• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于深度学习单阶段算法的䗴类化石检测

    奚园园 王永茂 芦碧波 邢智峰 侯广顺

    奚园园, 王永茂, 芦碧波, 邢智峰, 侯广顺, 2024. 基于深度学习单阶段算法的䗴类化石检测. 地球科学, 49(3): 1154-1164. doi: 10.3799/dqkx.2022.427
    引用本文: 奚园园, 王永茂, 芦碧波, 邢智峰, 侯广顺, 2024. 基于深度学习单阶段算法的䗴类化石检测. 地球科学, 49(3): 1154-1164. doi: 10.3799/dqkx.2022.427
    Xi Yuanyuan, Wang Yongmao, Lu Bibo, Xing Zhifeng, Hou Guangshun, 2024. Fusulinid Detection Based on Deep Learning Single-Stage Algorithm. Earth Science, 49(3): 1154-1164. doi: 10.3799/dqkx.2022.427
    Citation: Xi Yuanyuan, Wang Yongmao, Lu Bibo, Xing Zhifeng, Hou Guangshun, 2024. Fusulinid Detection Based on Deep Learning Single-Stage Algorithm. Earth Science, 49(3): 1154-1164. doi: 10.3799/dqkx.2022.427

    基于深度学习单阶段算法的䗴类化石检测

    doi: 10.3799/dqkx.2022.427
    基金项目: 

    国家自然科学基金项目 41871333

    国家自然科学基金项目 41773024

    河南理工大学博士基金资助项目 B2014⁃043

    河南省高等学校重点科研项目 21A520016

    河南省高校国家级大学生创新创业训练计划项目 202110460078

    河南省本科高校省级大学生创新创业训练计划项目 S202110460005

    详细信息
      作者简介:

      奚园园(1998-),女,硕士研究生,主要从事深度学习与目标检测的研究. ORCID:0000-0003-4150-2763. E-mail:17796768506@163.com

      通讯作者:

      王永茂,E-mail:wymyjs2000@hpu.edu.cn

    • 中图分类号: P534.6

    Fusulinid Detection Based on Deep Learning Single-Stage Algorithm

    • 摘要: 䗴化石是石炭纪、二叠纪重要的标准化石,其详细的鉴定工作对确定地质时代和划分石炭系‒二叠系具有重要意义.鉴于目前䗴类化石检测方法的局限性,提出一种基于深度学习单阶段算法的䗴类化石检测.以䗴类化石为研究对象,对原始模型进行分析,之后联合优化权重损失函数和BN层尺度因子的L1正则化等方式进行通道剪枝,再使用知识蒸馏使剪枝后模型恢复检测性能.实验结果表明,该方法可实现薄片图像中䗴类所在区域的定位和分类,平均精度均值达到98.1%,满足实时检测模型的要求,并且剪枝后参数量压缩了74.1%,解决了真实场景中存在的算力缺乏等问题.该方法能够有效保证䗴类化石的检测效果,同时扩展了该模型在嵌入式设备的适用范围,为深度学习在古生物化石图像的智能识别方面提供更多可能性.

       

    • 图  1  中国华南和华北地区二叠系划分与对比(修改自沈树忠等,2019)

      Fig.  1.  Division and correlation of Permian in South and North China(modified after Shen et al., 2019)

      图  2  基于深度学习单阶段算法的䗴类化石检测

      Fig.  2.  Fusulinid detection based on deep learning single-stage algorithm

      图  3  YOLOv5网络结构示意

      Fig.  3.  YOLOv5 network structure schematic

      图  4  通道剪枝流程

      Fig.  4.  Channel pruning flowchart

      图  5  稀疏训练前后$ \gamma $值分布变化

      Fig.  5.  Changes in the distribution of $ \gamma $ values before and after sparse training

      图  6  知识蒸馏过程

      Softmax(T=t/T=1)表示Softmax函数中温度系数为t或1;Soft Targets为softmax层的输出值;Soft predictions /Hard predictions表示经过Softmax(T=t)的输出值/T=1时Softmax的输出值;Loss Fn为损失函数

