Distribution and Controlling Factors of Dolostone in Lower Cambrian Longwangmiao Formation, Sichuan Basin
-
摘要: 白云岩的强抗压溶能力是龙王庙组深层‒超深层碳酸盐岩储层孔隙保存的关键,但现今发现龙王庙组白云岩时空分布存在较大差异,为了完善龙王庙组白云岩储层的分布预测,白云岩类型与分布、白云岩化机制与模式成为期待解决的关键问题.运用岩石学、沉积学、层序地层学和地球化学,围绕白云岩发育分布,取得了以下认识.四川盆地龙王庙组发育五类与白云岩化相关的岩石类型.白云岩的时空分布受古地貌和海平面升降的控制,平面上,白云岩主要分布在川中古隆起和川北中部;垂向上,白云岩分布受三级和四级海平面升降控制,三级层序中上部的四级层序白云岩化程度高;白云岩化流体为海水或一定蒸发程度的海水,并建立了三种准同生白云岩化模式.Abstract: The strong pressure dissolution resistance of dolostone is the key to the preservation of deep-ultra-deep carbonate reservoirs in the Longwangmiao Formation. However, it is found that there are great differences in the spatial and temporal distribution of dolostone in the Longwangmiao Formation. In order to improve the distribution prediction of dolostone reservoir in the Longwangmiao Formation, the type and distribution of dolostone, dolomitization mechanism and model have become the key issues to be solved. Based on petrology, sedimentology, sequence stratigraphy and geochemistry, this study focuses on the development and distribution of dolostone in the Longwangmiao Formation, Sichuan Basin. As a result, the following understandings are obtained. Five rock types related to dolostone have been identified in the Longwangmiao Formation, Sichuan Basin. The spatial and temporal distribution of dolostone is controlled by the paleogeomorphology and the sea level fluctuation. The dolostone is mainly distributed in the central Sichuan uplift and the central part of northern Sichuan Basin. The vertical distribution of dolostone is controlled by the coupling of the 3rd order and 4th order sea level change. The 4th order sequence, located in the middle and upper parts of the 3rd order sequence, has high dolomitization degree. The dolomitization fluid in the Longwangmiao Formation is seawater or seawater with a certain degree of evaporation, and three penecontemporaneous dolomitization models are established in the Longwangmiao Formation.
-
图 1 四川盆地龙王庙组沉积相与寒武系地层柱状图(据杜金虎等,2015;杨伟强等,2020修改)
Fig. 1. Sedimentary facies of the Longwangmiao Formation and Cambrian stratigraphic histogram of the Sichuan Basin (modified after Du et al., 2015; Yang et al., 2020)
图 2 四川盆地龙王庙组白云岩显微薄片照片
a.砂质白云岩,单偏光,福成;b.照片a同视域阴极光下照片,陆源碎屑石英不发光或者发蓝色光,福成;c.白云质砂岩,单偏光,正源;d.照片c同视域阴极光下照片,陆源碎屑石英不发光,正源;e.泥粉晶白云岩,单偏光,杨坝;f.照片e同视域阴极光下照片,整体发光较暗,杨坝;g.细晶白云岩,单偏光,福成;h.照片g同视域阴极光下照片,整体不发光,福成;i.鲕粒颗粒白云岩,单偏光,高石10;j.照片i同一视域阴极光下照片,鲕粒发光较暗,粒间胶结物发光较亮,高石10;k.砂屑颗粒白云岩,单偏光,杨坝;l.照片k同视域阴极光下照片,整体发光较暗,部分颗粒稍亮,杨坝;m.砂屑白云质灰岩,单偏光,福成;n.照片m同视域阴极光下照片,整体发光较暗,云化颗粒发光较亮,福成;o.泥晶白云质灰岩,单偏光,板凳沟;p.照片o同视域阴极光下照片,整体发光较暗,云化部分发光稍亮,板凳沟
