• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    某地下核设施场址地下水化学特征及其对水循环的指示意义

    李杰彪 梁修雨 周志超 赵敬波 潘跃龙 郭永海

    李杰彪, 梁修雨, 周志超, 赵敬波, 潘跃龙, 郭永海, 2024. 某地下核设施场址地下水化学特征及其对水循环的指示意义. 地球科学, 49(3): 965-977. doi: 10.3799/dqkx.2022.425
    引用本文: 李杰彪, 梁修雨, 周志超, 赵敬波, 潘跃龙, 郭永海, 2024. 某地下核设施场址地下水化学特征及其对水循环的指示意义. 地球科学, 49(3): 965-977. doi: 10.3799/dqkx.2022.425
    Li Jiebiao, Liang Xiuyu, Zhou Zhichao, Zhao Jingbo, Pan Yuelong, Guo Yonghai, 2024. Hydrochemical Characteristics and Its Significance to Groundwater Flow System at an Underground Nuclear Facility Site. Earth Science, 49(3): 965-977. doi: 10.3799/dqkx.2022.425
    Citation: Li Jiebiao, Liang Xiuyu, Zhou Zhichao, Zhao Jingbo, Pan Yuelong, Guo Yonghai, 2024. Hydrochemical Characteristics and Its Significance to Groundwater Flow System at an Underground Nuclear Facility Site. Earth Science, 49(3): 965-977. doi: 10.3799/dqkx.2022.425

    某地下核设施场址地下水化学特征及其对水循环的指示意义

    doi: 10.3799/dqkx.2022.425
    基金项目: 

    国防科工局核设施退役及放射性废物治理项目 [2019]1496

    深圳市自然科学基金项目 JCYJ20190809142203633

    详细信息
      作者简介:

      李杰彪(1987-),男,高级工程师,博士生,主要从事水文地质、核废物地质处置方面的研究. ORCID:0000-0003-0016-4219. E-mail:hgylijiebiao@126.com

    • 中图分类号: P641.3

    Hydrochemical Characteristics and Its Significance to Groundwater Flow System at an Underground Nuclear Facility Site

    • 摘要: 在核设施场址筛选和长期性能安全评价中,地下水化学特征是最重要的因素之一. 本文采用数理统计、离子比例法、同位素分析法以及水文地球化学模拟等方法,对沿海某核设施场址水化学特征及主要控制因素、地下水补给来源与年龄等进行了分析,并构建了该场址地下水循环演化模式. 研究表明:场址地下水中TDS较低,pH值多呈弱酸性;地下水化学类型主要为HCO3-Na·Ca型和HCO3-Ca·Na型;水化学组分主要受硅酸盐岩风化作用的控制;地下水主径流路径上以钠长石、钙长石的风化溶解为主;地下水来源于当地大气降水入渗补给,硐室深度范围内地下水14C表观年龄为2.08~3.60 ka. 该场址地下水化学特征及水循环交替条件对于保障该核设施的安全性是有利的.

       

    • 图  1  研究区地形

      Fig.  1.  Topographic map of the study area

      图  2  研究区地质图和采样点位置

      Fig.  2.  Geologic map and sampling locations of the study area

      图  3  研究区地下水Piper三线图

      Fig.  3.  Piper diagrams of groundwater in the study area

      图  4  钻孔和硐室地下水主要离子相关性矩阵图

      Fig.  4.  Correlation coefficients among the major ion compositions of borehole and tunnel groundwater

      图  5  场址内地下水Gibbs图

      Fig.  5.  Gibbs diagram of groundwater in the study area

      图  6  研究区地下水中Ca2+/Na+与HCO3-/Na+、Mg2+/Na+元素比值

      Fig.  6.  Plots of HCO3-/Na+ versus Ca2+/Na+ and Mg2+/Na+ versus Ca2+/Na+ of groundwater in the study area

