• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    塔里木盆地深层海相原油中硫代金刚烷系列化合物的鉴定

    朱光有 王瑞林 王霆 文志刚 张志遥

    朱光有, 王瑞林, 王霆, 文志刚, 张志遥, 2023. 塔里木盆地深层海相原油中硫代金刚烷系列化合物的鉴定. 地球科学, 48(2): 398-412. doi: 10.3799/dqkx.2022.414
    引用本文: 朱光有, 王瑞林, 王霆, 文志刚, 张志遥, 2023. 塔里木盆地深层海相原油中硫代金刚烷系列化合物的鉴定. 地球科学, 48(2): 398-412. doi: 10.3799/dqkx.2022.414
    Zhu Guangyou, Wang Ruilin, Wang Ting, Wen Zhigang, Zhang Zhiyao, 2023. Identification of Thiadiamondoids in Oil Samples from Tazhong Uplift, Tarim Basin. Earth Science, 48(2): 398-412. doi: 10.3799/dqkx.2022.414
    Citation: Zhu Guangyou, Wang Ruilin, Wang Ting, Wen Zhigang, Zhang Zhiyao, 2023. Identification of Thiadiamondoids in Oil Samples from Tazhong Uplift, Tarim Basin. Earth Science, 48(2): 398-412. doi: 10.3799/dqkx.2022.414

    塔里木盆地深层海相原油中硫代金刚烷系列化合物的鉴定

    doi: 10.3799/dqkx.2022.414
    基金项目: 

    中国石油十四五上游领域前瞻性基础性项目《海相碳酸盐岩成藏理论与勘探技术研究》 2021DJ05

    详细信息
      作者简介:

      朱光有(1973-),男,教授级高工,主要从事油气地质与地球化学方面的研究工作. ORCID:0000-0002-7282-6990. E-mail:zhuguangyou@petrochina.com.cn

    • 中图分类号: P599

    Identification of Thiadiamondoids in Oil Samples from Tazhong Uplift, Tarim Basin

    • 摘要: 硫代金刚烷被认为是硫酸盐热化学还原反应(TSR)的标志物,在塔里木盆地原油中检出了大量硫代金刚烷.使用银离子柱层析法分离塔里木盆地海相原油中有机含硫化合物(organic sulfur compound,OSC),进一步采用气相色谱质谱联用(GC⁃MS)技术,在OSC组分中检测出了完整的低聚硫代金刚烷和部分高聚硫代金刚烷及金刚烷硫醇系列共76个化合物.其中,大部分油样中C0⁃C2硫代单金刚烷(易挥发硫代金刚烷)占据总硫代金刚烷含量的50%左右,中深1C和中深5井油样比较特殊,易挥发硫代金刚烷仅占据20%左右的相对丰度. 同时,中深1C和中深5井油样中硫代单金刚烷:硫代双金刚烷:硫代三金刚烷含量比值大约为4∶4∶1,而其它样品中该比值为8∶1∶0.硫代金刚烷的丰度可定量反映TSR作用的强度,硫代单金刚烷的高比值与易挥发硫代金刚烷的高相对丰度指示油样发生过运移. 这可有效应用于指示TSR作用强度以及TSR是否为原位反应,TSR作用的产物除了OSC组分还有大量H2S气体. 而原油中该发现为预测硫化氢分布与判识硫化氢成因及深层油气勘探提供理论依据.

       

    • 图  1  塔里木盆地塔中地区主要断裂分布及油样位置

      Fig.  1.  Distribution of major faults and sampling locations in the Tazhong area, Tarim Basin

      图  2  中深1C井原油分离富集前后TIC对比图

      Fig.  2.  Comparison of TIC before and after separation and enrichment of crude oil in Well ZS1C

      图  3  中深1C井原油硫代金刚烷系列质量色谱

      Fig.  3.  Quality chromatography of thiadiamondoids Series in crude oil of Well ZS1C