Fig. 2. Microscopic photos of the dolostone of the Longwangmiao Formation, Sichuan Basin
表 1 四川盆地龙王庙组δ18O、δ13C、 87Sr/86Sr数据
Table 1. δ18O, δ13C, 87Sr/86Sr of the Longwangmiao Formation, Sichuan Basin
样品
编号岩性 δ18O(‰) δ13C(‰) 87Sr/86Sr 样品
编号岩性 δ18O(‰) δ13C(‰) 87Sr/86Sr BDG-1 白云质灰岩 ‒9.1 0.1 0.709 7 GS10-1 泥粉晶白云岩 ‒7.0 ‒0.1 0.709 4 BDG-2 白云质灰岩 ‒9.1 0.2 0.709 0 GS10-2 颗粒白云岩 ‒6.9 0.1 / BDG-3 白云质灰岩 ‒7.4 0.4 0.709 4 GS10-3 颗粒白云岩 ‒7.1 ‒0.1 0.709 4 BDG-4 灰岩 / / 0.709 1 GS10-4 颗粒白云岩 ‒7.4 ‒0.2 / BDG-5 泥粉晶白云岩 ‒6.6 ‒0.5 0.709 2 GS10-5 颗粒白云岩 ‒7.4 ‒0.2 / BDG-6 泥粉晶白云岩 ‒7.0 0.1 0.709 5 GS10-6 颗粒白云岩 ‒7.5 ‒0.1 0.709 4 BDG-7 灰岩 ‒7.0 0.6 0.709 1 GS10-7 颗粒白云岩 ‒7.1 ‒0.1 0.709 4 FC-1 颗粒白云岩 ‒7.6 0.1 0.711 9 GS10-8 颗粒白云岩 ‒7.3 ‒0.2 / FC-2 颗粒白云岩 ‒7.0 0.7 / GS10-9 颗粒白云岩 ‒7.2 ‒0.2 / FC-3 云质混积岩 ‒8.1 0.8 / GS10-10 颗粒白云岩 ‒7.4 ‒0.2 / FC-4 泥粉晶白云岩 ‒8.0 0.4 0.722 2 GS10-11 泥粉晶白云岩 ‒7.2 0.1 / FC-5 云质混积岩 ‒7.7 1.4 / GS10-12 颗粒白云岩 ‒7.9 ‒0.7 0.710 5 FC-6 云质混积岩 ‒8.4 0.6 0.716 7 GS10-13 云质混积岩 ‒7.8 ‒0.9 / FC-7 泥粉晶白云岩 ‒7.6 ‒0.2 / GS10-14 泥粉晶白云岩 ‒7.3 ‒1.0 / FC-8 颗粒白云岩 ‒8.1 0.1 / GS10-15 颗粒白云岩 ‒7.4 ‒0.9 / FC-9 颗粒白云岩 ‒6.3 0.6 / GS10-16 颗粒白云岩 ‒7.2 ‒1.1 / FC-10 细中晶白云岩 ‒7.5 0.6 / GS10-17 云质混积岩 ‒7.5 ‒1.2 0.711 8 FC-11 白云质灰岩 ‒8.1 0.1 0.708 9 GS10-18 颗粒白云岩 ‒7.3 ‒0.6 / FC-12 白云质灰岩 ‒7.7 ‒0.3 / GS10-19 颗粒白云岩 ‒7.8 0.1 / FC-13 泥粉晶白云岩 ‒7.0 0.3 / GS10-20 颗粒白云岩 ‒6.3 ‒0.6 0.714 9 FC-14 颗粒白云岩 ‒7.8 ‒0.1 / GS10-21 泥粉晶白云岩 ‒7.5 0.3 / FC-15 泥粉晶白云岩 ‒7.3 0.1 0.710 0 GS10-22 泥粉晶白云岩 ‒7.9 0.1 0.709 9 FC-16 白云质灰岩 ‒8.3 0.1 / GS10-23 颗粒白云岩 ‒7.6 0.1 / FC-17 白云质灰岩 ‒8.6 ‒0.2 / GS10-24 颗粒白云岩 ‒7.5 0.1 / FC-18 泥粉晶白云岩 ‒6.9 0.6 / GS10-25 颗粒白云岩 ‒7.5 0.1 0.710 9 FC-19 泥粉晶白云岩 ‒6.5 ‒0.5 0.711 4 GS10-26 颗粒白云岩 ‒7.9 ‒0.6 0.710 9 FC-20 泥粉晶白云岩 ‒4.1 ‒0.4 / GS10-27 颗粒白云岩 ‒7.6 0.2 / FC-21 白云质灰岩 ‒7.8 ‒0.2 / GS10-28 泥粉晶白云岩 ‒7.5 0.3 / FC-22 泥粉晶白云岩 ‒5.3 ‒1.0 / GS10-29 泥粉晶白云岩 ‒7.5 ‒0.1 / FC-23 白云质灰岩 ‒9.5 ‒1.4 / GS10-30 颗粒白云岩 ‒7.4 0.1 0.709 5 FC-24 颗粒白云岩 ‒6.4 ‒1.7 0.711 0 GS10-31 颗粒白云岩 ‒7.0 0.3 / FC-25 颗粒白云岩 ‒6.3 ‒0.9 / GS10-32 颗粒白云岩 ‒7.0 ‒0.1 / FC-26 白云质灰岩 ‒6.6 ‒0.3 / GS10-33 颗粒白云岩 ‒7.1 0.4 / FC-27 泥粉晶白云岩 ‒5.9 ‒0.7 / MX12-1 颗粒白云岩 ‒6.3 ‒0.8 0.710 6 FC-28 颗粒白云岩 ‒6.9 ‒1.4 / MX12-2 颗粒白云岩 ‒5.2 0.5 0.709 7 FD-1 颗粒白云岩 ‒6.8 ‒0.9 0.709 5 MX12-3 细中晶白云岩 ‒6.8 ‒0.8 0.709 7 FD-2 颗粒白云岩 ‒6.7 ‒0.6 0.709 8 MX12-4 泥粉晶白云岩 ‒5.5 ‒0.3 0.709 7 FD-3 云质混积岩 ‒7.8 ‒0.7 0.710 9 MX12-5 泥粉晶白云岩 ‒6.0 ‒0.4 / FD-4 泥粉晶白云岩 ‒6.2 ‒0.6 / MX12-6 颗粒白云岩 ‒6.0 ‒0.3 / FD-5 泥粉晶白云岩 ‒6.9 ‒0.7 0.709 2 MX12-7 泥粉晶白云岩 ‒5.9 ‒0.1 / FD-6 泥粉晶白云岩 ‒6.4 ‒0.7 0.709 0 MX12-8 颗粒白云岩 ‒6.1 0.1 0.710 0 FD-7 泥粉晶白云岩 ‒6.8 ‒1.4 / MX12-9 颗粒白云岩 ‒6.5 ‒0.5 / FD-8 泥粉晶白云岩 ‒6.6 ‒0.5 / MX12-10 颗粒白云岩 ‒7.0 ‒1.0 