• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    广东省龙门岩溶热储温度计算及流体演化特征

    王思佳 张敏 黄学莲 韩永杰 何沛欣 王帅 祁士华

    王思佳, 张敏, 黄学莲, 韩永杰, 何沛欣, 王帅, 祁士华, 2024. 广东省龙门岩溶热储温度计算及流体演化特征. 地球科学, 49(3): 992-1004. doi: 10.3799/dqkx.2022.430
    引用本文: 王思佳, 张敏, 黄学莲, 韩永杰, 何沛欣, 王帅, 祁士华, 2024. 广东省龙门岩溶热储温度计算及流体演化特征. 地球科学, 49(3): 992-1004. doi: 10.3799/dqkx.2022.430
    Wang Sijia, Zhang Min, Huang Xuelian, Han Yongjie, He Peixin, Wang Shuai, Qi Shihua, 2024. Geothermometry Calculation and Geothermal Fluid Evolution of Karst Geothermal Reservoir in Longmen County, Guangdong Province. Earth Science, 49(3): 992-1004. doi: 10.3799/dqkx.2022.430
    Citation: Wang Sijia, Zhang Min, Huang Xuelian, Han Yongjie, He Peixin, Wang Shuai, Qi Shihua, 2024. Geothermometry Calculation and Geothermal Fluid Evolution of Karst Geothermal Reservoir in Longmen County, Guangdong Province. Earth Science, 49(3): 992-1004. doi: 10.3799/dqkx.2022.430

    广东省龙门岩溶热储温度计算及流体演化特征

    doi: 10.3799/dqkx.2022.430
    基金项目: 

    广东省有色金属地质局龙门县地热资源调查评价项目 ZZHZCG202004

    珠江三角洲及周边地区控热地质构造调查研究项目 1212011220014

    详细信息
      作者简介:

      王思佳(1999-),女,硕士生,主要从事地热水文地球化学领域的研究工作. ORCID:0000-0002-7302-9889. E-mail:wangsj0111@cug.edu.cn

      通讯作者:

      祁士华,ORCID:0000-0003-3620-7647,E-mail:shihuaqi@cug.edu.cn

    • 中图分类号: P314

    Geothermometry Calculation and Geothermal Fluid Evolution of Karst Geothermal Reservoir in Longmen County, Guangdong Province

    • 摘要: 岩溶地热系统具有巨大的能源开发潜力,广东省龙门县马星和隔陂地热异常区是两个典型的岩溶地热田.为探究热储温度及流体演化特征,基于离子比值关系、氘氧同位素、地温计等方法对其进行分析讨论.结果表明研究区为中性偏碱性低TDS的HCO3型地热水,方解石类碳酸盐矿物和硅酸盐矿物溶解及阳离子交换作用共同控制了水化学演化过程.大气降水是区内地热水的主要补给来源,马星和隔陂地热田的热储温度分别约为105.0~148.0 ℃和101.5~131.0 ℃,冷水混入的体积比约为44.2%和48.5%.在热储水化学及温度特征的基础上,建立了流体演化概念模型.

       

    • 图  1  研究区位置及地质简图(a)以及A-B地质剖面(b)

      Q.第四系;C1c.石炭系下统测水组;C1sh.石炭系石磴子组;D3C1m.泥盆系上统帽子峰组;D3t.泥盆系天子岭组;D2-3ch.泥盆系中统春湾组;K1γ.早白垩世花岗岩

      Fig.  1.  The location and geological sketch map of the study area (a), and geological cross-section sketch of A-B (b)

      图  2  地热水Piper三线图

      Fig.  2.  Piper diagram of geothermal water

      图  3  地热水主要离子关系

      $ { CAI }\; 1=\left[\mathrm{Cl}^{-}-\left(\mathrm{Na}^{+}+\mathrm{K}^{+}\right)\right] / \mathrm{Cl}^{-}, {CAI }\; 2=\left[\mathrm{Cl}^{-}-\left(\mathrm{Na}^{+}+\mathrm{K}^{+}\right)\right] /\left[\mathrm{SO}_4^{2-}+\mathrm{HCO}_3^{-}+\mathrm{CO}_3{ }^{2-}+\mathrm{NO}_3^{-}\right]$