      图  7  地下水中主要离子关系

      Fig.  7.  The relationship of major ions in groundwater

      图  8  地下水中(Ca2++Mg2+)-(SO42-+HCO3-)与Na++K+-Cl-的关系(a)以及氯碱指数CAI-1和CAI-2的关系(b)

      Fig.  8.  Bivariate diagrams showing the relationships between (Ca2++Mg2+)-(SO42-+HCO3-) and Na++K+-Cl- (a), CAI-1 and CAI-2 (b)

      图  9  研究区地下水中主要矿物饱和指数关系

      Fig.  9.  Saturation indices relation of significant minerals in the study area

      图  10  反向水文地球化学模拟结果

      Fig.  10.  Results of the reverse hydrogeochemical simulation

      图  11  场址地下水中δD和δ18O值关系

      Fig.  11.  δ18O vs. δD diagram of groundwater

      图  12  场址地下水循环演化模式示意

      Fig.  12.  Conceptual model of groundwater flow and hydrochemical evolution in the site.

      表  1  地下水化学指标统计值

      Table  1.   Statistical summary of hydrochemical parameters of groundwater

      水样类型 统计参数 F Cl SO42‒ Na+ K+ Mg2+ Ca2+ HCO3 TDS Si pH 水位埋深(m) 采样深度(m)
      (mg/L)
      泉水 泉① 0.23 5.89 1.66 5.81 1.27 0.45 3.36 14.50 27.01 1.39 6.30 0 0
      泉① 0.22 5.92 2.08 5.36 1.37 0.68 5.61 20.00 33.00 1.70 6.55 0 0
      泉② / 13.63 3.27 13.05 1.95 0.96 3.95 26.23 49.93 / 6.77 0 0
      泉③ 0.18 6.88 2.22 6.00 0.96 0.82 5.09 19.20 33.09 1.80 6.50 0 0
      泉④ / 12.27 0.30 13.80 3.45 1.44 3.94 39.35 54.88 / 5.91 0 0
      泉⑤ 0.23 12.00 2.37 9.46 1.29 1.08 4.63 20.00 41.76 2.07 6.52 0 0
      泉⑥ / 17.72 1.53 17.10 5.44 1.92 2.37 39.38 65.77 / 7.03 0 0
      泉⑦ 0.20 7.97 1.28 7.03 2.21 0.73 3.90 19.90 33.52 2.13 6.25 0 0
      极大值 0.23 17.72 3.27 17.10 5.44 1.92 5.61 39.38 65.77 2.13 7.03
      极小值 0.18 5.89 0.30 5.36 0.96 0.45 2.37 14.50 27.01 1.39 5.91
      平均值 0.21 10.29 1.84 9.70 2.24 1.01 4.10 24.82 42.37 1.82 6.48
      钻孔和硐室地下水 CCZK05-1 4.10 17.00 2.85 24.80 2.24 2.16 39.60 147.00 166.31 7.91 6.70 44.00 148.47~173.77
      CCZK05-2 4.08 13.50 2.77 23.50 2.14 2.09 39.00 151.00 162.64 7.63 6.84 44.00 148.47~173.77
      W20 2.70 7.54 3.10 18.50 2.00 2.01 41.20 156.00 155.11 7.78 7.06 138.02
      W32 3.22 7.55 4.46 19.70 1.96 2.91 56.30 212.00 202.16 12.35 / 154.35
      KCZK11 0.71 5.21 2.09 20.80 5.84 1.18 13.10 91.90 94.99 4.81 6.69 26.78 26.78~35.00
      ZK11 0.51 20.30 0.54 26.20 9.75 2.00 37.60 163.00 178.59 7.79 6.75 24.50 24.50~30.00
      KCZK05 0.77 9.60 1.34 9.76 3.04 0.96 6.79 32.80 48.716 2.43 6.42 33.06 33.06~40.00
      ZK03 2.00 7.50 4.49 18.40 4.23 0.64 5.04 57.50 71.83 2.63 6.37 9.28 9.28~15.00
      KCZK13 4.66 5.96 5.11 19.20 1.82 0.60 6.69 41.80 66.18 2.92 6.31 12.38 12.38~15.00
      KJZK03 1.80 11.50 2.02 17.10 2.35 2.91 19.90 88.20 104.52 4.10 5.94 16.56 16.56~20.00
      KCZK14 0.65 8.57 3.32 8.92 1.82 0.74 7.87 29.80 47.57 2.45 5.95 39.00 39.00~45.00
      ZK100 0.37 4.90 2.82 5.05 0.61 0.73 3.67 13.30 26.16 1.23 5.12 5.86 5.86~10.00
      极大值 4.66 20.30 5.11 26.20 9.75 2.91 56.30 212.00 202.16 12.35 7.06
      极小值 0.37 4.90 0.54 5.05 0.61 0.60 3.67 13.30 26.16 1.23 5.12
      平均值 2.13 9.93 2.91 17.66 3.15 1.58 23.06 98.69 110.40 5.34 6.38
      注:表中“/”表示未测数据;“‒”表示无法测或无法计算(或是计算无意义).
      下载: 导出CSV