      图  4  硫代单金刚烷系列质谱

      Fig.  4.  Mass spectrum of thiaadamantane series

      图  5  硫代双金刚烷系列质谱

      Fig.  5.  Mass spectrum of thiadiamantane series

      图  6  硫代三金刚烷系列质谱

      Fig.  6.  Mass spectrum of thiatriamantane series

      图  7  硫代四金刚烷与四金刚烷硫醇系列质谱

      Fig.  7.  Mass spectrum of thiatetramantanes and tetranantanethiol series

      图  8  不同油样中低聚硫代金刚烷百分含量分布直方图

      a. 塔中地区油样中各硫代金刚烷含量分布直方图;b. Mobile湾油样中硫代金刚烷含量分布直方图,数据来自文献;易挥发硫代金刚烷:C0⁃C2硫代单金刚烷

      Fig.  8.  Percentage distribution histogram of lower thiadiamondoids in oil samples

      表  1  研究区油样井号及物理性质表

      Table  1.   Well number and physical properties of oil samples in the study area

      井号 层系 深度(m) 密度(g/cm3 粘度(mPa·s) 含蜡量(%) 胶质(%) 沥青质(%) 含硫量(%) 含水量(%) 凝固点(℃)
      中深1C 寒武系 6 944 0.927 4 2.181 0 0.20 0.45 0.08 2.680 0 8.53 < -30.0
      中深5 寒武系 6 671 0.793 2 1.378 0 5.80 0.02 0.03 0.142 0 0.19 < -30.0
      塔中83 奥陶系 5 681 0.830 6 3.700 0 12.37 1.70 0.70 0.060 0 3.44 -16
      中古8 奥陶系 6 146 0.783 3 0.935 8 6.90 0.10 0.01 0.111 0 - -30
      中古5 奥陶系 6 460 0.781 5 0.928 0 5.10 0.66 0.26 - - -12
      塔中201C 奥陶系 5 779 0.774 4 0.667 2 6.20 0.38 0.15 0.161 0 - -8
      中古172 奥陶系 6 210 0.814 3 1.935 0 7.70 0.62 0.38 0.275 0 - -8
      中古22 奥陶系 5 893 0.780 1 0.878 9 5.60 0.31 0.07 0.108 0 - -4
      中古113-1 奥陶系 7 370 0.790 0 1.162 0 12.80 0.41 0.13 0.081 4 - 20
      中古43-9 奥陶系 5 380 0.800 9 1.317 0 9.60 0.14 0.05 0.200 0 - -8
      注:“-”表示数据不存在;油的密度测试温度为20 ℃;粘度为50 ℃动力粘度.
      下载: 导出CSV

      表  2  硫代金刚烷及金刚烷硫醇鉴定结果(Wei et al., 2007, 2011)

      Table  2.   Identification results of thiadiamondoids and diamondoidthiols (Wei et al., 2007, 2011)