      Fig.  3.  Major ion ratio relation of geothermal waters

      图  4  研究区地热水样品Na-K-Mg三线图

      Fig.  4.  Na-K-Mg ternary plot for the geothermal water samples in the study area

      图  5  地热水硅‒焓混合图

      Fig.  5.  Silica-Enthalpy plot of geothermal water

      图  6  地热水矿物饱和指数与温度关系

      Fig.  6.  Variation of temperature with mineral lg(Q/K) values in geothermal water samples

      图  7  热储温度计算结果

      Fig.  7.  Calculation results of the reservoir temperature

      图  8  地热水氘氧同位素关系

      Fig.  8.  Variation of δD and δ18O in geothermal water

      图  9  马星和隔陂地热流体演化概念模型

      地层符号同图 1

      Fig.  9.  Conceptual model of Maxing and Gepi geothermal fluid evolution

      表  1  马星和隔陂地热水位置及水化学特征

      Table  1.   Location and water chemistry information of geothermal water in Maxing and Gepi

      马星地热田 隔陂地热田
      ZK-1 ZK-2 ZK-9 FL SL LZQ ZK-4 ZK-5 ZK-6 ZK-8 KL
      纬度(北纬) 23°34′10″ 23°34′10″ 23°34′14″ 23°34′11″ 23°34′8″ 23°34′13″ 23°34′27″ 23°34′31″ 23°34′31″ 23°34′32″ 23°34′56″
      经度(东经) 113°59′51″ 113°59′58″ 113°59′54″ 113°59′46″ 113°59′4″ 113°59′50″ 113°59′18″ 113°59′13″ 113°59′18″ 113°59′17″ 113°59′36″
      实测温度(℃) 69.0 32.0 42.1 64.5 63.4 59.4 75.0 64.8 54.5 40.9 66.4
      pH 7.58 7.81 7.56 7.36 7.07 7.51 7.91 7.66 7.68 7.83 7.92
      TDS (mg/L) 180.2 84.6 181.3 233.0 367.0 169.5 159.2 129.8 108.3 99.1 193.1
      DO (mg/L) 4.33 3.71 4.47 3.37 4.31 3.57 3.48 3.89 3.94 4.91 4.30
      ORP (mV) 294.2 208.2 244.4 296.5 226.6 208.4 241.2 293.1 275.1 223.7 231.6
      COND(μS/cm) 375 178 376 480 751 352 392 312 260 235 402
      Ca2+ (mg/L) 24.72 41.77 52.66 41.86 115.70 21.45 10.21 28.18 46.48 57.08 22.88
      K+ (mg/L) 5.60 3.01 5.09 7.34 8.74 5.66 6.28 3.91 2.32 1.60 5.93
      Mg2+(mg/L) 0.64 8.25 2.61 1.22 9.51 0.46 0.26 1.58 4.51 5.68 0.53
      Na+ (mg/L) 92.89 6.70 65.87 108.40 116.20 91.99 86.50 48.37 19.77 9.07 104.10
      Si (mg/L) 40.93 16.80 29.63 38.43 37.00 39.75 43.43 26.04 14.60 9.00 41.90
      F (mg/L) 8.39 1.91 4.75 9.27 8.61 9.43 13.45 6.29 2.97 1.71 9.77
      Cl (mg/L) 9.34 3.06 5.46 10.58 10.81 8.91 9.66 5.49 4.04 3.59 11.13
      SO42 (mg/L) 24.85 5.50 68.65 109.40 368.30 21.20 23.65 20.03 17.38 15.06 33.05
      HCO3(mg/L) 298.2 155.0 259.5 266.6 249.2 284.1 230.0 195.7 179.2 171.7 305.1
      δ18OVSMOW (‰) ‒7.05 ‒6.05 ‒6.42 / / ‒6.95 ‒7.06 ‒6.22 ‒5.99 ‒5.92 /
      δDVSMOW (‰) ‒43.75 ‒37.84 ‒39.80 / / ‒44.16 ‒44.09 ‒38.69 ‒37.06 ‒36.78 /
      注:“/”为未检测.
      下载: 导出CSV

