Provenance Characteristics and Sedimentary Evolution of Zhu Ⅰ Depression in Paleogene: Indications from Detrital Zircon Ages
-
摘要: 珠一坳陷古近系裂陷过程中的沉积演化一直缺乏系统认识.采用碎屑锆石U-Pb定年方法,对珠一坳陷4个凹陷内的钻井古近系文昌组和恩平组砂岩开展“源‒汇”对比分析,解析其不同演化阶段年代学、物源特征及沉积演化等信息.结果显示珠一坳陷断陷期不仅接受盆内低凸起区、隆起区剥蚀的碎屑物质,还受到盆外北部古水系长距离搬运的陆源碎屑的影响.其中,始新世文昌组沉积物以盆内短程物源为主,年龄谱系除陆丰凹陷还表现出加里东期‒燕山期多峰态外,在各凹陷均以燕山期单峰为特征,洼陷沉积区周缘隆起的中生代岩浆岩、中生界沉积岩地层及新生代火山岩构成该时期湖盆的物质来源;恩平组沉积物在恩平北部和惠州西部率先接受华南水系沉积物影响,在恩平组沉积晚期珠一坳陷普遍接受了来自华南隆褶带的物质输入,年龄谱系呈现以燕山‒印支‒加里东期为主的多峰特征,出现晋宁期、元古代、新太古代的古老年龄,指示珠一坳陷的物源结构发生重大变化,即由盆内古隆起物源转变为盆内和盆外造山带双重物源,该时期沉积体系以大型浅水三角洲为特征.Abstract: The sedimentary filling evolution during the Paleogene rifting process in Zhu Ⅰ depression remains hotly disputed. Tracing source to sink process of the Paleogene was carried out on the sandstones of Wenchang Formation and Enping Formation in Zhu Ⅰ depression, with the method of zircon U-Pb dating. The geochronology, provenance and sedimentary filling evolution in different evolution stages were further explored. The results show that the sags in Zhu Ⅰ depression not only received the intrabasinal provenances from the paleo-uplift area, but also were affected by the terrigenous supply transported from the northern peripheral uplifts in South China Block during rifting stage. The Wenchang Formation sediments were dominated by intrabasinal short-distance provenances, which were derived from paleo-uplifts nearby the sags, including Mesozoic magmatic rocks, Mesozoic sedimentary strata and Cenozoic volcanics. The U-Pb geochronology of all sags was characterized by the dominance of Yanshanian clusters except for multi-peaks in Yanshanian, Indosinian, Caledonian periods in Lufeng Sag. The sediments of the Enping Formation were firstly affected by the materials from the South China Block in the north of Enping Sag and the west of Huizhou Sag. During the deposition period of the upper Enping Formation, the age spectra of Zhu Ⅰ depression sediments show a wide Proterozoic to Mesozoic range with the peak complexity in Yanshanian, Indosinian, Caledonian and Jinningian periods. Thus, the sags were filled by the materials from both the South China Block and peripheral uplifts with the gradual increase of material supply from the South China Block, indicating that the basin provenances had changed from near-source to far-source ones. Meanwhile, the Zhu Ⅰ depression was characterized by large shallow braided deltas that were formed via relatively long-distance transportation.