      表  2  地下水中14C测试结果

      Table  2.   The measurement results of 14C age in groundwater

      钻孔和硐室编号 pMC 13C (‰) 14C表观年龄(ka) 3H(TU) 取样时间 采样高度(m)
      CCZK05-1 64.58±0.24 -14.80 3.51 < 1.3 2019.12.21 31.01~5.70
      CCZK05-2 65.68±0.24 -15.00 3.38 1.5±0.3 2019.12.22 31.01~5.70
      W20 77.23±0.28 -16.80 2.08 < 1.3 2022.03.11 27.90
      W32 63.87±0.23 -15.90 3.60 < 1.3 2022.05.28 24.20
      注:pMC表示现代碳百分比,一般认为核爆试验前(1950年以前)大气中14C的水平为100 pMC.
      下载: 导出CSV
    • Brkić, Ž., Briški, M., Marković, T., 2016. Use of Hydrochemistry and Isotopes for Improving the Knowledge of Groundwater Flow in a Semiconfined Aquifer System of the Eastern Slavonia (Croatia). CATENA, 142: 153-165. https://doi.org/10.1016/j.catena.2016.03.010
      Chidambaram, S., Anandhan, P., Prasanna, M. V., et al., 2013. Major Ion Chemistry and Identification of Hydrogeochemical Processes Controlling Groundwater in and around Neyveli Lignite Mines, Tamil Nadu, South India. Arabian Journal of Geosciences, 6(9): 3451-3467. https://doi.org/10.1007/s12517-012-0589-3
      Cloutier, V., Lefebvre, R., Therrien, R., et al., 2008. Multivariate Statistical Analysis of Geochemical Data as Indicative of the Hydrogeochemical Evolution of Groundwater in a Sedimentary Rock Aquifer System. Journal of Hydrology, 353(3-4): 294-313. https://doi.org/10.1016/j.jhydrol.2008.02.015
      Farid, I., Zouari, K., Rigane, A., et al., 2015. Origin of the Groundwater Salinity and Geochemical Processes in Detrital and Carbonate Aquifers: Case of Chougafiya Basin (Central Tunisia). Journal of Hydrology, 530: 508-532. https://doi.org/10.1016/j.jhydrol.2015.10.009
      Gaillardet, J., Dupré, B., Louvat, P., et al., 1999. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chemical Geology, 159(1-4): 3-30. https://doi.org/10.1016/S0009-2541(99)00031-5
      Gibbs, R. J., 1970. Mechanisms Controlling World Water Chemistry. Science, 170(3962): 1088-1090. https://doi.org/10.1126/science.170.3962.1088
      Gimeno, M. J., Auqué, L. F., Acero, P., et al., 2014. Hydrogeochemical Characterisation and Modelling of Groundwaters in a Potential Geological Repository for Spent Nuclear Fuel in Crystalline Rocks (Laxemar, Sweden). Applied Geochemistry, 45: 50-71. https://doi.org/10.1016/j.apgeochem.2014.03.003
      Glynn, P. D., Plummer, L. N., 2005. Geochemistry and the Understanding of Ground-Water Systems. Hydrogeology Journal, 13(1): 263-287. https://doi.org/10.1007/s10040-004-0429-y
      Guo, X. J., Wang, H. W., Shi, J. S., et al., 2022. Hydrochemical Characteristics and Evolution Pattern of Groundwater System in Baiyangdian Wetland, North China Plain. Acta Geologica Sinica, 96(2): 656-672 (in Chinese with English abstract).
      Guo, Y. H., Liu, S. F., Su, R., et al., 2003. The Hydro-Geochemical Modeling of the Potential Repository Site for High-Level Radioactive Waste in China. Geology and Prospecting, 39(6): 64-67 (in Chinese with English abstract).