      表  2  马星和隔陂地热田水样矿物饱和指数

      Table  2.   Mineral saturation index (SI) of geothermal water samples in Maxing and Gepi

      采样点 水样 方解石 盐岩 白云石 硬石膏 石膏 玉髓 石英
      马星地
      热田
      ZK-1 0.59 ‒7.73 0.06 ‒2.43 ‒2.54 0.26 0.57
      ZK-2 0.38 ‒9.26 0.47 ‒3.17 ‒2.98 0.24 0.65
      ZK-9 0.50 ‒8.06 0.18 ‒2.00 ‒1.87 0.51 0.89
      FL 0.45 ‒7.61 ‒0.18 ‒1.70 ‒1.76 0.33 0.65
      SL 0.45 ‒7.60 0.25 ‒0.93 ‒0.98 ‒0.13 0.20
      LZQ 0.35 ‒7.73 ‒0.46 ‒2.66 ‒2.67 ‒0.31 0.03
      隔陂地热田 ZK-4 0.48 ‒7.72 ‒0.17 ‒2.72 ‒2.89 0.06 0.35
      ZK-5 0.53 ‒8.22 0.30 ‒2.48 ‒2.54 0.27 0.59
      ZK-6 0.61 ‒8.72 0.72 ‒2.47 ‒2.44 0.41 0.75
      ZK-8 0.66 ‒9.09 0.80 ‒2.58 ‒2.44 0.49 0.87
      KL 0.84 ‒7.60 0.54 ‒2.40 ‒2.49 0.08 0.40
      下载: 导出CSV
    • Arnórsson, S., 1983. Chemical Equilibria in Icelandic Geothermal Systems-Implications for Chemical Geothermometry Investigations. Geothermics, 12(2-3): 119-128. https://doi.org/10.1016/0375-6505(83)90022-6
      Aydin, H., Karakuş, H., Mutlu, H., 2020. Hydrogeochemistry of Geothermal Waters in Eastern Turkey: Geochemical and Isotopic Constraints on Water-Rock Interaction. Journal of Volcanology and Geothermal Research, 390: 106708. https://doi.org/10.1016/j.jvolgeores.2019.106708
      Blasco, M., Gimeno, M. J., Auqué, L. F., 2018. Low Temperature Geothermal Systems in Carbonate-Evaporitic Rocks: Mineral Equilibria Assumptions and Geothermometrical Calculations. Insights from the Arnedillo Thermal Waters (Spain). Science of the Total Environment, 615: 526-539. https://doi.org/10.1016/j.scitotenv.2017.09.269
      Chen, D., Niu, H. L., 2021. Geological Characteristics and Geothermal Exploration Direction in Yonghan Area, Longmen, Guangdong Province. Western Resources, (3): 169-171 (in Chinese with English abstract).
      Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702
      Ding, X., Su, K. L., Yan, H. B., et al., 2022. Effect of F-Rich Fluids on the A-Type Magmatism and Related Metal Mobilization: New Insights from the Fogang-Nankunshan-Yajishan Igneous Rocks in Southeast China. Journal of Earth Science, 33(3): 591-608. https://doi.org/10.1007/s12583-022-1611-7
      Fournier, R. O., 1977. Chemical Geothermometers and Mixing Models for Geothermal Systems. Geothermics, 5(1-4): 41-50. https://doi.org/10.1016/0375-6505(77)90007-4
      Fu, C. C., Li, X. Q., Ma, J. F., et al., 2018. A Hydrochemistry and Multi-Isotopic Study of Groundwater Origin and Hydrochemical Evolution in the Middle Reaches of the Kuye River Basin. Applied Geochemistry, 98: 82-93. https://doi.org/10.1016/j.apgeochem.2018.08.030
      Giggenbach, W. F., 1988. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749-2765. https://doi.org/10.1016/0016-7037(88)90143-3
      Goldscheider, N., Mádl-Szőnyi, J., Erőss, A., et al., 2010. Review: Thermal Water Resources in Carbonate Rock Aquifers. Hydrogeology Journal, 18(6): 1303-1318. https://doi.org/10.1007/s10040-010-0611-3
