• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    川东北通南巴背斜中新生代构造变形的砂箱构造物理模拟

    马德龙 王宏斌 张希晨 何登发 凡睿 王彦君 黄林军 崔键 刘文强 杨秀磊

    马德龙, 王宏斌, 张希晨, 何登发, 凡睿, 王彦君, 黄林军, 崔键, 刘文强, 杨秀磊, 2023. 川东北通南巴背斜中新生代构造变形的砂箱构造物理模拟. 地球科学, 48(4): 1307-1320. doi: 10.3799/dqkx.2022.423
    引用本文: 马德龙, 王宏斌, 张希晨, 何登发, 凡睿, 王彦君, 黄林军, 崔键, 刘文强, 杨秀磊, 2023. 川东北通南巴背斜中新生代构造变形的砂箱构造物理模拟. 地球科学, 48(4): 1307-1320. doi: 10.3799/dqkx.2022.423
    Ma Delong, Wang Hongbin, Zhang Xichen, He Dengfa, Fan Rui, Wang Yanjun, Huang Linjun, Cui Jian, Liu Wenqiang, Yang Xiulei, 2023. Analogue Modeling of Structural Deformation of Tongnanba Anticline in Mesozoic and Cenozoic, NE Sichuan Basin. Earth Science, 48(4): 1307-1320. doi: 10.3799/dqkx.2022.423
    Citation: Ma Delong, Wang Hongbin, Zhang Xichen, He Dengfa, Fan Rui, Wang Yanjun, Huang Linjun, Cui Jian, Liu Wenqiang, Yang Xiulei, 2023. Analogue Modeling of Structural Deformation of Tongnanba Anticline in Mesozoic and Cenozoic, NE Sichuan Basin. Earth Science, 48(4): 1307-1320. doi: 10.3799/dqkx.2022.423

    川东北通南巴背斜中新生代构造变形的砂箱构造物理模拟

    doi: 10.3799/dqkx.2022.423
    基金项目: 

    中石油“十四五”前瞻性基础性重大科技项目 2021DJ0201

    中石油“十四五”前瞻性基础性重大科技项目 2021DJ0301

    详细信息
      作者简介:

      马德龙(1988-),男,博士,高级工程师,主要从事构造地质与石油地质研究.ORCID:0000-0002-5669-369X. E-mail:zhenmadelong@126.com

    • 中图分类号: P548

    Analogue Modeling of Structural Deformation of Tongnanba Anticline in Mesozoic and Cenozoic, NE Sichuan Basin

    • 摘要: 通南巴背斜位于四川盆地东北部,紧邻北部米仓山和东北部大巴山两大造山带,开展通南巴背斜与不同造山带、川东北先存古隆起的时空耦合关系物理模拟研究,对于约束周缘造山带的构造变形时间和区域构造变形时序具有重要的科学意义,同时对川东北油气勘探也有指导作用.初始模型中,设计了北部推板和东北部推板分别代表米仓山和大巴山造山带的活动;下部硅胶层和上部石英砂层分别代表三叠系底部膏盐岩和上覆砂岩为主的碎屑岩;随着油气勘探的深入,川东北古生代隆起被逐渐接受,在模型底部用橡皮泥预制条带状构造代表古隆起.实验结果表明,北部推板挤压过程形成的速度场快速传递到橡皮泥(代表先存古隆起)之上的石英砂中,形成北东向的褶皱和断裂;东北部推板挤压过程形成的弧形构造带呈北西向展布,叠加在早期北东向构造上.通过梳理周缘造山带的隆升历史,并结合本次模拟实验结果,认为燕山期米仓山构造活动与古生代北东向隆起共同控制通南巴早期北东向构造的形成,燕山晚期和喜山期大巴山活动形成一系列北西向构造叠加在通南巴早期北东向构造之上,控制通南巴背斜须家河组北东向和北西向两组断裂-裂缝系统的形成.

