al., 2020. Cenozoic Sea-Level and Cryospheric Evolution from Deep-Sea Geochemical and Continental Margin Records. Sci. Adv. , 6(20): eaaz1346. https://doi.org/10.1126/sciadv.aaz1346
      Müller, R. D., Seton, M., Zahirovic, S., et al., 2016. Ocean Basin Evolution and Global-Scale Plate Reorganization Events since Pangea Breakup. Annual Review of Earth and Planetary Sciences, 44: 107-138. https://doi.org/10.1146/annurev-earth-060115-012211
      Olierook, H. K. H., Jourdan, F., Merle, R. E., et al., 2016. Bunbury Basalt: Gondwana Breakup Products or Earliest Vestiges of the Kerguelen Mantle Plume? Earth and Planetary Science Letters, 440: 20-32. https://doi.org/10.1016/j.epsl.2016.02.008
      Pyle, D. G., Christie, D. M., Mahoney, J. J., et al., 1995. Geochemistry and Geochronology of Ancient Southeast Indian and Southwest Pacific Seafloor. Journal of Geophysical Research: Solid Earth, 100(B11): 22261-22282. https://doi.org/10.1029/95JB01424
      Qiu, Y., McNaughton, N. J., Groves, D. I., et al., 1999. First Record of 1.2 Ga Quartz Dioritic Magmatism in the Archaean Yilgarn Craton, Western Australia, and Its Significance. Australian Journal of Earth Sciences, 46(3): 421-428. https://doi.org/10.1046/j.1440-0952.1999.00715.x
      Scher, H. D., Whittaker, J. M., Williams, S. E., et al., 2015. Onset of Antarctic Circumpolar Current 30 Million Years Ago as Tasmanian Gateway Aligned with Westerlies. Nature, 523(7562): 580-583. https://doi.org/10.1038/nature14598
      Shang, Y. J., Wu H. W., Qu, Y. X., 2001. Comparison of Chemical Indices and Micro-Properties of Weathering Degrees of Granitic Rocks—A Case Study from Kowloon, Hong Kong. Scientia Geologica Sinica, 36(3): 279-294 (in Chinese with English abstract).
      Sharma, A., Rajamani, V., 2000. Major Element, REE, and Other Trace Element Behavior in Amphibolite Weathering under Semiarid Conditions in Southern India. The Journal of Geology, 108(4): 487-496. https://doi.org/10.1086/314409
      Shi, X. F., Chen, L. R., Ma, J. G., et al., 1996. REE Geochemistry of Sediments from West Philippine Sea. Acta Mineralogica Sinica, 16(3): 260-267 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-4734.1996.03.006
      Sun, T. Q., Xu, Z. K., Chang, F. M., et al., 2022. Climate Evolution of Southwest Australia in the Miocene and Its Main Controlling Factors. Science China Earth Sciences, 65(6): 1104-1115. https://doi.org/10.1007/s11430-021-9904-y
      Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific, Oxford.
      Tian, C. J., Cai, G. Q., Li, M. K., et al., 2021. Paleoclimatic and Paleoenvironmental Changes Recorded by Elemental Geochemistry in the Northwestern South China Sea since the Past -55 ka. Earth Science, 46(3): 975-985 (in Chinese with English abstract).
      Van De Flierdt, T., Frank, M., Halliday, A. N., et al., 2004. Deep and Bottom Water Export from the Southern Ocean to the Pacific over the Past 38 Million Years. Paleoceanography, 19(1): PA1020. https://doi.org/10.1029/2003PA000923
      Wan, S. M., Clift, P. D., Zhao, D. B., et al., 2017. Enhanced Silicate Weathering of Tropical Shelf Sediments Exposed during Glacial Lowstands: A Sink for Atmospheric CO2. Geochimica et Cosmochimica Acta, 200: 123-144. https://doi.org/10.1016/j.gca.2016.12.010