      Fig.  6.  Knowledge distillation process

      图  7  䗴类化石显微图像部分样本

      Fig.  7.  Microscopic images of some fusulinids

      a. Fusulina; b. Misellina; c. Neoschwagerina; d. Schwagerina; e. Triticites

      图  8  数据集信息

      Fig.  8.  Dataset information

      图  9  各模型参数量对比

      Fig.  9.  Comparison of the number of parameters in each model

      图  10  不同微调策略下mAP曲线比较

      Fig.  10.  Comparison of mAP curves under different fine-tuning strategies

      图  11  算法改进前后对化石显微图像的检测结果

      a列. Fusulina;b列. Misellina;c列. Neoschwagerina;d列. Schwagerina;e. Triticites

      Fig.  11.  Detection results of microscopic images of fusulinids before and after algorithm improvement

      表  1  本研究选取的䗴类化石

      Table  1.   The fusulinids selected for this study

      属名 中文名 形状特征 含义
      Fusulina 纺锤䗴属 壳纺锤形、粗纺锤形到圆柱形,旋壁多为四层式构成. 晚石炭世早期出现,代表地层为华北的本溪组.
      Triticites 麦粒䗴属 壳纺锤形到长纺锤形,具有旋脊,隔壁开始褶皱. 晚石炭世晚期出现,代表地层为华北太原组.
      Schwagerina 希瓦格䗴属 壳纺锤形、圆柱形和近球形,旋壁由致密层和蜂巢层构成. 晚石炭世至中二叠世末期,代表地层为华南的船山组.
      Neoschwagerina 新希瓦格䗴属 壳圆筒形到近球形,发育拟旋脊,具有副隔壁. 中二叠世,代表地层为华南的茅口组.
      Misellina 米斯䗴属 壳呈近球状,发育拟旋脊. 代表时期为早二叠世,代表地层为华南的栖霞组.
      下载: 导出CSV

      表  2  实验参数

      Table  2.   Experimental parameters

      参数名称 参数值
      Image Size 640×640
      Batch Size 64
      Epochs 300
      Learning_rate 0.001
      NMS 0.5
      下载: 导出CSV

      表  3  主流目标检测模型性能对比

      Table  3.   Comparison of mainstream object detection model performance

      模型 mAP(%) 计算量(GFLOPs) 模型大小(MB) 推理速度(ms/帧)
      SSD 79.80 87.45 92.64 34.00
      Faster-RCNN 90.04 181.30 108.20 139.00
      YOLOv3 95.9 155.0 234.0 39.5
      YOLOv4 94.4 106.1 244.0 34.3
      YOLOv5s 98.89 15.60 27.27 31.20
      Ours 98.11 8.60 6.24 29.00
      下载: 导出CSV

      表  4  消融实验结果对比

      Table  4.   Comparison results of ablation experiments

      模型 mAP(%) 通道数 参数量(M) 计算量GFLOPs 模型大小(MB)
      Baseline 98.89 9 632 7.71 15.6 27.27
      Baseline+PR: 65% 75.3 4 308 1.57 8.6 6.24
      Baseline+PR: 65%+KD 98.11 4 308 1.57 8.6 6.24
      下载: 导出CSV