-
Key words:
- detrital zircon U-Pb /
- provenance transformation /
- Zhu Ⅰ depression /
- Paleogene /
- petroleum geology
-
图 1 珠江口盆地区域地质图(陆区参考Cui et al., 2018修改)
Fig. 1. Geological background of the Pearl River Mouth Basin (the terrestrial area was modified after Cui et al., 2018)
图 3 珠江口盆地基底花岗岩及火山岩锆石U-Pb定年统计图(a);北江+东江支流现代沉积物碎屑锆石U-Pb年龄谱系图(b)
n为统计锆石颗粒数. 数据来源:赵梦等,2015;Liu et al.,2017
Fig. 3. Zircon U-Pb age histogram of granitoids and volcanic rocks in the Pearl River Mouth Basin (a); detrital zircon age histogram of modern sediments in the Beijiang River and Dongjiang River (b)
图 6 下文昌组沉积期珠一坳陷不同洼陷物源年龄谱特征(底图据米立军等,2018修改)
Fig. 6. Age spectrum characteristics of provenance areas for different sags in the Zhu Ⅰ depression during the depositional period of Lower Wenchang Formation (modified from Mi et al., 2018)
图 7 上文昌组沉积期珠一坳陷不同洼陷物源年龄谱特征(底图据米立军等,2018修改)
Fig. 7. Age spectrum characteristics of provenance areas for different sags in the Zhu Ⅰ depression during the depositional period of Upper Wenchang Formation (modified from Mi et al., 2018)
-
Chen, G., 2019. Organic Matter Enrichment of Fine-Grained Source Rock in Shollow Lake Facies: An Example from Chang 7 Unit Source Rock in Yanchi-Dingbian Area (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract). Cui, Y. C., Cao, L. C., Qiao, P. J., et al., 2018. Provenance Evolution of Paleogene Sequence (Northern South China Sea) Based on Detrital Zircon U-Pb Dating Analysis. Earth Science, 43(11): 4169-4179 (in Chinese with English abstract). Cui, Y. C., Shao, L., Qiao, P. J., et al., 2019. Upper Miocene-Pliocene Provenance Evolution of the Central Canyon in Northwestern South China Sea. Marine Geophysical Research, 40(2): 223-235. https://doi.org/10.1007/s11001-018-9359-2 Ding, L., Li, X. Y., Zhou, F. J., et al., 2022. Differential Development Characteristics and Main Controlling Factors of the Paleogene High-Quality Reservoirs from the Zhu Ⅰ Depression in the Pearl River Mouth Basin: A Case on Wenchang Formation at Lufeng Area and Huizhou Area. Acta Petrologica et Mineralogica, 41(1): 75-86 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2022.01.006 Du, J. Y., Zhang, X. T., Liu, P., et al., 2021. Classification of Paleogene Source-to-Sink System and Its Petroleum Geological Significance in Zhuyi Depression of Pearl River Mouth Basin. Earth Science, 46(10): 3690-3706 (in Chinese with English abstract). Du, X. D., Peng, G. R., Wu, J., et al., 2021. Tracing Source-to-Sink Process of the Eocene in the Eastern Yangjiang Sag, Pearl River Mouth Basin: Evidence from Detrital Zircon Spectrum. Marine Geology & Quaternary Geology, 41(6): 124-137 (in Chinese with English abstract). He, J., 2021. Sediment Charateristics and Its Weathering and Provenance Implication of the Pearl River and Rivers in South China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027 Jiao, P., Guo, J. H., Wang, X. K., et al., 2018. Detrital Zircon Genesis and Provenance Tracing for Reservoirs in the Lower Zhujiang Formation in Hanjiang-Lufeng Sag, Pearl River Mouth Basin. Oil & Gas Geology, 39(2): 239-253 (in Chinese with English