      Wilde, S. A., Nelson, D. R., 2001. Geology of the Western Yilgarn Craton and Leeuwin Complex, Western Australia—A Field Guide. Record 2001/15. In: The 4th International Archaean Symposium. Western Australia Geological Survey, Perth.
      Xu, Z. K., Li, T. G., Clift, P. D., et al., 2018. Bathyal Records of Enhanced Silicate Erosion and Weathering on the Exposed Luzon Shelf during Glacial Lowstands and Their Significance for Atmospheric CO2 Sink. Chemical Geology, 476(5): 302-315. https://doi.org/10.1016/j.chemgeo.2017.11.027
      Xu, Z. K., Li, T. G., Wan, S. M., et al., 2014. Geochemistry of Rare Earth Elements in the Mid-Late Quaternary Sediments of the Western Philippine Sea and Their Paleoenvironmental Significance. Science China Earth Sciences, 57(4): 802-812. https://doi.org/10.1007/s11430-013-4786-z
      Yang, S. Y., Li, C. X., 1999. Research Progress in REE Tracer for Sediment Source. Advance in Earth Sciences, 14(2): 164-167 (in Chinese with English abstract).
      Yang, S. Y., Li, C. X., Jung, H. S., et al., 2003. Re-Understanding of REE Restriction and Tracing Significance in Sediments of the Yellow River. Progress in Natural Science, 13(4): 365-371 (in Chinese).
      Zheng, F., Li, J. P., Liu, T., 2014. Some Advances in Studies of the Climatic Impacts of the Southern Hemisphere Annular Mode. Acta Meteorologica Sinica, 72(5): 926-939 (in Chinese with English abstract).
      窦衍光, 李军, 李炎, 2012. 北部湾东部海域表层沉积物稀土元素组成及物源指示意义. 地球化学, 41(2): 147-157. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201202005.htm
      蓝先洪, 张宪军, 赵广涛, 等, 2009. 南黄海NT1孔沉积物稀土元素组成与物源判别. 地球化学, 38(2): 123-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200902003.htm
      李双林, 李绍全, 2001. 黄海YA01孔沉积物稀土元素组成与源区示踪. 海洋地质与第四纪地质, 21(3): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200103009.htm
      李胜荣, 2008. 结晶学与矿物学. 北京: 地质出版社.
      刘建国, 陈忠, 颜文, 等, 2010. 南海表层沉积物中细粒组分的稀土元素地球化学特征. 地球科学, 35(4): 563-571. doi: 10.3799/dqkx.2010.072
      刘雪松, 陈雪刚, 孙凯, 等, 2021. 南海东部次海盆U1431站位中中新世以来的沉积物来源特征. 地球科学, 46(3): 1008-1022. doi: 10.3799/dqkx.2020.290
      尚彦军, 吴宏伟, 曲永新, 2001. 花岗岩风化程度的化学指标及微观特征对比——以香港九龙地区为例. 地质科学, 36(3): 279-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200103002.htm
      石学法, 陈丽蓉, 马建国, 等, 1996. 西菲律宾海沉积物稀土元素地球化学. 矿物学报, 16(3): 260-267. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199603005.htm
      田成静, 蔡观强, 李明坤, 等, 2021. 南海西北部过去~55 ka以来元素地球化学记录的古气候环境演变. 地球科学, 46(3): 975-985. doi: 10.3799/dqkx.2020.276
      杨守业, 李从先, 1999. REE示踪沉积物物源研究进展. 地球科学进展, 14(2): 164-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ902.009.htm
      杨守业, 李从先, Jung, H. S., et al., 2003. 黄河沉积物中REE制约与示踪意义再认识. 自然科学进展, 13(4): 365-371. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200304005.htm
      郑菲, 李建平, 刘婷, 2014. 南半球环状模气候影响的若干研究进展. 气象学报, 72(5): 926-939. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201405009.htm
    • 加载中
    图(8) / 表(4)
    计量
    • 文章访问数:  414
    • HTML全文浏览量:  438
    • PDF下载量:  52
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-30
    • 刊出日期:  2023-07-25

    目录

      /

      返回文章
      返回