      Guo, Q., Pang, Z. H., Wang, Y. C., et al., 2017. Fluid Geochemistry and Geothermometry Applications of the Kangding High-Temperature Geothermal System in Eastern Himalayas. Applied Geochemistry, 81: 63-75. https://doi.org/10.1016/j.apgeochem.2017.03.007
      He, P. X., 2019. Hydrochemical Characteristics and Genesis of Thermal Fluid in a Covered Karst Geothermal Field in Longmen County, Huizhou City, Guangdong Province. Western Resources, (2): 62-64 (in Chinese with English abstract).
      Jiang, Y., Li, J., Xing, Y. F., et al., 2023. Evaluation of Geochemical Geothermometers with Borehole Geothermal Measurements: A Case Study of the Xiong'an New Area. Earth Science, 48(3): 958-972. (in Chinese with English abstract).
      Li, J. X., Sagoe, G., Li, Y. L., 2020. Applicability and Limitations of Potassium-Related Classical Geothermometers for Crystalline Basement Reservoirs. Geothermics, 84: 101728. https://doi.org/10.1016/j.geothermics.2019.101728
      Li, J. X., Sagoe, G., Yang, G., et al., 2018. Evaluation of Mineral-Aqueous Chemical Equilibria of Felsic Reservoirs with Low-Medium Temperature: A Comparative Study in Yangbajing Geothermal Field and Guangdong Geothermal Fields. Journal of Volcanology and Geothermal Research, 352: 92-105. https://doi.org/10.1016/j.jvolgeores.2018.01.008
      Li, J. X., Wu, Z. H., Tian, G. H., et al., 2022. Processes Controlling the Hydrochemical Composition of Geothermal Fluids in the Sandstone and Dolostone Reservoirs Beneath the Sedimentary Basin in North China. Applied Geochemistry, 138: 105211. https://doi.org/10.1016/j.apgeochem.2022.105211
      Lin, W. J., Wang, G. L., Gan, H. N., et al., 2022. Heat Generation and Accumulation for Hot Dry Rock Resources in the Igneous Rock Distribution Areas of Southeastern China. Lithosphere, 2021(Special 5): 2039112. https://doi.org/10.2113/2022/2039112
      Luo, J., Li, Y. M., Tian, J. A., et al., 2022. Geochemistry of Geothermal Fluid with Implications on Circulation and Evolution in Fengshun-Tangkeng Geothermal Field, South China. Geothermics, 100: 102323. https://doi.org/10.1016/j.geothermics.2021.102323
      Mao, X. M., Zhu, D. B., Ndikubwimana, I., et al., 2021. The Mechanism of High-Salinity Thermal Groundwater in Xinzhou Geothermal Field, South China: Insight from Water Chemistry and Stable Isotopes. Journal of Hydrology, 593: 125889. https://doi.org/10.1016/j.jhydrol.2020.125889
      Pang, Z. H., Reed, M., 1998. Theoretical Chemical Thermometry on Geothermal Waters: Problems and Methods. Geochimica et Cosmochimica Acta, 62(6): 1083-1091. https://doi.org/10.1016/S0016-7037(98)00037-4
      Pang, Z. H., Kong, Y. L., Li, J., et al., 2017. An Isotopic Geoindicator in the Hydrological Cycle. Procedia Earth and Planetary Science, 17: 534-537. https://doi.org/10.1016/j.proeps.2016.12.135