0.710 1 MZW-1 白云质灰岩 ‒8.8 2.5 / MX12-11 颗粒白云岩 ‒6.1 0.1 / MZW-2 灰岩 ‒8.6 4.1 / MX12-12 颗粒白云岩 ‒6.5 ‒0.3 / MZW-3 灰岩 ‒9.1 0.8 0.710 0 MX12-13 颗粒白云岩 ‒6.1 ‒1.2 0.711 0 MZW-4 白云质灰岩 ‒8.3 1.1 0.709 4 MX12-14 泥粉晶白云岩 ‒6.1 0.2 0.715 3 MZW-5 白云质灰岩 ‒9.2 0.1 / MX12-15 颗粒白云岩 ‒6.3 ‒0.1 0.714 5 MZW-6 灰岩 ‒8.8 0.7 0.709 8 MX12-16 颗粒白云岩 ‒6.2 ‒0.4 / MZW-7 灰岩 ‒9.1 0.5 / MX12-17 颗粒白云岩 ‒6.0 ‒0.8 / MZW-8 灰岩 ‒8.4 2.8 0.709 1 MX12-18 颗粒白云岩 ‒6.0 ‒0.5 / MZW-9 泥粉晶白云岩 ‒8.3 2.7 / MX12-19 泥粉晶白云岩 ‒7.1 ‒0.3 / MZW-10 白云质灰岩 ‒8.1 2.7 / MX12-20 泥粉晶白云岩 ‒7.5 ‒0.1 / MZW-11 白云质灰岩 ‒8.3 2.8 / MX12-21 颗粒白云岩 ‒6.2 ‒0.2 / MZW-12 颗粒白云岩 ‒6.9 2.9 0.709 8 MZW-19 白云质灰岩 ‒7.5 1.6 / MZW-13 白云质灰岩 ‒7.3 2.7 / MZW-20 白云质灰岩 ‒6.6 ‒0.2 / MZW-14 颗粒白云岩 ‒6.6 2.9 0.710 0 MZW-21 泥粉晶白云岩 ‒4.1 0.9 0.709 0 MZW-15 白云质灰岩 ‒7.5 3.2 / MZW-22 白云质灰岩 ‒7.1 1.9 0.709 1 MZW-16 灰岩 ‒8.1 2.7 / MZW-23 灰岩 ‒6.9 ‒1.0 0.709 8 MZW-17 灰岩 ‒7.8 2.2 0.709 3 MZW-24 泥粉晶白云岩 ‒3.5 1.4 / MZW-18 灰岩 ‒7.6 1.7 0.709 1 YB-11 泥粉晶白云岩 ‒5.0 0.6 / YB-1 颗粒白云岩 ‒5.8 0.7 0.709 4 YB-12 颗粒白云岩 ‒5.6 ‒0.6 0.710 2 YB-2 颗粒白云岩 ‒6.4 0.5 / YB-13 颗粒白云岩 ‒5.9 ‒1.5 / YB-3 颗粒白云岩 ‒6.4 1.0 0.709 5 YB-14 颗粒白云岩 ‒6.0 ‒1.4 0.709 3 YB-4 颗粒白云岩 ‒5.3 0.6 / YB-15 泥粉晶白云岩 ‒5.2 ‒0.8 / YB-5 细中晶白云岩 ‒5.4 0.4 / YB-16 颗粒白云岩 ‒5.6 ‒1.4 / YB-6 泥粉晶白云岩 ‒5.0 ‒0.2 / YB-17 颗粒白云岩 ‒5.8 ‒1.2 0.710 1 YB-7 颗粒白云岩 ‒5.5 ‒0.3 0.709 7 YB-18 泥粉晶白云岩 ‒5.3 ‒1.2 / YB-8 颗粒白云岩 ‒5.9 0.8 / YB-19 颗粒白云岩 ‒5.2 ‒0.9 0.709 6 YB-9 泥粉晶白云岩 ‒6.0 0.4 0.710 4 YB-20 颗粒白云岩 ‒5.3 ‒1.6 0.709 9 YB-10 颗粒白云岩 ‒6.0 ‒2.5 / 表 2 四川盆地龙王庙组不同岩石类型地球化学特征
Table 2. Geochemical characteristics of different rock types in the Longwangmiao Formation, Sichuan Basin
白云石含量(%) 有序度 δ18O(PDB,‰) δ13C(PDB,‰) 87Sr/86Sr 灰质混积岩 / / ‒8.4(‒6.4~‒9.8) ‒0.9(‒4.3~0.6) / 云质混积岩 57.7(39.5~75.7) 0.62(0.5~0.75) ‒8.2(‒7.2~‒9.7) 0(‒1.2~1.4) 0.714 3(0.710 9~0.722 1) 泥粉晶白云岩 91.5(76.8~99.7) 0.62/0.36~0.83 ‒6.4(‒3.5~‒7.9) ‒0.5(‒2.1~1.4) 0.709 7/(0.708 6~0.710 9) 颗粒白云岩 95.5(82.1~100) 0.65/0.43~0.84 ‒6.8(‒5.0~‒8.7) ‒0.3(‒2.5~2.9) 0.710 4(0.709 1~0.714 9) 细中晶白云岩 94.9(87.6~100) 0.73/0.63~0.85 ‒6.8(‒5.0~‒8.0) ‒0.2(‒1.2~1.0) 0.710 8(0.709 3~0.715 3) 白云质灰岩 42.2(18~67.7) 0.46/0.26~0.65 ‒7.9(‒5.8~‒9.9) 0(‒2.0~3.2) 0.709 3(0.708 9~0.709 8) 灰岩 / / ‒8.1(‒5.5~‒9.8) 0.5(‒1.4~4.1) 0.709 3(0.708 2~0.710 1) 表 3 碳酸盐岩87Sr/86Sr来源及龙王庙组白云岩、灰岩87Sr/86Sr平均值
Table 3. Sources of 87Sr/86Sr in carbonate rocks and the mean value of 87Sr/86Sr in dolostone and limestone of the Longwangmiao Formation
来源 数值 寒武纪海水中的87Sr/86Sr 0.708 7~0.709 5 海底玄武岩和海底热液的87Sr/86Sr 0.704 0 古老硅铝质陆壳风化产物的87Sr/86Sr 0.720 0 海相碳酸盐岩风化提供的87Sr/86Sr 0.708 0 龙王庙组白云岩87Sr/86Sr均值 0.710 3 龙王庙组灰岩87Sr/86Sr均值 0.709 1 -