      峰号 名称 缩写 分子式 分子量 峰号 名称 缩写 分子式 分子量
      1 2-硫代单金刚烷 TA C9H14S 154 39 “假”四金刚烷硫醇 "p"TeT C21H26S 310
      2 5-甲基-2-硫代单金刚烷 5-MTA C10H16S 168 40 硫代四金刚烷 TTe-1 C21H26S 310
      3 1-甲基-2-硫代单金刚烷 1-MTA C10H16S 168 41 硫代四金刚烷 TTe-2 C21H26S 310
      4 5, 7-二甲基-2-硫代单金刚烷 5, 7-DMTA C11H18S 182 42 硫代四金刚烷 TTe-3 C21H26S 310
      5 1, 5-二甲基-2-硫代单金刚烷 1, 5-DMTA C11H18S 182 43 四金刚烷硫醇 TeT-1 C22H28S 324
      6 1, 3-二甲基-2-硫代单金刚烷 1, 3-DMTA C11H18S 182 44 四金刚烷硫醇 TeT-2 C22H28S 324
      7 3, 5, 7-三甲基-2-硫代单金刚烷 3, 5, 7-TMTA C12H20S 196 45 甲基硫代四金刚烷 MTTe-1 C22H28S 324
      8 1, 5, 7-三甲基-2-硫代单金刚烷 1, 5, 7-TMTA C12H20S 196 46 甲基硫代四金刚烷 MTTe-2 C22H28S 324
      9 1, 3, 7-三甲基-2-硫代单金刚烷 1, 3, 7-TMTA C12H20S 196 47 甲基硫代四金刚烷 MTTe-3 C22H28S 324
      10 1, 3, 5-三甲基-2-硫代单金刚烷 1, 3, 5-TMTA C12H20S 196 48 甲基硫代四金刚烷 MTTe-4 C22H28S 324
      11 1, 3, 5, 7-四甲基-2-硫代单金刚烷 1, 3, 5, 7-TeMTA C13H22S 210 49 甲基硫代四金刚烷 MTTe-5 C22H28S 324
      12 四甲基-2-硫代单金刚烷 TeMTA-1 C13H22S 210 50 甲基硫代四金刚烷 MTTe-6 C22H28S 324
      13 四甲基-2-硫代单金刚烷 TeMTA-2 C13H22S 210 51 甲基硫代四金刚烷 MTTe-7 C22H28S 324
      14 四甲基-2-硫代单金刚烷 TeMTA-3 C13H22S 210 52 甲基硫代四金刚烷 MTTe-8 C22H28S 324
      15 四甲基-2-硫代单金刚烷 TeMTA-4 C13H22S 210 53 甲基四金刚烷硫醇 MTeT-1 C23H30S 338
      16 四甲基-2-硫代单金刚烷 TeMTA-5 C13H22S 210 54 甲基四金刚烷硫醇 MTeT-2 C23H30S 338
      17 五甲基-2-硫代单金刚烷 PMTA-1 C14H24S 224 55 二甲基硫代四金刚烷 DTTe-1 C23H30S 338
      18 五甲基-2-硫代单金刚烷 PMTA-2 C14H24S 224 56 二甲基硫代四金刚烷 DTTe-2 C23H30S 338
      19 五甲基-2-硫代单金刚烷 PMTA-3 C14H24S 224 57 二甲基硫代四金刚烷 DTTe-3 C23H30S 338
      20 五甲基-2-硫代单金刚烷 PMTA-4 C14H24S 224 58 二甲基-硫代四金刚烷 DTTe-4 C23H30S 338
      21 2-硫代双金刚烷 TD C13H18S 206 59 二甲基硫代四金刚烷 DTTe-5 C23H30S 338
      22 甲基-2-硫代双金刚烷 MTD-1 C14H20S 220 60 二甲基硫代四金刚烷 DTTe-6 C23H30S 338
      23 甲基-2-硫代双金刚烷 MTD-2 C14H20S 220 61 二甲基硫代四金刚烷 DTTe-7 C23H30S 338
      24 二甲基-2-硫代双金刚烷 DMTD-1 C15H22S 234 62 二甲基硫代四金刚烷 DTTe-8 C23H30S 338
      25 二甲基-2-硫代双金刚烷 DMTD-2 C15H22S 234 63 二甲基硫代四金刚烷 DTTe-9 C23H30S 338
      26 三甲基-2-硫代双金刚烷 TMTD-1 C16H24S 248 64 “假”五金刚烷硫醇 "p"PT C25H30S 362
      27 2-硫代三金刚烷 TT C17H22S 258 65 硫代五金刚烷 TP-1 C25H30S 362
      28 甲基-2-硫代三金刚烷 MTT-1 C18H24S 272 66 硫代五金刚烷 TP-2 C25H30S 362
      29 甲基-2-硫代三金刚烷 MTT-2 C18H24S 272 67 硫代五金刚烷 TP-3 C25H30S 362
      30 甲基-2-硫代三金刚烷 MTT-3 C18H24S 272 68 硫代五金刚烷 TP-4 C25H30S 362
      31 甲基-2-硫代三金刚烷 MTT-4 C18H24S 272 69 五金刚烷硫醇 PT-1 C26H32S 376
      32 二甲基-2-硫代三金刚烷 DMTT-1 C19H26S 286 70 五金刚烷硫醇 PT-2 C26H32S 376
      33 二甲基-2-硫代三金刚烷 DMTT-2 C19H26S 286 71 甲基硫代五金刚烷 MTP-1 C26H32S 376
      34 二甲基-2-硫代三金刚烷 DMTT-3 C19H26S 286 72 甲基硫代五金刚烷 MTP-2 C26H32S 376
      35 三甲基-2-硫代三金刚烷 TMTT-1 C20H28S 286 73 甲基硫代五金刚烷 MTP-3 C26H32S 376
      36 三甲基-2-硫代三金刚烷 TMTT-2 C20H28S 286 74 甲基硫代五金刚烷 MTP-4 C26H32S 376
      37 三甲基-2-硫代三金刚烷 TMTT-3 C20H28S 286 75 甲基五金刚烷硫醇 MPT-1 C27H34S 390
      38 二甲基-2-硫代三金刚烷 TMTT-4 C20H28S 286 76 甲基五金刚烷硫醇 MPT-2 C27H34S 390
      下载: 导出CSV