      Guo, Y. H., Wang, H. L., Dong, J. N., et al., 2013. Isotopic Study of Deep Groundwater in Jijicao Preselected Site for China's High Level Radioactive Waste Disposal Repository. Acta Geologica Sinica, 87(9): 1477-1485 (in Chinese with English abstract).
      Guo, Y. H., Wang, J., 2007. Key Scientific Issues of Geology, Hydrogeology and Geochemistry in High-Level Radioactive Waste Geological Disposal. Chinese Journal of Rock Mechanics and Engineering, 26(S2): 3926-3931 (in Chinese with English abstract).
      Güler, C., Thyne, G. D., McCray, J. E., et al., 2002. Evaluation of Graphical and Multivariate Statistical Methods for Classification of Water Chemistry Data. Hydrogeology Journal, 10(4): 455-474. https://doi.org/10.1007/s10040-002-0196-6
      Han, L. F., Plummer, L. N., 2016. A Review of Single-Sample-Based Models and Other Approaches for Radiocarbon Dating of Dissolved Inorganic Carbon in Groundwater. Earth-Science Reviews, 152: 119-142. https://doi.org/10.1016/j.earscirev.2015.11.004
      Haselbeck, V., Kordilla, J., Krause, F., et al., 2019. Self-Organizing Maps for the Identification of Groundwater Salinity Sources Based on Hydrochemical Data. Journal of Hydrology, 576: 610-619. https://doi.org/10.1016/j.jhydrol.2019.06.053
      He, J., Zhang, Y. K., Zhao, Y. Q., et al., 2019. Hydrochemical Characteristics and Possible Controls of Groundwater in the Xialatuo Basin Section of the Xianshui River. Environmental Science, 40(3): 1236-1244 (in Chinese with English abstract).
      Iwatsuki, T., Hagiwara, H., Ohmori, K., et al., 2015. Hydrochemical Disturbances Measured in Groundwater during the Construction and Operation of a Large-Scale Underground Facility in Deep Crystalline Rock in Japan. Environmental Earth Sciences, 74(4): 3041-3057. https://doi.org/10.1007/s12665-015-4337-3
      Jalali, M., 2007. Salinization of Groundwater in Arid and Semi-Arid Zones: An Example from Tajarak, Western Iran. Environmental Geology, 52(6): 1133-1149. https://doi.org/10.1007/s00254-006-0551-3
      Jasechko, S., 2019. Global Isotope Hydrogeology―Review. Reviews of Geophysics, 57(3): 835-965. https://doi.org/10.1029/2018rg000627
      Laaksoharju, M., Gascoyne, M., Gurban, I., 2008. Understanding Groundwater Chemistry Using Mixing Models. Applied Geochemistry, 23(7): 1921-1940. https://doi.org/10.1016/j.apgeochem.2008.02.018
      Lasaga, A. C., Soler, J. M., Ganor, J., et al., 1994. Chemical Weathering Rate Laws and Global Geochemical Cycles. Geochimica et Cosmochimica Acta, 58(10): 2361-2386. https://doi.org/10.1016/0016-7037(94)90016-7
      Li, P. Y., Wu, J. H., Qian, H., 2013. Assessment of Groundwater Quality for Irrigation Purposes and Identification of Hydrogeochemical Evolution Mechanisms in Pengyang County, China. Environmental Earth Sciences, 69(7): 2211-2225. https://doi.org/10.1007/s12665-012-2049-5