       

    • 图  1  川东北及周缘地质简图(据李智武,2006文竹等,2013修改)

      Fig.  1.  Geological map of NE Sichuan basin and surrounding areas (modified after Li et al., 2006; Wen et al., 2013)

      图  2  川东北地层综合柱状图(据李岩峰,2005陈龙博,2015修改)

      Fig.  2.  Stratigraphic column of NE Sichuan basin (modified after Li, 2005; Chen, 2015)

      图  3  川东北地区北西向构造大剖面(a)和通南巴背斜北东向地质结构大剖面(b)(据陈龙博,2015修改)

      剖面位置见图 1

      Fig.  3.  Section A-A' (a) and B-B' (b) in NE Sichuan basin (modified after Chen, 2015)

      图  4  Schulze RST-XS.s环形剪切仪(a)和松散颗粒材料测试结果(b)

      Fig.  4.  The apparatus of Ring Shear Tester Schulze RST-XS.s (a); the test data of selected granular material derived from Schulze RST-XS.s (b)

      图  5  实验模型平面图(a)和实验模型剖面图(b)

      Fig.  5.  Top view of the model set up (a); the cross section of the model set up (b)

      图  6  构造物理模拟实验过程顶面照片

      a.初始模型;b.北部缩短2 cm;c.北部缩短5 cm;d.北部缩短6 cm,东北部缩短1 cm;e.东北部缩短4 cm;f.东北部缩短6 cm

      Fig.  6.  The top views of model results

      图  7  构造物理模拟实验过程顶面速度场

      a.初始模型;b.北部缩短2 cm;c.北部缩短5 cm;d.北部缩短6 cm,东北部缩短1 cm;e.东北部缩短4 cm;f.东北部缩短6 cm

      Fig.  7.  The velocity fields of model results

      图  8  构造物理模拟实验过程顶面照片构造解译

      a.初始模型;b.北部缩短2 cm;c.北部缩短5 cm;d.北部缩短6 cm,东北部缩短1 cm;e.东北部缩短4 cm;f.东北部缩短6 cm

      Fig.  8.  The structural interpretation of model results

      图  9  主要断层长度随时间变化

      Fig.  9.  The length of main faults during shortening in the model

      图  10  通南巴背斜及周缘三叠系断裂分布(据刘昭茜等,2019修改)

      Fig.  10.  The distribution of faults in the Triassic, NE Sichuan basin (modified afterLiu et al., 2019)

      图  11  物理模拟实验结果所揭示的川东北三叠系断裂系统

      Fig.  11.  The fault distribution in the model

      图  12  M3须家河组井成像测井及岩心(a);M2井须家河组裂缝玫瑰花图及柱状图(b);M3井须家河组裂缝玫瑰花图及柱状图(c)

      Fig.  12.  The imaging log and rock samples of Triassic Xujiahe Formation in well M3 (a); the trend-rose diagram and histogram of fractures of Triassic Xujiahe Formation in well M2 (b); the trend-rose diagram and histogram of fractures of Triassic Xujiahe Formation in well M2 (c)