abstract). Li, J. L., Wang, J. Q., Peng, H., et al., 2023. Detrital Zircon U-Pb Dating and Provenance Significance of the Lower Cretaceous Yijun Formation in the Southern Ordos Basin. Acta Sedimentologica Sinica, 41(5): 1609-1623 (in Chinese with English abstract). Li, X. H., Li, Z. X., He, B., et al., 2012. The Early Permian Active Continental Margin and Crustal Growth of the Cathaysia Block: In Situ U-Pb, Lu-Hf and O Isotope Analyses of Detrital Zircons. Chemical Geology, 328: 195-207. https://doi.org/10.1016/j.chemgeo.2011.10.027 Liao, J. H., Xu, Q., Chen, Y., et al., 2016. Sedimentary Characteristics and Genesis of the Deepwater Channel System in Zhujiang Formation of Baiyun-Liwan Sag. Earth Science, 41(6): 1041-1054 (in Chinese with English abstract). Liu, C., Clift, P. D., Carter, A., et al., 2017. Controls on Modern Erosion and the Development of the Pearl River Drainage in the Late Paleogene. Marine Geology, 394: 52-68. https://doi.org/10.1016/j.margeo.2017.07.011 Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 Lin, C. S., Zhang, Y. M., Li, S. T., et al., 2004. Episodic Rifting Dynamic Process and Quantitative Model of Mesozoic-Cenozoic Faulted Basins in Eastern China. Earth Science, 29(5): 583-588 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2004.05.013 Lin, X., Liu, J., Wu, Z. H., et al., 2020. Detrital Zircon U-Pb Ages and K-Feldspar Main and Trace Elements Provenance Studying from Fluvial to Marine Sediments in Northern China. Acta Geologica Sinica, 94(10): 3024-3035 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.10.016 Lü, F. L., Liu, C. L., Jiao, P. C., et al., 2018. Provenance of the Quaternary Lake Basin and Tectonic Evolution of the Basin in Lop Nur: Evidence from Detrital Zircon U-Pb Age of Core LDK01. Acta Geologica Sinica, 92(8): 1571-1588 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2018.08.002 Mi, L. J., Zhang, X. T., Chen, W. T., et al., 2018. Hydrocarbon Enrichment Law of Paleogene Zhu1 Depression and Its Next Exploration Strategy in Pearl River Mouth Basin. China Offshore Oil and Gas, 30(6): 1-13 (in Chinese with English abstract). Que, X. M., Lei, Y. C., Zhang, X. T., et al., 2022. Determination and Geological Significance of Fault- Depression Transformation Interface in the Southern Lufeng Area. Acta Geologica Sinica, 96(11): 3943-3954 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.11.018 Shao, L., Cao, L. C., Pang, X., et al., 2016. Detrital Zircon Provenance of the Paleogene Syn-Rift Sediments in the Northern South China Sea. Geochemistry, Geophysics, Geosystems, 17(2): 255-269. https://doi.org/10.1002/2015gc006113 Shi, H. S., Du, J. Y., Mei, L. F., et al., 2020. Huizhou Movement and Its Significance in Pearl River Mouth Basin, China. Petroleum Exploration and Development, 47(3): 447-461 (in Chinese with English abstract). Shi, H. S, Shu, Y., Du, J. Y., et al., 2017. Petroleum Geology of Paleogene Fault Basin in the Pearl River Mouth Basin. China University of Geosciences Press, Wuhan (in Chinese). Shi, H. S., Xu, C. H., Zhou, Z. Y., et al., 2011. Zircon U-Pb Dating on Granitoids from the