      表  3  原油硫代金刚烷及金刚烷硫醇积分参数表

      Table  3.   Integral parameter table of thiadiamondoids and diamondoidthiols in crude oil

      NO. Ion 化合物 中深1C 中深5 塔中83 中古8 中古5 塔中201C 中古172 中古22 中古113-1 中古43-9
      (area) (area) (area) (area) (area) (area) (area) (area) (area) (area)
      1 154 2-硫代单金刚烷 243 857 - 16 716 7 066 - 20 648 12 110 16 573 20 169 12 231
      2 168 5-甲基-2-硫代单金刚烷 4 514 996 32 213 134 092 104 273 - 143 933 74 038 161 813 378 204 122 711
      3 168 1-甲基-2-硫代单金刚烷 4 675 353 27 331 109 518 59 311 - 94 691 49 158 76 426 182 141 60 659
      4 182 5, 7-二甲基-2-硫代单金刚烷 10 110 254 35 624 110 170 81 644 - 88 633 41 274 94 565 269 689 85 680
      5 182 1, 5-二甲基-2-硫代单金刚烷 35 228 395 125 871 564 240 424 593 - 382 751 215 656 437 565 1 619 451 386 889
      6 182 1, 3-二甲基-2-硫代单金刚烷 9 989 832 27 488 86 876 46 883 - 83 051 36 890 58 012 121 968 46 893
      7 196 3, 5, 7-三甲基-2-硫代单金刚烷 20 474 110 50 550 197 272 143 109 - 131 075 65 107 159 057 376 595 134 418
      8 196 1, 5, 7-三甲基-2-硫代单金刚烷 19 484 271 50 616 243 557 165 941 - 121 916 80 238 152 078 616 166 141 033
      9 196 1, 3, 7-三甲基-2-硫代单金刚烷 8 012 258 24 015 92 335 93 204 1 369 100 925 35 256 79 251 266 947 73 562
      10 196 1, 3, 5-三甲基-2-硫代单金刚烷 5 827 428 32 106 75 938 71 804 1 647 67 114 30 228 67 190 195 097 63 016
      11 210 四甲基-2-硫代单金刚烷 5 135 990 14 904 61 267 41 231 - 29 504 19 077 44 526 92 817 39 352
      12 210 四甲基-2-硫代单金刚烷 3 489 581 15 854 36 408 33 656 1 321 28 560 13 078 32 581 80 671 30 029
      13 210 四甲基-2-硫代单金刚烷 3 911 511 11 858 25 484 24 848 533.4 25 663 9 911 22 262 66 375 20 805
      14 210 四甲基-2-硫代单金刚烷 3 235 356 19 687 48 236 37 186 540.6 30 138 16 761 36 904 94 617 36 236
      15 210 四甲基-2-硫代单金刚烷 1 261 136 7 557 15 627 16 118 541.54 14 979 5 428 14 788 39 774 14 584
      16 210 四甲基-2-硫代单金刚烷 3 969 194 11 379 31 093 26 174 - 23 922 11 772 23 300 60 211 22 639
      17 224 五甲基-2-硫代单金刚烷 714 991 - 12 158 8 704 - 5 992 4 345 7 686 16 610 7 628
      18 224 五甲基-2-硫代单金刚烷 913 661 - 7 508 7 336 - 6 079 2 887 6 161 15 394 6 061
      19 224 五甲基-2-硫代单金刚烷 2 028 952 - 14 159 11 186 - 9 010 4 436 9 689 19 513 9 416
      20 224 五甲基-2-硫代单金刚烷 547 207 - 5 457 4 517 - 4 035 1 637 3 853 9 381 4 137
      21 206 2-硫代双金刚烷 49 625 678 197 410 109 590 13 212 - 40 448 19 129 16 869 52 577 25 589
      22 220 甲基-2-硫代双金刚烷 39 979 896 114 424 67 191 21 339 - 31 727 17 012 16 864 70 847 26 893
      23 220 甲基-2-硫代双金刚烷 26 877 375 101 713 38 197 11 670 - 23 867 9 574 8 180 27 998 11 269
      24 234 二甲基-2-硫代双金刚烷 21 462 333 60 336 37 494 15 144 - 27 740 11 903 10 865 40 242 16 288
      25 234 二甲基-2-硫代双金刚烷 21 703 493 38 336 30 546 15 739 - 31 631 11 618 10 682 32 527 17 044
      26 248 三甲基-2-硫代双金刚烷 7 452 861 10 980 10 387 7 691 - 13 312 5 796 4 054 12 354 6 839