      表  1  实验材料物理参数及模型相似比

      Table  1.   Analogue material properties and scaling ratios of the model

      类别 l(m) g(m·s-2) ρ1 (kg·m-3) ρ2 (kg·m-3) μ(Pa·s) α(Pa) ε(s-1)
      模型 1.0×10-2 9.8 1 300 987 1.2×104 α*=ρ* g* l* ε*=α*/μ*
      自然界 5.0×103 9.8 2 400 2 200 1.0×1019
      模型/自然界 2.0×10-6 1.0 0.54 0.45 1.2×10-15 1.08×10-6 8.3×108
      注:l.长度;g.重力加速度;ρ1.脆性材料的密度;ρ2.塑性材料的密度;μ.黏度;α.应力;ε.应变速率;*.该参数实验模型与自然界的比值
      下载: 导出CSV
    • Cao, H. Y., Wang, W., Liu, M., 2018. Characteristics of Fractures in Xujiahe Formation of Tongnanba Structural Belt, Northeastern Sichuan Basin. Xinjiang Petroleum Geology, 39(4): 424-429(in Chinese with English abstract).
      Chang, Y., Xu, C. H., Reiners, P., et al., 2010. The Exhumation Evolution of the Micang Shan-Hannan Uplift since Cretaceous: Evidence from Apatite (U-Th)/He Dating. Chinese Journal of Geophysics, 53(4): 912-919(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2010.04.016
      Chen, L. B., 2015. Structural Geometric, Kinematic Features and Three-Dimentional Restoration of Tongnanba Anticline(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Chen, L. B., He, D. F., Wang, B., et al., 2017. Dating the Tectonic Deformation since the Middle Triassic for the Tongnanba Anticline in the Northeastern Sichuan Basin and Its Geological Implications. Geotectonica et Metallogenia, 41(3): 433-445(in Chinese with English abstract).
      Cheng, W. Q., Yang, K. G., 2009. Structural Evolution of Dabashan Mountain: Evidence from ESR Dating. Earth Science Frontiers, 16(3): 197-206(in Chinese with English abstract).
      Cui, J., Jia, D., Yin, H. W., et al., 2020. The Influence of a Weak Upper Ductile Detachment on the Longmen Shan Fold-and-Thrust Belt (Eastern Margin of the Tibetan Plateau): Insights from Sandbox Experiments. Journal of Asian Earth Sciences, 198: 104220. https://doi.org/10.1016/j.jseaes.2019.104220
      Fan, H. D., 2018. Tectonic Evolution and Formation Mechanism of Paleo-Uplift in the Northeastern Sichuan Basin(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      He, D. F., Li, D. S., Zhang, G. W., et al., 2011. Formation and Evolution of Multi-Cycle Superposed Sichuan Basin, China. Chinese Journal of Geology (Scientia Geologica Sinica), 46(3): 589-606(in Chinese with English abstract).
      Hu, D., Shen, C. B., Liu, Z. Y., 2016. Basin Modeling and Thermochronological Constrains on the Burial and Denudational History of the Northeast Sichuan Basin. Geotectonica et Metallogenia, 40(6): 1145-1153(in Chinese with English abstract).
      Huang, R. C., Liu, R. B., Liu, M., et al., 2021. Characteristics and Genesis of Fault-Fracture Reservoirs in the Xujiahe Formation, Tongjiang-Malubei Area, Northeastern Sichuan Basin. Oil & Gas Geology, 42(4): 873-883(in Chinese with English abstract).
      Jiang, Y. L., Li, M. Y., Wang, L. J., et al., 2020. Characteristics and Controlling Factors of Tight Sandstone Reservoir Fractures of the Xujiahe Formation in the Bazhong-Tongnanba Area, Northeast Sichuan. Acta Geologica Sinica, 94(5): 1525-1537(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.05.012
      Lei, Y. L., Jia, C. Z., Li, B. L., et al., 2012. Meso-Cenozoic Tectonic Events Recorded by Apatite Fission Track in the Northern Longmen-Micang Mountains Region. Acta Geologica Sinica, 86(1): 153-165. https://doi.org/10.1111/j.1755-6724.2012.00618.x
      Li, L. S., Wang, Z. C., Xiao, A. C., et al., 2021. Rift System in Northern Yangtze Block during Nanhua Period: Implications from Gravity Anomaly and Sedimentology. Earth Science, 46(10): 3496-3508(in Chinese with English abstract).
      Li, Y. F., 2005. Mesozoic-Cenozoic Superimposed Orogeny and Foreland Deformation in the Northeastern Sichuan Basin(Dissertation). Institute of Geology, China Earthquake Administration, Beijing(in Chinese with English abstract).