      Liu, F. T., 2008. Research on Groundwater Circulation and Hydrochemical Transport in the Northern Part of Ordos Cretaceous Basin Based on Isotope Technology (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Marandi, A., Shand, P., 2018. Groundwater Chemistry and the Gibbs Diagram. Applied Geochemistry, 97: 209-212. https://doi.org/10.1016/j.apgeochem.2018.07.009
      Mayo, A. L., Loucks, M. D., 1995. Solute and Isotopic Geochemistry and Ground Water Flow in the Central Wasatch Range, Utah. Journal of Hydrology, 172(1-4): 31-59. https://doi.org/10.1016/0022-1694(95)02748-E
      Meybeck, M., 1987. Global Chemical Weathering of Surficial Rocks Estimated from River Dissolved Loads. American Journal of Science, 287(5): 401-428. https://doi.org/10.2475/ajs.287.5.401
      Pan, G. F., Li, X. Q., Zhang, J., et al., 2019. Groundwater-Flow-System Characterization with Hydrogeochemistry: A Case in the Lakes Discharge Area of the Ordos Plateau, China. Hydrogeology Journal, 27(2): 669-683. https://doi.org/10.1007/s10040-018-1888-x
      Pang, Z. H., Kong, Y. L., Li, J., et al., 2017. An Isotopic Geoindicator in the Hydrological Cycle. Procedia Earth and Planetary Science, 17: 534-537. https://doi.org/10.1016/j.proeps.2016.12.135
      Parkhurst, D. L., Appelo, C. A. J., 2013. Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U. S. Geological Survey, Reston. https://doi.org/10.3133/tm6A43
      Pusch, R., Ramqvist, G., Knutsson, S., et al., 2015. The Role of Crystalline Rock for Disposal of High-Level Radioactive Waste (HLW). Procedia Earth and Planetary Science, 15: 526-535. https://doi.org/10.1016/j.proeps.2015.08.070
      Schoeller, H., 1967. Qualitative Evaluation of Ground-Water Resources (in methods and Techniques of Groundwater Investigation and Development), Water Resource Series, UNESCO, Paris. ]
      Shi, X. Y., Wang, Y., Jiao, J. J., et al., 2018. Assessing Major Factors Affecting Shallow Groundwater Geochemical Evolution in a Highly Urbanized Coastal Area of Shenzhen City, China. Journal of Geochemical Exploration, 184: 17-27. https://doi.org/10.1016/j.gexplo.2017.10.003
      Smellie, J. A. T., Laaksoharju, M., Wikberg, P., 1995. ÄSPÖ, SE Sweden: A Natural Groundwater Flow Model Derived from Hydrogeochemical Observations. Journal of Hydrology, 172(1-4): 147-169. https://doi.org/10.1016/0022-1694(95)02720-A
      Sung, K. Y., Yun, S. T., Park, M. E., et al., 2012. Reaction Path Modeling of Hydrogeochemical Evolution of Groundwater in Granitic Bedrocks, South Korea. Journal of Geochemical Exploration, 118: 90-97. https://doi.org/10.1016/j.gexplo.2012.05.004
      Sun, H. Y., Sun, X. M., Wei, X. F., et al., 2023. Geochemical Characteristics and Origin of Nuanquanzi Geothermal Water in Yudaokou, Chengde, Hebei, North China. Journal of Earth Science, 34(3): 838-856. https://doi.org/10.1007/s12583-022-1635-z