      27 258 2-硫代三金刚烷 12 515 209 59 855 26 527 1 612 - 4 881 4 172 2 158 9 948 6 036
      28 272 甲基-2-硫代三金刚烷 4 764 763 14 911 4 483 796.01 - 2 056 1 141 - 4 304 2 428
      29 272 甲基-2-硫代三金刚烷 5 462 785 20 511 8 998 1 857 - 2 401 1 806 - 8 482 3 054
      30 272 甲基-2-硫代三金刚烷 1 945 102 7 892 5 533 1 077 - 1 463 1 009 582.14 2 642 1 565
      31 272 甲基-2-硫代三金刚烷 4 534 511 20 374 7 947 1 629 - 2 017 2 164 1 128 6 158 3 677
      32 286 二甲基-2-硫代三金刚烷 1 924 090 - 2 760 - - 1 114 861.1 - 1 750 2 856
      33 286 二甲基-2-硫代三金刚烷 2 182 561 - 3 713 1 003 - 1 375 998.94 - 6 025 2 431
      34 286 二甲基-2-硫代三金刚烷 1 605 675 - 2 338 - - 1 518 909.61 - 2 116 1 288
      35 300 二甲基-2-硫代三金刚烷 1 614 194 - - - - - - - - -
      36 300 二甲基-2-硫代三金刚烷 880 284 - - - - - - - - -
      37 300 二甲基-2-硫代三金刚烷 703 787 - - - - - - - - -
      Sum 352 065 092 1 133 795 2 243 815 1 501 553.01 5 952.54 1 598 169 817 380.65 1 575 662.14 4 819 760 1 445 236
      注:“-”表示数据不存在.
      下载: 导出CSV
    • Birch, S. F., Cullum, T. V., Dean, R. A., et al., 1952. Thiaadamantane. Nature, 170(4328): 629-630. https://doi.org/10.1038/170629b0
      Cai, C. F., Amrani, A., Worden, R. H., et al., 2016a. Sulfur Isotopic Compositions of Individual Organosulfur Compounds and Their Genetic Links in the Lower Paleozoic Petroleum Pools of the Tarim Basin, NW China. Geochimica et Cosmochimica Acta, 182: 88-108. https://doi.org/10.1016/j.gca.2016.02.036
      Cai, C. F., Xiao, Q. L., Fang, C. C., et al., 2016b. The Effect of Thermochemical Sulfate Reduction on Formation and Isomerization of Thiadiamondoids and Diamondoids in the Lower Paleozoic Petroleum Pools of the Tarim Basin, NW China. Organic Geochemistry, 101: 49-62. https://doi.org/10.1016/j.orggeochem.2016.08.006
      Chen, Z. H., Zhang, P., Chai, Z., et al., 2020. Identication and Geochemical Application in Crude Oil. Journal of Earth Sciences and Environment, 42(2): 143-158 (in Chinese with English abstract).
      Clark, T., Knox, T. M., McKervey, M. A., et al., 1979. Thermochemistry of Bridged-Ring Substances. Enthalpies of Formation of some Diamondoid Hydrocarbons and of Perhydroquinacene. Comparisons with Data from Empirical Force Field Calculations. Journal of the American Chemical Society, 101(9): 2404-2410. https://doi.org/10.1021/ja00503a028
      Dahl, J. E., Moldowan, J. M., Peters, K. E., et al., 1999. Diamondoid Hydrocarbons as Indicators of Natural Oil Cracking. Nature, 399(6731): 54-57. https://doi.org/10.1038/19953
      Fang, C. C., Zhai, J., Hu, G. Y., et al., 2021. A Simultaneous Determination Method for Diamondoids and Thiadiamondoids in Condensate Oil and Its Geological Significance. Petroleum Geology & Experiment, 43(5): 906-914 (in Chinese with English abstract).