      表  5  䗴类化石计数结果

      Table  5.   Results of fusulinids counts

      检测类别 人工计数个数 䗴类化石计数个数 精确度(%)
      䗴类化石 180 169 93.8
      下载: 导出CSV
    • Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M., 2020. YOLOv4: Optimal Speed and Accuracy of Object Detection. ArXiv, 2004.10934. https://arxiv.org/abs/2004.10934
      Bu, J. J., He, W. H., Zhang, K. X., et al., 2020. Evolution of the Paleo-Asian Ocean: Evidences from Paleontology and Stratigraphy. Earth Science, 45(3): 711-727 (in Chinese with English abstract).
      Denil, M., Shakibi, B., Dinh, L., et al., 2013. Predicting Parameters in Deep Learning. ArXiv, 1306.0543. https://doi.org/10.48550/arXiv.1306.0543
      Du, Y. S., Tong, J. N., 2009. Introduction to Palaeontology and Historical Geology. China University of Geosciences Press, Wuhan (in Chinese).
      Girshick, R., 2015. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV). Santiago. https://doi.org/10.1109/ICCV.2015.169
      Girshick, R., Donahue, J., Darrell, T., et al., 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus. https://doi.org/10.1109/CVPR.2014.81
      Guo, W., Lin, Y. T., Liu, G. H., 2003. Early Permian Rugose Coral Assemblage and Its Geological Significances in Xiwuqi of Inner Mongolia. Journal of Jilin University (Earth Science Edition), 33(4): 399-405 (in Chinese with English abstract).
      He, K. M., Zhang, X. Y., Ren, S. Q., et al., 2016. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas. https://doi.org/10.1109/CVPR.2016.90
      Hinton, G., Vinyals, O., Dean, J., 2015. Distilling the Knowledge in a Neural Network. ArXiv, 1503.02531. https://doi.org/10.48550/arXiv.1503.02531
      Hou, X. H., Feng, L., Zheng, M. P., et al., 2022. Recognition Method of Potassium-Rich Lithium Brine Reservoir in Nanyishan. Earth Science, 47(1): 45-55 (in Chinese with English abstract).
      Huang, Z., Bai, Z. Q., Chai, H., 2009. Identification of the 'Ambiguity Features' of the Conodont by the Artificial Neural Network. Geological Science and Technology Information, 28(3): 94-98 (in Chinese with English abstract).
      Li, P. F., Wang, H., Wu, Y. C., et al., 2022. Recognition of Dangerous Rock Mass and Seismic Risk Analysis of Highway Based on UAV Images. China Earthquake Engineering Journal, 44(4): 777-785 (in Chinese with English abstract).
      Liu, W., Anguelov, D., Erhan, D., et al., 2016. Ssd: Single Shot MultiBox Detector. 2016 European Conference on Computer Vision, Amsterdam. https://doi.org/10.1007/978-3-319-46448-0_2
      Liu, X. Y., 2018. The Application of Image Recognition Technology in Paleontological Fossil Image (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Liu, Z., Li, J. G., Shen, Z. Q., et al., 2017. Learning Efficient Convolutional Networks through Network Slimming. 2017 IEEE International Conference on Computer Vision (ICCV). Venice. https://doi.org/10.1109/ICCV.2017.298
      Lowe, D. G., 2004. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2): 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
      Mehta, R., Ozturk, C., 2018. Object Detection at 200 Frames Per Second. ArXiv, 1805.06361. https://doi.org/10.48550/arXiv.1805.06361
      Peng, X. D., Zhang, M. S., Li, X. M., 1999. The Evolution of Paleozoic Tectonic Paleogeography in Jilin and Heilongjiang Orogenic Belt. World Geology, 18(3): 24-28 (in Chinese).
      Redmon, J., Divvala, S., Girshick, R., et al., 2016. You only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas. https://doi.org/10.1109/CVPR.2016.91