      Tóth, J., 1980. Cross-Formational Gravity-Flow of Groundwater: A Mechanism of the Transport and Accumulation of Petroleum (the Generalized Hydraulic Theory of Petroleum Migration). Problems of Petroleum Migration. American Association of Petroleum Geologists, Tulsa. https://doi.org/10.1306/St10411C8
      Tóth, J., 1999. Groundwater as a Geologic Agent: An Overview of the Causes, Processes, and Manifestations. Hydrogeology Journal, 7(1): 1-14. https://doi.org/10.1007/s100400050176
      Tóth, J., Sheng, G., 1996. Enhancing Safety of Nuclear Waste Disposal by Exploiting Regional Groundwater Flow: The Recharge Area Concept. Hydrogeology Journal, 4(4): 4-25. https://doi.org/10.1007/s100400050252
      Wang, P., Jin, M. G., Lu, D. C., 2020. Hydrogeochemistry Characteristics and Formation Mechanismof Shallow Groundwater in Yongcheng City, Henan Province. Earth Science, 45(6): 2232-2244 (in Chinese with English abstract).
      Yang, Q. C., Li, Z. J., Ma, H. Y., et al., 2016. Identification of the Hydrogeochemical Processes and Assessment of Groundwater Quality Using Classic Integrated Geochemical Methods in the Southeastern Part of Ordos Basin, China. Environmental Pollution, 218: 879-888. https://doi.org/10.1016/j.envpol.2016.08.017
      Zhao, J. B., Pan, Y. L., Li, J. B., et al., 2023. Inverse Modeling of Parameterized Hydraulic Conductivity Field in a Fractured Medium Based on Pilot Point Method. Earth Science, 48(10): 3878-3895 (in Chinese with English abstract).
      Zhang, Y., Yu, Q., Shi, C. W., et al., 2023. Environmental Isotopes and Cl/Br Ratios Evidences for Delineating Arsenic Mobilization in Aquifer System of the Jianghan Plain, Central China. Journal of Earth Science, 34(2): 571-579. https://doi.org/10.1007/s12583-020-1096-1
      郭小娇, 王慧玮, 石建省, 等, 2022. 白洋淀湿地地下水系统水化学变化特征及演化模式. 地质学报, 96(2): 656-672. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202202020.htm
      郭永海, 刘淑芬, 苏锐, 等, 2003. 高放废物处置库预选场地水文地球化学模拟. 地质与勘探, 39(6): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200306018.htm
      郭永海, 王海龙, 董建楠, 等, 2013. 高放废物处置库芨芨槽预选场址深部地下水同位素研究. 地质学报, 87(9): 1477-1485. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201309024.htm
      郭永海, 王驹, 2007. 高放废物地质处置中的地质、水文地质、地球化学关键科学问题. 岩石力学与工程学报, 26(S2): 3926-3931. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2048.htm
      何锦, 张幼宽, 赵雨晴, 等, 2019. 鲜水河断裂带虾拉沱盆地断面地下水化学特征及控制因素. 环境科学, 40(3): 1236-1244. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201903024.htm
      柳富田, 2008. 基于同位素技术的鄂尔多斯白垩系盆地北区地下水循环及水化学演化规律研究(博士学位论文). 长春: 吉林大学.
      王攀, 靳孟贵, 路东臣, 2020. 河南省永城市浅层地下水化学特征及形成机制. 地球科学, 45(6): 2232-2244. doi: 10.3799/dqkx.2019.280
      赵敬波, 潘跃龙, 李杰彪, 等, 2023. 基于Pilot Point方法反演裂隙岩体参数化渗透结构. 地球科学, 48(10): 3878-3895. doi: 10.3799/dqkx.2022.031
    • 加载中
    图(12) / 表(2)
    计量
    • 文章访问数:  120
    • HTML全文浏览量:  44
    • PDF下载量:  20
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-07-08
    • 网络出版日期:  2024-04-12
    • 刊出日期:  2024-03-25

    目录

      /

      返回文章
      返回