      Gordadze, G. N., 2008. Geochemistry of Cage Hydrocarbons. Petroleum Chemistry, 48(4): 241-253. https://doi.org/10.1134/S0965544108040014
      Gvirtzman, Z., Said-Ahmad, W., Ellis, G. S., et al., 2015. Compound-Specific Sulfur Isotope Analysis of Thiadiamondoids of Oils from the Smackover Formation, USA. Geochimica et Cosmochimica Acta, 167: 144-161. https://doi.org/10.1016/j.gca.2015.07.008
      Jiang, N. H., Zhu, G. Y., Zhang, S. C., et al., 2008. Detection of 2-thiaadamantanes in the Oil from Well TZ-83 in Tarim Basin and Its Geological implication. Chinese Science Bulletin, 53(3): 396-401 (in Chinese). doi: 10.1007/s11434-008-0099-6
      Li, S. M., Amrani, A., Pang, X. Q., et al., 2015. Origin and Quantitative Source Assessment of Deep Oils in the Tazhong Uplift, Tarim Basin. Organic Geochemistry, 78: 1-22. https://doi.org/10.1016/j.orggeochem.2014.10.004
      Li, K. K., Cai, C. F., Cai, L., et al., 2021. Origin of Sulfides in the Middle and Lower Ordovician Carbonates in Tahe Oilfield, Tarim Basin. Acta Petrologica Sinica, 28(3): 806-814 (in Chinese with English abstract).
      Li, X. Q., Ding, H. K., Peng, P., et al., 2021. Provenance of Silurian Kepingtage Formation in Tazhong Area, Tarim Basin: Evidence from Detrital Zircon U-Pb Geochronology. Earth Science, 46(8): 2819-2831 (in Chinese with English abstract).
      Machel, H. G., 2001. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings: Old and New Insights. Sedimentary Geology, 140(1/2): 143-175. https://doi.org/10.1016/S0037-0738(0)00176-7
      Ma, A. L., Jin, Z. J., Zhu, C. S., et al., 2018a. Detection and Significance of Higher Thiadiamondoids and Diamondoidthiols in Oil from the Zhongshen 1C Well of the Tarim Basin, NW China. Science China Earth Sciences, 61(10): 1440-1450. https://doi.org/10.1007/s11430-017-9244-7
      Ma, A., Zhu, C. S., Gu, Y., et al., 2018b. Concentrations Analysis of Lower Thiadiamondoids of Cambrian Oil from Well Zhongshen 1C of Tazhong Uplift, Tarim Basin, NW China. Natural Gas Geoscience, 29(7): 1009-1019 (in Chinese with English abstract).
      Ma, A., Jin, Z. J., Zhu, C. S., et al., 2018c. Detection and Significance of Higher Thiadiamondoids and Diamondoidthiols in Oil from the Zhongshen 1C Well of the Tarim Basin, NW China. Science China Earth Sciences, 61: 1440-1450 (in Chinese). doi: 10.1007/s11430-017-9244-7
      Ma, A., Jin, Z. J., Zhu, C. S., et al., 2018d. Effect of TSR on the Crude Oil in Ordovician Reservoirs of Well Luosi-2 from Maigaiti Slope, Tarim Basin: Evidences from Molecular Markers. Oil & Gas Geology, 39(4): 730-737(in Chinese with English abstract).
      Wei, Z. B., 2006. Molecular Organic Geochemistry of Cage Compounds and Biomarkers in the Geosphere: a Novel Approach to Understand Petroleum Evolution and Alteration(Dissertation). Stanford University, California, 274-309.