      Redmon, J., Farhadi, A., 2018. Yolov3: An Incremental Improvement. arXiv, 1804.02767. https://doi.org/10.48550/arXiv.1804.02767
      Ren, S. Q., He, K. M., Girshick, R., et al., 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv, 1506.01497. https://doi.org/10.48550/arXiv.1506.01497
      Shen, S. Z., Zhang, H., Zhang, Y. C., et al., 2019. Permian Integrative Stratigraphy and Timescale of China. Science in China (Series D), 49(1): 160-193 (in Chinese).
      Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Visual Recognition. ArXiv, 1409.1556. https://doi.org/10.48550/arXiv.1409.1556
      Szegedy, C., Liu, W., Jia, Y. Q., et al., 2015. Going Deeper with Convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)., Boston. https://doi.org/10.1109/CVPR.2015.7298594
      Weller, A. F., Harris, A. J., Ware, J. A., 2006. Artificial Neural Networks as Potential Classification Tools for Dinoflagellate Cyst Images: A Case Using the Self- Organizing Map Clustering Algorithm. Review of Palaeobotany and Palynology, 141(3-4): 287-302. https://doi.org/10.1016/j.revpalbo.2006.06.001
      Yu, X. L., Ye, K., Du, C. J., et al., 2021. Microscopic Recognition of Micro Fossils in Carbonate Rocks Based on Convolutional Neural Network. Petroleum Geology & Experiment, 43(5): 880-885, 895 (in Chinese with English abstract).
      Yue, X., Hu, H., Jia, J. Z., 2019. A Method for Identifying Foraminifera Fossils Based on Deep Learning. Computer Knowledge and Technology, 15(27): 173, 178 (in Chinese).
      Zhang, Z. C., 1987. Correlation of the Shanxi Stage in North China and Related Fusulinid-Bearing Strata in Certain Areas. Regional Geology of China, 6(4): 359-363 (in Chinese).
      Zuo, R. G., Peng, Y., Li, T., et al., 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350-358 (in Chinese with English abstract).
      卜建军, 何卫红, 张克信, 等, 2020. 古亚洲洋的演化: 来自古生物地层学方面的证据. 地球科学, 45(3): 711-727. doi: 10.3799/dqkx.2019.068
      杜远生, 童金南, 2009. 古生物地史学概论. 武汉: 中国地质大学出版社.
      郭伟, 林英铴, 刘广虎, 2003. 内蒙古西乌旗地区早二叠世皱纹珊瑚化石组合及其地质意义. 吉林大学学报(地球科学版), 33(4): 399-405. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200304002.htm
      侯献华, 冯磊, 郑绵平, 等, 2022. 南翼山富钾锂卤水储层识别方法. 地球科学, 47(1): 45-55. doi: 10.3799/dqkx.2021.123
      黄铮, 白志强, 柴华, 2009. 利用人工神经网络方法对牙形石鉴定中若干"模糊特征" 的数字化研究. 地质科技情报, 28(3): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200903017.htm
      李培锋, 王晖, 吴雨辰, 等, 2022. 基于无人机影像的危岩体识别及公路地震风险研究. 地震工程学报, 44(4): 777-785. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202204004.htm
      刘曦阳, 2018. 图像识别技术在古生物化石图像上的应用(硕士学位论文). 长春: 吉林大学.
      彭向东, 张梅生, 李晓敏, 1999. 吉黑造山带古生代构造古地理演化. 世界地质, 18(3): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ199903004.htm
      沈树忠, 张华, 张以春, 等, 2019. 中国二叠纪综合地层和时间框架. 中国科学(D辑), 49(1): 160-193. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201901009.htm
      余晓露, 叶恺, 杜崇娇, 等, 2021. 基于卷积神经网络的碳酸盐岩生物化石显微图像识别. 石油实验地质, 43(5): 880-885, 895. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202105018.htm
      岳翔, 呼和, 贾建忠, 2019. 一种基于深度学习的有孔虫化石识别方法. 电脑知识与技术, 15(27): 173, 178. https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS201927076.htm
      张志存, 1987. 华北山西阶与有关含(竹蜓)地层之对比. 中国区域地质, 6(4): 359-363. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD198704008.htm
      左仁广, 彭勇, 李童, 等, 2021. 基于深度学习的地质找矿大数据挖掘与集成的挑战. 地球科学, 46(1): 350-358. doi: 10.3799/dqkx.2020.111
    • 加载中
    图(11) / 表(5)
    计量
    • 文章访问数:  83
    • HTML全文浏览量:  41
    • PDF下载量:  10
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-13
    • 网络出版日期:  2024-04-12
    • 刊出日期:  2024-03-25

    目录

      /

      返回文章
      返回