      Li, Y. F., Qu, G. S., Liu, S., et al., 2008. Structural Characters and Mechanism in the Micang Shan and Southern Daba Shan Mountains Front. Geotectonica et Metallogenia, 32(3): 285-292(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2008.03.004
      Li, Z. W., 2006. Meso-Cenozoic Evolution of Dabashan Foreland Basin-Thrust Belt, Central China(Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      Li, Z. W., Ran, B., Xiao, B., et al., 2019. Sinian to Early Cambrian Uplift-Depression Framework along the Northern Margin of the Sichuan Basin, Central China and Its Implications for Hydrocarbon Exploration. Earth Science Frontiers, 26(1): 59-85(in Chinese with English abstract).
      Liu, Z. Q., Luo, K. P., Tang, Y., et al., 2019. Critical Tectonic Periods and the Response of Gas Accumulation in Non-Marine Tight Sandstone Reservoir in Yuanba-Tongnanba Area, Sichuan Basin. Earth Science, 44(3): 756-772(in Chinese with English abstract).
      Shen, C. B., Mei, L. F., Tang, J. G., et al., 2008. Geochronology Evidences for Tectonic Deformation of Dabashan Fold-Thrust Belt in Central China. Atomic Energy Science and Technology, 42(6): 574-576(in Chinese with English abstract).
      Shen, C. B., Mei, L. F., Xu, Z. P., et al., 2007. Fission Track Thermochronology Evidence for Mesozoic-Cenozoic Uplifting of Daba Mountain, Central China. Acta Petrologica Sinica, 23(11): 2901-2910(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.11.020
      Shen, Z. Y., Xiao, A. C., Wang, L., et al., 2010. Unconformity in the Lower Triassic of Micangshan Area, Northern Sichuan Province: Its Discovery and Significance. Acta Petrologica Sinica, 26(4): 1313-1321(in Chinese with English abstract).
      Su, N., Yang, W., Yuan, B. G., et al., 2021. Structural Features and Deformation Mechanism of Transtensional Faults in Himalayan Period, Sichuan Basin. Earth Science, 46(7): 2362-2378(in Chinese with English abstract).
      Tian, Y. T., Kohn, B. P., Zhu, C. Q., et al., 2012. Post-Orogenic Evolution of the Mesozoic Micang Shan Foreland Basin System, Central China. Basin Research, 24(1): 70-90. https://doi.org/10.1111/j.1365-2117.2011.00516.x
      Wang, Q., Zhang, P. Z., Freymueller, J. T., et al., 2001. Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements. Science, 294(5542): 574-577. https://doi.org/10.1126/science.1063647
      Wen, Z., He, D. F., Fan, C., et al., 2013. Analysis of the Multi-Detachment Structure in Micangshan Thrust Belt, Northern Sichuan Basin. Xinjiang Petroleum Geology, 34(3): 282-286(in Chinese with English abstract).
      Wu, L., Qian, J. F., Xiao, A. C., et al., 2011. Structural Analysis of the Micang Shan Basement-Involved Thrust Belt in the Western Edge of the Yangtze Block. Acta Petrologica Sinica, 27(3): 681-688(in Chinese with English abstract).
      Xie, J. Q., Zhang, G. W., Guo, X. F., et al., 2014. Magnetic Fabrics in Jingzhuba-Shiwo Section of Foreland Fold Belt of the South Dabashan: Constraints on Its Tectonic Evolution. Chinese Journal of Geophysics, 57(4): 1141-1154(in Chinese with English abstract).
      Xu, C. H., Zhou, Z. Y., Chang, Y., et al., 2010. Relationship between the Formation of Dabashan Arc Structural Belt and the Uplift on Both Sides: Constraints of FT and (U-Th)/He Low-Temperature Thermal Age. Scientia Sinica (Terrae), 40(12): 1684-1696 (in Chinese). doi: 10.1360/zd2010-40-12-1684
      Yang, S., Wang, W., Zhang, L., et al., 2020. Control Factors and Distribution of Chlorite-Cemented Facies in the Xujiahe Sandstone, Yuanba and Tongnanba Area. Earth Science, 45(2): 479-488(in Chinese with English abstract).
      Yang, Y. M., Wen, L., Luo, B., et al., 2016. Sedimentary Tectonic Evolution and Reservoir-Forming Conditions of the Dazhou–Kaijiang Paleo-Uplift, Sichuan Basin. Natural Gas Industry, 36(8): 1-10(in Chinese with English abstract).
      Yang, Z., Ratschbacher, L., Jonckheere, R., et al., 2013. Late-Stage Foreland Growth of China's Largest Orogens (Qinling, Tibet): Evidence from the Hannan-Micang Crystalline Massifs and the Northern Sichuan Basin, Central China. Lithosphere, 5(4): 420-437. https://doi.org/10.1130/l260.1