      Wei, Z. B., Moldowan, J. M., Fago, F., et al., 2007. Origins of Thiadiamondoids and Diamondoidthiols in Petroleum. Energy & Fuels, 21(6): 3431-3436. https://doi.org/10.1021/ef7003333
      Wei, Z. B., Mankiewicz, P., Walters, C., et al., 2011. Natural Occurrence of Higher Thiadiamondoids and Diamondoidthiols in a Deep Petroleum Reservoir in the Mobile Bay Gas Field. Organic Geochemistry, 42(2): 121-133. https://doi.org/10.1016/j.orggeochem.2010.12.002
      Wei, Z. B., Walters, C. C., Michael Moldowan, J., et al., 2012. Thiadiamondoids as Proxies for the Extent of Thermochemical Sulfate Reduction. Organic Geochemistry, 44: 53-70. https://doi.org/10.1016/j.orggeochem.2011.11.008
      Yuan, Y. Y., Wang, T. K., Cai, C. F. et al., 2020. Relationships between Sulfur-Containing Conpound Types in Crude Oil and Causes of Thermochemical Sulphate Reduction in Tazhong Area. Journal of Southwest Petroleum University(Science & Technology Edition), 42(2): 48-60(in Chinese with English abstract).
      Zhang, Z. Y., Zhang, Y. J., Zhu, G. Y., et al., 2019. Impacts of Thermochemical Sulfate Reduction, Oil Cracking, and Gas Mixing on the Petroleum Fluid Phase in the Tazhong Area, Tarim Basin, China. Energy & Fuels, 33(2): 968-978. https://doi.org/10.1021/acs.energyfuels.8b03931
      Zhu, G. Y., Huang, H. P., Wang, H. T., 2015. Geochemical Significance of Discovery in Cambrian Reservoirs at Well ZS1 of the Tarim Basin, Northwest China. Energy & Fuels, 29(3): 1332-1344. https://doi.org/10.1021/ef502345n
      Zhu, G. Y., Wang, H. T., Weng, N., 2016. TSR-Altered Oil with High-Abundance Thiaadamantanes of a Deep-Buried Cambrian Gas Condensate Reservoir in Tarim Basin. Marine and Petroleum Geology, 69: 1-12. https://doi.org/10.1016/j.marpetgeo.2015.10.007
      Zhu, G. Y., Wang, M., Zhang, Y., et al., 2018a. Low-Molecular-Weight Organic Polysulfanes in Petroleum. Energy & Fuels, 32(6): 6770-6773. https://doi.org/10.1021/acs.energyfuels.8b01292
      Zhu, G. Y., Zhang, Y., Wang, M., et al., 2018b. Discovery of High-Abundance Diamondoids and Thiadiamondoids and Severe TSR Alteration of Well ZS1C Condensate, Tarim Basin, China. Energy & Fuels, 32(7): 7383-7392. https://doi.org/10.1021/acs.energyfuels.8b00908
      Zhu, G. Y., Zhang, Y., Zhang, Z. Y., et al., 2018c. High Abundance of Alkylated Diamondoids, Thiadiamondoids and Thioaromatics in Recently Discovered Sulfur-Rich LS2 Condensate in the Tarim Basin. Organic Geochemistry, 123: 136-143. https://doi.org/10.1016/j.orggeochem.2018.07.003
      Zhu, G. Y., Wang, P., Wang, M., et al., 2019a. Occurrence and Origins of Thiols in Deep Strata Crude Oils, Tarim Basin, China. ACS Earth and Space Chemistry, 3(11): 2499-2509. https://doi.org/10.1021/acsearthspacechem.9b00070