Du, J. H., Wang, Z. C., Zou, C. N., et al., 2015. Geologic Theory and Exploration Practice of Ancient Large Carbonates Gas Field. Petroleum Industry Press, Beijing (in Chinese). Gao, D., Hu, M. Y., Li, A. P., et al., 2021. High-Frequency Sequence and Microfacies and Their Impacts on Favorable Reservoir of Longwangmiao Formation in Central Sichuan Basin. Earth Science, 46(10): 3520-3534 (in Chinese with English abstract). Han, B., Li, X., Zhong, X. Q., et al., 2021. Reservoir Characteristics and Dolomitization of Carbonate in Lower Cambrian Longwangmiao Formation in the Middle and Upper Yangtze Area. Journal of Xi'an Shiyou University (Natural Science Edition), 36(1): 1-12 (in Chinese with English abstract). Heydari, E., Moore, C, H., 1993. Zonation and Geochemical Patterns of Burial Calcite Cements: Upper Smackover Formation, Clarke County, Mississippi. Journal of Sedimentary Research, 63(1): 44-60. https://doi.org/10.1306/D4267A87-2B26-11D7-8648000102C1865D Huang, L., 2012. Major Controlling Factors of Cambrian Qingxudong Formation High-Quality Reservoir in Downwarp-Fold Belt of Southeast Sichuan Basin. Natural Gas Geoscience, 23(3): 508-513 (in Chinese with English abstract). Jones, G. D., Xiao, Y. T., 2005. Dolomitization, Anhydrite Cementation, and Porosity Evolution in a Reflux System: Insights from Reactive Transport Models. AAPG Bulletin, 89(5): 577-601. https://doi.org/10.1306/12010404078 Li, B. K., 2016. Dolomite Cathodoluminescence Characteristics and Diagenesis of the Lower Cambrian Longwangmiao Formation in the Central Region of Sichuan Basin (Dissertation). Chengdu University of Technology, Chengdu, 18-36 (in Chinese with English abstract). Li, J., He, D. F., 2014. Palaeogeography and Tectonic-Depositional Environment Evolution of the Cambrian in Sichuan Basin and Adjacent Areas. Journal of Palaeogeography, 16(4): 441-460 (in Chinese with English abstract). Liu, D. W., Cai, C. F., Hu, Y. J., et al., 2021. Multistage Dolomitization and Formation of Ultra-Deep Lower Cambrian Longwangmiao Formation Reservoir in Central Sichuan Basin, China. Marine and Petroleum Geology, 123: 104752. https://doi.org/10.1016/j.marpetgeo.2020.104752 Liu, N., 2015. The Study of Dolomite Reservoir Genesis in the Longwangmiao Formation of Lower Cambrian in the Central and Southern Sichuan Basin (Dissertation). Chengdu University of Technology, Chengdu, 57-85 (in Chinese with English abstract). Liu, S. G., Song, J. M., Zhao, Y. H., et al., 2014. Controlling Factors of Formation and Distribution of Lower Cambrian Longwangmiao Formation High-Quality Reservoirs in Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 41(6): 657-670 (in Chinese with English abstract). Liu, S. G., Yang, Y., Deng, B., et al., 2020. Tectonic Evolution of the Sichuan Basin, Southwest China. Earth-Science Reviews, 213: 103470. https://doi.org/10.1016/j.earscirev.2020.103470 Liu, Z. B., Xing, F. C., Hu, H. R., et al., 2021. Multi- Origin of Dolomite in Lower Ordovician Tongzi Formation of Sichuan Basin, Western China. Earth Science, 46(2): 583-599 (in Chinese with English abstract). McKenzie, J. A., 1981. Holocene Dolomitization of Calcium Carbonate Sediments from the Coastal Sabkhas of Abu Dhabi, U. A. E. : A Stable Isotope Study. The Journal of Geology, 89(2): 185-198. https://doi.org/10.1086/628579 Mei, Q. H., He, D. F., Wen, Z., et al., 2014. Geologic Structure and Tectonic Evolution of Leshan-Longnvsi Paleo-Uplift in Sichuan Basin, China. Acta Petrolei Sinica, 35(1): 11-25 (in Chinese with English abstract). doi: 10.1038/aps.2013.142 Moore, C, H., Wade, W. J., 2013. Carbonate Reservoirs: Porosity and Diagenesis in a Sequence Stratigraphic Framework. Newnes, 200-240. https://doi.org/10.1016/B978-0-444-53831-4.00010-0 Niu, Z. H., 2018. Reservoir Characteristics and Control Factors of the Lower Cambrian Longwangmiao Formation in Northern Sichuan Basin (Dissertation). Chengdu University of Technology, Chengdu, 39-57 (in Chinese with English abstract). Ren, N. N., Han, B., Zhang, J. T., et al., 2018. Study on Correlation between Carbonate Reservoirs and Transgression or Regression of Sea Water, Uplifting or Sinking of Shoal Flat, and Dolomitized Karst—A Case Study of the Longwangmiao Formation of the Yangtze Platform. Acta Sedimentologica Sinica, 36(6): 1190-1205 (in Chinese with English abstract). Ren, Y., Zhong, D. K., Gao, C. L., et al., 2016. Geochemical Characteristics, Genesis and Hydrocarbon Significance of Dolomite in the Cambrian Longwangmiao Formation, Eastern Sichuan Basin. Acta Petrolei Sinica, 37(9): 1102-1115 (in Chinese with English abstract). Ren, Y., Zhong, D. K., Gao, C. L., et al., 2019. The Paleoenvironmental Evolution of the Cambrian Longwangmiao Formation (Stage 4, Toyonian) on the Yangtze Platform, South China: Petrographic and Geochemical Constrains. Marine and Petroleum Geology, 100: 391-411. https://doi.org/10.1016/j.marpetgeo.2018.10.022 Saller, A. H., Henderson, N., 1998. Distribution of Porosity and Permeability in Platform Dolomites: Insight from the Permian of West Texas. AAPG Bulletin, 82(8): 1528-1550. https://doi.org/10.1306/1D9BCB01- 172D-11D7-8645000102C1865D doi: 10.1306/1D9BCB01-172D-11D7-8645000102C1865D