Northern South China Sea and Its Geotectonic Relevance. Acta Geologica Sinica (English Edition), 85(6): 1359-1372. https://doi.org/10.1111/j.1755-6724.2011.00592.x Sircombe, K. N., 1999. Tracing Provenance through the Isotope Ages of Littoral and Sedimentary Detrital Zircon, Eastern Australia. Sedimentary Geology, 124(1-4): 47-67. https://doi.org/10.1016/s0037-0738(98)00120-1 Vermeesch, P., 2013. Multi-Sample Comparison of Detrital Age Distributions. Chemical Geology, 341(2): 140-146. https://doi.org/10.1016/j.chemgeo.2013.01.010 Wang, F. Y., Ling, M. X., Ding, X., et al., 2011. Mesozoic Large Magmatic Events and Mineralization in SE China: Oblique Subduction of the Pacific Plate. International Geology Review, 53(5-6): 704-726. https://doi.org/10.1080/00206814.2010.503736 Wang, W., Ye, J. R., Yang, X. H., et al., 2015. Sediment Provenance and Depositional Response to Multistage Rifting, Paleogene, Huizhou Depression, Pearl River Mouth Basin. Earth Science, 40(6): 1061-1071 (in Chinese with English abstract). Wu, Y. B., Zheng, Y. F., 2004. The Research of Zircon Genetic Mineralogy and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589 Xie, S. W., Wang, Y. C., Shu, Y., et al., 2022. Environmental Reconstruction for the Paleo-Lake of ZhuⅠdepression and the Depositional Model for High-Quality Source Rocks. Marine Geology & Quaternary Geology, 42(1): 159-169 (in Chinese with English abstract). Xu, C. H., Shi, H. S., Barnes, C. G., et al., 2016. Tracing a Late Mesozoic Magmatic Arc along the Southeast Asian Margin from the Granitoids Drilled from the Northern South China Sea. International Geology Review, 58(1): 71-94. https://doi.org/10.1080/00206814.2015.1056256 Zeng, Z. W., 2020. Source-to-Sink (S2S) System Analysis of the Paleogene in the Pearl River Mouth Basin, Northern South China Sea (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). Zeng, Z. W., Zhu, H. T., Yang, X. H., et al., 2017. Provenance Transformation and Sedimentary Evolution of Enping Formation, Baiyun Sag, Pearl River Mouth Basin. Earth Science, 42(11): 1936-1954 (in Chinese with English abstract). Zhang, C. M., Sun, Z., Zhao, M. H., et al., 2022. Crustal Structure and Tectono-Magmatic Evolution of Northern South China Sea. Earth Science, 47(7): 2337-2353 (in Chinese with English abstract). Zhang, Q. L., Zhang, X. T., Xu, C. H., et al., 2022. Application of Fission Track Thermochronology in Provenance Analysis of the Oligocene Zhuhai Formation in Pearl River Mouth Basin. Journal of Palaeogeography (Chinese Edition), 24(1): 129-138 (in Chinese with English abstract). Zhang, X. T., Xiang, X. H., Zhao, M., et al., 2022. Coupling Relationship between Pearl River Water System Evolution and East Asian Terrain Inversion. Earth Science, 47(7): 2410-2420 (in Chinese with English abstract). Zhao, M., Shao, L., Qiao, P. J., 2015. Characteristics of Detrital Zircon U-Pb Geochronology of the Pearl River Sands and Its Implication on Provenances. Journal of Tongji University (Natural Science), 43(6): 915-923 (in Chinese with English abstract). Zhu, H. T., Li, S., Liu, H. R., et al., 2016. The Types and Implication of Migrated Sequence Stratigraphic Architecture in Continental Lacustrine Rift Basin: An Example from the Paleogene Wenchang Formation of Zhu Ⅰ Depression, Pearl River Mouth Basin. Earth Science, 41(3): 361-372 (in Chinese with English abstract). 