      Zhao, W. Z., Wei, G. Q., Yang, W., et al., 2017. Discovery of Wanyuan-Dazhou Intracratonic Rift and Its Exploration Significance in the Sichuan Basin, SW China. Petroleum Exploration and Development, 44(5): 659-669(in Chinese with English abstract).
      曹环宇, 王威, 刘明, 2018. 川东北通南巴构造带须家河组裂缝特征. 新疆石油地质, 39(4): 424-429. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201804007.htm
      常远, 许长海, Reiners, W. P., 等, 2010. 米仓山-汉南隆起白垩纪以来的剥露作用: 磷灰石(U-Th)/He年龄记录. 地球物理学报, 53(4): 912-919. doi: 10.3969/j.issn.0001-5733.2010.04.016
      陈龙博, 2015. 通南巴背斜构造几何学、运动学特征及三维构造复原(硕士学位论文). 北京: 中国地质大学.
      陈龙博, 何登发, 王贝, 等, 2017. 川东北地区通南巴背斜中三叠世以来构造变形时间厘定及其地质意义. 大地构造与成矿学, 41(3): 433-445. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201703001.htm
      程万强, 杨坤光, 2009. 大巴山构造演化的石英ESR年代学研究. 地学前缘, 16(3): 197-206. doi: 10.3321/j.issn:1005-2321.2009.03.016
      范慧达, 2018. 四川盆地东北部古隆起的构造演化与成因机制(硕士学位论文). 北京: 中国地质大学.
      何登发, 李德生, 张国伟, 等, 2011. 四川多旋回叠合盆地的形成与演化. 地质科学, 46(3): 589-606. doi: 10.3969/j.issn.0563-5020.2011.03.001
      胡迪, 沈传波, 刘泽阳, 2016. 川东北地区埋藏-剥露历史分析: 来自盆地模拟和热年代的制约. 大地构造与成矿学, 40(6): 1145-1153. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201606004.htm
      黄仁春, 刘若冰, 刘明, 等, 2021. 川东北通江-马路背地区须家河组断缝体储层特征及成因. 石油与天然气地质, 42(4): 873-883. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202104010.htm
      蒋有录, 李明阳, 王良军, 等, 2020. 川东北巴中-通南巴地区须家河组致密砂岩储层裂缝发育特征及控制因素. 地质学报, 94(5): 1525-1537. doi: 10.3969/j.issn.0001-5717.2020.05.012
      李路顺, 汪泽成, 肖安成, 等, 2021. 扬子北缘南华纪裂谷系统: 基于重力异常及沉积学证据. 地球科学, 46(10): 3496-3508. doi: 10.3799/dqkx.2020.395
      李岩峰, 2005. 四川盆地东北部中-新生代造山与前陆变形构造叠合关系研究(博士学位论文). 北京: 中国地震局地质研究所.
      李岩峰, 曲国胜, 刘殊, 等, 2008. 米仓山、南大巴山前缘构造特征及其形成机制. 大地构造与成矿学, 32(3): 285-292. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200803005.htm
      李智武, 2006. 中-新生代大巴山前陆盆地-冲断带的形成演化(博士学位论文). 成都: 成都理工大学.
      李智武, 冉波, 肖斌, 等, 2019. 四川盆地北缘震旦纪-早寒武世隆-坳格局及其油气勘探意义. 地学前缘, 26(1): 59-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901008.htm
      刘昭茜, 罗开平, 唐永, 等, 2019. 四川盆地元坝-通南巴地区关键构造期构造特征及陆相致密砂岩天然气成藏响应. 地球科学, 44(3): 756-772. doi: 10.3799/dqkx.2019.032
      沈传波, 梅廉夫, 汤济广, 等, 2008. 大巴山逆冲推覆带构造扩展变形的年代学制约. 原子能科学技术, 42(6): 574-576. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS200806024.htm
      沈传波, 梅廉夫, 徐振平, 等, 2007. 大巴山中-新生代隆升的裂变径迹证据. 岩石学报, 23(11): 2901-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200711021.htm
      沈中延, 肖安成, 王亮, 等, 2010. 四川北部米仓山地区下三叠统内部不整合面的发现及其意义. 岩石学报, 26(4): 1313-1321. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004026.htm
      苏楠, 杨威, 苑保国, 等, 2021. 四川盆地喜马拉雅期张扭性断裂构造特征及形成机制. 地球科学, 46(7): 2362-2378. doi: 10.3799/dqkx.2020.202
      文竹, 何登发, 樊春, 等, 2013. 四川盆地北部米仓山冲断带多层滑脱系统构造分析. 新疆石油地质, 34(3): 282-286. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201303012.htm
      吴磊, 钱俊锋, 肖安成, 等, 2011. 扬子地块西侧米仓山基底卷入式冲断带的结构分析. 岩石学报, 27(3): 681-688. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201103009.htm
      谢晋强, 张国伟, 郭秀峰, 等, 2014. 南大巴山前陆褶皱带荆竹坝: 石窝剖面磁组构特征及其对构造演化的制约. 地球物理学报, 57(4): 1141-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201404012.htm
      许长海, 周祖翼, 常远, 等, 2010. 大巴山弧形构造带形成与两侧隆起的关系: FT和(U-Th)/He低温热年代约束. 中国科学: 地球科学, 40(12): 1684-1696. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201012006.htm
      杨烁, 王威, 张莉, 等, 2020. 元坝-通南巴地区须家河组绿泥石膜胶结相砂岩发育控制因素与分布规律. 地球科学, 45(2): 479-488. doi: 10.3799/dqkx.2019.011
      杨跃明, 文龙, 罗冰, 等, 2016. 四川盆地达州-开江古隆起沉积构造演化及油气成藏条件分析. 天然气工业, 36(8): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201608002.htm
      赵文智, 魏国齐, 杨威, 等, 2017. 四川盆地万源-达州克拉通内裂陷的发现及勘探意义. 石油勘探与开发, 44(5): 659-669. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705002.htm
    • 加载中
    图(12) / 表(1)
    计量
    • 文章访问数:  747
    • HTML全文浏览量:  731
    • PDF下载量:  81
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-12
    • 刊出日期:  2023-04-25

    目录

      /

      返回文章
      返回