      Qiu, X. L., Wang, Y., Wang, Z. Z., et al., 2018. Determining the Origin, Circulation Path and Residence Time of Geothermal Groundwater Using Multiple Isotopic Techniques in the Heyuan Fault Zone of Southern China. Journal of Hydrology, 567: 339-350. https://doi.org/10.1016/j.jhydrol.2018.10.010
      Reed, M., Spycher, N., 1984. Calculation of pH and Mineral Equilibria in Hydrothermal Waters with Application to Geothermometry and Studies of Boiling and Dilution. Geochimica et Cosmochimica Acta, 48(7): 1479-1492. https://doi.org/10.1016/0016-7037(84)90404-6
      Shi, Z. D., Mao, X. M., Ye, J. Q., et al., 2024. Analysis of Source of Sodium of Low-Salinity High-Sodium Geothermal Water in Huangshadong Geothermal Field from the East Guangdong. Earth Science, 49(1): 288-298 (in Chinese with English abstract).
      Sun, H. Y., Sun, X. M., Wei, X. F., et al., 2023. Geochemical Characteristics and Origin of Nuanquanzi Geothermal Water in Yudaokou, Chengde, Hebei, North China. Journal of Earth Science, 34(3): 838-856. https://doi.org/10.1007/s12583-022-1635-z
      Wang, J. L., Jin, M. G., Jia, B. J., et al., 2015. Hydrochemical Characteristics and Geothermometry Applications of Thermal Groundwater in Northern Jinan, Shandong, China. Geothermics, 57: 185-195. https://doi.org/10.1016/j.geothermics.2015.07.002
      Wang, S. A., Kuang, J. A., Huang, X. L., et al., 2022. Upwelling of Mantle-Derived Material in Southeast China: Evidence from Noble Gas Isotopes. Acta Geologica Sinica-English Edition, 96(1): 100-110. https://doi.org/10.1111/1755-6724.14686
      Wang, X. A., Lu, G. P., Hu, B. X., 2018. Hydrogeochemical Characteristics and Geothermometry Applications of Thermal Waters in Coastal Xinzhou and Shenzao Geothermal Fields, Guangdong, China. Geofluids, 2018: 1-24. https://doi.org/10.1155/2018/8715080
      Xi, Y. F., Wang, G. L., Liu, S., et al., 2018. The Formation of a Geothermal Anomaly and Extensional Structures in Guangdong, China: Evidence from Gravity Analyses. Geothermics, 72: 225-231. https://doi.org/10.1016/j.geothermics.2017.11.009
      Xiao, Z. C., Wang, S., Qi, S. H., et al., 2020. Petrogenesis, Tectonic Evolution and Geothermal Implications of Mesozoic Granites in the Huangshadong Geothermal Field, South China. Journal of Earth Science, 31(1): 141-158. https://doi.org/10.1007/s12583-019-1242-9
      Xiao, Z. C., Wang, S., Qi, S. H., et al., 2023. Crustal Thermo-Structure and Geothermal Implication of the Huangshadong Geothermal Field in Guangdong Province. Journal of Earth Science, 34(1): 194-204. https://doi.org/10.1007/s12583-021-1486-z
      Xu, Z. K., Xu, S. G., Zhang, S. T., 2021. Hydro-Geochemistry of Anning Geothermal Field and Flow Channels Inferring of Upper Geothermal Reservoir. Earth Science, 46(11): 4175-4187 (in Chinese with English abstract).
      Yan, X. X., Gan, H. N., Yue, G. F., 2019. Hydrogeochemical Characteristics and Genesis of Typical Geothermal Fileds from Huangshadong to Conghua in Guangdong. Geological Review, 65(3): 743-754 (in Chinese)