陈果, 2019. 滨浅湖细粒沉积烃源岩有机质富集机理研究——以鄂尔多斯盆地盐池‒定边地区长7段烃源岩为例(博士学位论文). 北京: 中国石油大学. 崔宇驰, 曹立成, 乔培军, 等, 2018. 南海北部古近纪沉积物碎屑锆石U-Pb年龄及物源演化. 地球科学, 43(11): 4169-4179. doi: 10.3799/dqkx.2017.594 丁琳, 李晓艳, 周凤娟, 等, 2022. 珠江口盆地珠一坳陷古近系优质储层差异发育特征及主控因素——以陆丰地区和惠州地区文昌组为例. 岩石矿物学杂志, 41(1): 75-86. doi: 10.3969/j.issn.1000-6524.2022.01.006 杜家元, 张向涛, 刘培, 等, 2021. 珠江口盆地珠一坳陷古近系"源‒汇" 系统分类及石油地质意义. 地球科学, 46(10): 3690-3706. doi: 10.3799/dqkx.2020.133 杜晓东, 彭光荣, 吴静, 等, 2021. 珠江口盆地阳江东凹始新统的源汇过程: 碎屑锆石定年及物源示踪. 海洋地质与第四纪地质, 41(6): 124-137. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202106011.htm 何杰, 2021. 珠江及华南河流现代沉积物特征、风化及物源示踪研究(博士学位论文). 武汉: 中国地质大学. 焦鹏, 郭建华, 王玺凯, 等, 2018. 珠江口盆地韩江‒陆丰凹陷珠江组下段碎屑锆石来源与储层物源示踪. 石油与天然气地质, 39(2): 239-253. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802005.htm 李姣莉, 王建强, 彭恒, 等, 2023. 鄂尔多斯盆地南部下白垩统宜君组碎屑锆石U-Pb年龄及物源意义. 沉积学报, 41(5): 1609-1623. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202305023.htm 廖计华, 徐强, 陈莹, 等, 2016. 白云‒荔湾凹陷珠江组大型深水水道体系沉积特征及成因机制. 地球科学, 41(6): 1041-1054. doi: 10.3799/dqkx.2016.086 林畅松, 张燕梅, 李思田, 等, 2004. 中国东部中新生代断陷盆地幕式裂陷过程的动力学响应和模拟模型. 地球科学, 29(5): 583-588. doi: 10.3321/j.issn:1000-2383.2004.05.013 林旭, 刘静, 吴中海, 等, 2020. 中国北部陆架海碎屑锆石U-Pb年龄和钾长石主微量元素物源示踪研究. 地质学报, 94(10): 3024-3035. doi: 10.3969/j.issn.0001-5717.2020.10.016 吕凤琳, 刘成林, 焦鹏程, 等, 2018. 罗布泊第四纪湖盆物源与盆地构造演化特征: 来自LDK01孔碎屑锆石U-Pb年龄证据. 地质学报, 92(8): 1571-1588. doi: 10.3969/j.issn.0001-5717.2018.08.002 米立军, 张向涛, 陈维涛, 等, 2018. 珠江口盆地珠一坳陷古近系油气富集规律及下一步勘探策略. 中国海上油气, 30(6): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201806001.htm 阙晓铭, 雷永昌, 张向涛, 等, 2022. 陆丰南地区断拗转换界面厘定及其地质意义. 地质学报, 96(11): 3943-3954. doi: 10.3969/j.issn.0001-5717.2022.11.018 施和生, 杜家元, 梅廉夫, 等, 2020. 珠江口盆地惠州运动及其意义. 石油勘探与开发, 47(3): 447-461. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003003.htm 施和生, 舒誉, 杜家元, 等, 2017. 珠江口盆地古近系断陷盆地石油地质. 武汉: 中国地质大学出版社. 王维, 叶加仁, 杨香华, 等, 2015. 珠江口盆地惠州凹陷古近纪多幕裂陷旋回的沉积物源响应. 地球科学, 40(6): 1061-1071. doi: 10.3799/dqkx.2015.088 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 谢世文, 王宇辰, 舒誉, 等, 2022. 珠一坳陷湖盆古环境恢复与优质烃源岩发育模式. 海洋地质与第四纪地质, 42(1): 159-169. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202201013.htm 曾智伟, 2020. 南海北部珠江口盆地古近纪源‒汇系统耦合研究(博士学位论文). 武汉: 中国地质大学. 曾智伟, 朱红涛, 杨香华, 等, 2017. 珠江口盆地白云凹陷恩平组物源转换及沉积充填演化. 地球科学, 42(11): 1936-1954. doi: 10.3799/dqkx.2017.123 张翠梅, 孙珍, 赵明辉, 等, 2022. 南海北部陆缘结构及构造‒岩浆演化. 地球科学, 47(7): 2337-2353. doi: 10.3799/dqkx.2021.208 张青林, 张向涛, 许长海, 等, 2022. 裂变径迹热年代学在珠江口盆地渐新统珠海组物源分析中的应用. 古地理学报, 24(1): 129-138. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202201010.htm 张向涛, 向绪洪, 赵梦, 等, 2022. 珠江水系演化与东亚地形倒转的耦合关系. 地球科学, 47(7): 2410-2420. doi: 10.3799/dqkx.2022.002 赵梦, 邵磊, 乔培军, 2015. 珠江沉积物碎屑锆石U-Pb年龄特征及其物源示踪意义. 同济大学学报(自然科学版), 43(6): 915-923. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201506018.htm 朱红涛, 李森, 刘浩冉, 等, 2016. 陆相断陷湖盆迁移型层序构型及意义: 以珠Ⅰ坳陷古近系文昌组为例. 地球科学, 41(3): 361-372. doi: 10.3799/dqkx.2016.028 -