      Zhu, G. Y., Zhang, Y., Zhou, X. X., et al., 2019b. TSR, Deep Oil Cracking and Exploration Potential in the Hetianhe Gas Field, Tarim Basin, China. Fuel, 236: 1078-1092. https://doi.org/10.1016/j.fuel.2018.08.119
      Zhu, G. Y., Zhang, Z. Y., Milkov, A. V., et al., 2019c. Diamondoids as Tracers of Late Gas Charge in Oil Reservoirs: Example from the Tazhong Area, Tarim Basin, China. Fuel, 253: 998-1017. https://doi.org/10.1016/j.fuel.2019.05.030
      Zhu, G. Y., Zhang, Z. Y., Zhou, X. X., et al., 2019d. The Complexity, Secondary Geochemical Process, Genetic Mechanism and Distribution Prediction of Deep Marine Oil and Gas in the Tarim Basin, China. Earth-Science Reviews, 198: 102930. https://doi.org/10.1016/j.earscirev.2019.102930
      Zhu, G. Y., Li, J. F., Zhang, Z. Y., 2021. Origin of Deep Oil and Gas Phase State Diversity and Evaluation of Secondary Geochemical Intensity: A Case Study of Marine Oil and Gas in Tarim Basin. Earth Science, 1-17. (2021-11-09). https://kns.cnkiet/kcms/detail/42.1874.P.20211108.1622.004.html(in Chinese with English abstract).
      陈中红, 张平, 柴智, 等, 2020. 原油中硫代金刚烷的分析鉴定和地球化学应用. 地球科学与环境学报, 42 (2): 143-158. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202002002.htm
      房忱琛, 翟佳, 胡国艺, 等, 2021. 凝析油中金刚烷类和硫代金刚烷类化合物同步检测方法及地质意义——以塔里木盆地塔中地区凝析油为例. 石油实验地质, 43 (5): 906-914. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202105021.htm
      姜乃煌, 朱光有, 张水昌, 等, 2007. 塔里木盆地塔中83井原油中检测出2-硫代金刚烷及其地质意义. 科学通报, 52 (24): 2871-2875. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200724010.htm
      李开开, 蔡春芳, 蔡镏璐, 等, 2012. 塔河地区中下奥陶统储层硫化物成因分析. 岩石学报, 28 (3): 806-814. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203010.htm
      李祥权, 丁洪坤, 彭鹏, 等, 2021. 塔里木盆地塔中志留系柯坪塔格组物源示踪: 碎屑锆石U-Pb年代学证据. 地球科学, 46 (8): 2819-2831. doi: 10.3799/dqkx.2020.197
      马安来, 朱翠山, 顾忆, 等, 2018b. 塔中地区中深1C井寒武系原油低聚硫代金刚烷含量分析. 天然气地球科学, 188 (7): 93-103. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201807011.htm
      马安来, 金之钧, 朱翠山, 等, 2018c. 塔里木盆地中深1C井原油高聚硫代金刚烷及金刚烷硫醇的检出及意义. 中国科学: 地球科学, 48: 1312-1323. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201810004.htm
      马安来, 金之钧, 朱翠山, 等, 2018d. 塔里木盆地麦盖提斜坡罗斯2井奥陶系油气藏的TSR作用: 来自分子标志物的证据. 石油与天然气地质, 39 (0): 730-737, 748. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201804011.htm
      袁余洋, 汪天凯, 蔡春芳, 等, 2020. 塔中地区原油含硫化合物类型与TSR成因关系. 西南石油大学学报(自然科学版), 42 (2): 48-60. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202002005.htm
      朱光有, 李婧菲; 张志遥, 2021. 深层油气相态多样性成因与次生地球化学作用强度评价——以塔里木盆地海相油气为例. 地球科学, https://kns.cnkiet/kcms/detail/42.1874.P.20211108.1622.004.html
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  607
    • HTML全文浏览量:  809
    • PDF下载量:  71
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-01
    • 刊出日期:  2023-02-25

    目录

      /

      返回文章
      返回