      Yan, X. X., Lin, W. J., Gan, H. N., et al., 2019. Hydrogeochemical Characteristics of Huangshadong Geothermal Filed in Guangdong. IOP Conference Series: Earth and Environmental Science, 237: 032128. https://doi.org/10.1088/1755-1315/237/3/032128
      Yang, P. H., Dan, L., Groves, C., et al., 2019a. Geochemistry and Genesis of Geothermal Well Water from a Carbonate-Evaporite Aquifer in Chongqing, SW China. Environmental Earth Sciences, 78(1): 33. https://doi.org/10.1007/s12665-018-8004-3
      Yang, P. H., Luo, D., Hong, A. H., et al., 2019b. Hydrogeochemistry and Geothermometry of the Carbonate-Evaporite Aquifers Controlled by Deep-Seated Faults Using Major Ions and Environmental Isotopes. Journal of Hydrology, 579: 124116. https://doi.org/10.1016/j.jhydrol.2019.124116
      Zhang, M., Kuang, J., Xiao, Z. C., et al., 2021. Geological Evolution since the Yanshanian in Huizhou, Guangdong Province: New Implications for the Tectonics of South China. Earth Science, 46(1): 242-258 (in Chinese with English abstract).
      Zhang, Y., Luo, J., Feng, J. Y., 2020. Characteristics of Geothermal Reservoirs and Utilization of Geothermal Resources in the Southeastern Coastal Areas of China. Journal of Groundwater Science and Engineering, 8(2): 134-142. https://doi.org/10.19637/j.cnki.2305-7068.2020.02.005
      Zhou, Z. M., Ma, C. Q., Qi, S. H., et al., 2020. Late Mesozoic High-Heat-Producing (HHP) and High- Temperature Geothermal Reservoir Granitoids: The most Significant Geothermal Mechanism in South China. Lithos, 366-367: 105568. https://doi.org/10.1016/j.lithos.2020.105568
      Zhu, X., Wang, G. L., Ma, F., et al., 2021. Hydrogeochemistry of Geothermal Waters from Taihang Mountain-Xiongan New Area and Its Indicating Significance. Earth Science, 46(7): 2594-2608 (in Chinese with English abstract).
      陈东, 牛慧麟, 2021. 广东龙门永汉地区地质特征及地热勘探方向. 西部资源, (3): 169-171. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZY202103059.htm
      何沛欣, 2019. 广东省惠州市龙门县某覆盖型岩溶地热田地热流体水化学特征及其成因. 西部资源, (2): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZY201902030.htm
      姜颖, 李捷, 邢一飞, 等, 2023. 基于钻孔测温的地球化学温度计适宜性评价: 以雄安新区为例. 地球科学, 48(3): 958-972. doi: 10.3799/dqkx.2022.385
      史自德, 毛绪美, 叶建桥, 等, 2024. 中低温地热系统低盐度地热水高含量钠的地球化学成因研究: 以广东惠州黄沙洞地热田为例. 地球科学, 49(1): 288-298. doi: 10.3799/dqkx.2022.170
      徐梓矿, 徐世光, 张世涛, 2021. 安宁地热田浅部热储水化学特征及补给通道位置. 地球科学, 46(11): 4175-4187. doi: 10.3799/dqkx.2020.401
      闫晓雪, 甘浩男, 岳高凡, 2019. 广东惠州‒从化典型地热田水文地球化学特征及成因分析. 地质论评, 65(3): 743-754. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201903020.htm
      张敏, 旷健, 肖志才, 等, 2021. 广东惠州燕山期以来地质构造演化: 对华南构造的新启示. 地球科学, 46(1): 242-258. doi: 10.3799/dqkx.2020.016
      朱喜, 王贵玲, 马峰, 等, 2021. 太行山‒雄安新区蓟县系含水层水文地球化学特征及意义. 地球科学, 46(7): 2594-2608. doi: 10.3799/dqkx.2020.207
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  92
    • HTML全文浏览量:  36
    • PDF下载量:  25
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-07-22
    • 网络出版日期:  2024-04-12
    • 刊出日期:  2024-03-25

    目录

      /

      返回文章
      返回