Shen, A. J., Chen, Y. N., Pan, L. Y., et al., 2018. Facies and Porosity Origin of Reservoirs: Case Studies from the Cambrian Longwangmiao Formation of Sichuan Basin, China, and Their Implications on Reservoir Prediction. Journal of Natural Gas Geoscience, 3(1): 37-49. https://doi.org/10.1016/j.jnggs.2018.03.003 Tian, Y. H., Liu, S. G., Zhao, Y. H., et al., 2015. Formation Mechanism of High Quality Longwangmiao Reservoir from Central Sichuan Basin. Journal of Guilin University of Technology, 35(2): 217-226 (in Chinese with English abstract). Wahlman, G. P., Day-Stirrat, R., Janson, X., et al., 2010. Reflux Dolomite Crystal Size Variation in Cyclic Inner Ramp Reservoir Facies, Bromide Formation (Ordovician) Arkoma Basin, Southeastern Oklahoma. The Sedimentary Record, 8(3): 4-9. https://doi.org/10.2110/sedred.2010.3.4 Warren, J., 2000. Dolomite: Occurrence, Evolution and Economically Important Associations. Earth-Science Reviews, 52(1-3): 1-81. https://doi.org/10.1016/S0012-8252(00)00022-2 Wei, K. S., Xu, H. D., Ye, S. F., 1997. Sequence Stratigraphic Characteristics of Sichuan Basin. Oil & Gas Geology, 18(2): 71-77 (in Chinese). Xie, W. R., Yang, W., Li, X. Z., et al., 2018. The Origin and Influence of the Grain Beach Reservoirs of Cambrian Longwangmiao Formation in Central Sichuan Area, Sichuan Basin. Natural Gas Geoscience, 29(12): 1715-1726 (in Chinese with English abstract). Xu, Z. H., Lan, C. J., Ma, X. L., et al., 2020. Sedimentary Models and Physical Properties of Mound-Shoal Complex Reservoirs in Sinian Dengying Formation, Sichuan Basin. Earth Science, 45(4): 1281-1294 (in Chinese with English abstract). Yang, H. X., 2018. Dolomite Reservoir Characteristics and Controlling Factors of Longwangmiao Formation, Northwestern Sichuan Basin (Dissertation). Chengdu University of Technology, Chengdu, 44-55 (in Chinese with English abstract). Yang, W. Q., Liu, Z., Chen, H. R., et al., 2020. Depositional Combination of Carbonate Grain Banks of the Lower Cambrian Longwangmiao Formation in Sichuan Basin and Its Control on Reservoirs. Journal of Palaeogeography (Chinese Edition), 22(2): 251-265 (in Chinese with English abstract). Yang, W. Q., Zou, H. Y., Li, T., et al., 2022. Factors Influencing Stylolite Formation in the Cambrian Longwangmiao Formation, Sichuan Basin, SW China. Journal of Petroleum Science and Engineering, 218: 110946. https://doi.org/10.1016/j.petrol.2022.110946 Yang, X. F., Wang, Y. P., Wang, X. Z., et al., 2017. Evaluation of Dolomite Reservoirs in the Longwangmiao Formation, Lower Cambrian in Northern Sichuan Basin, China. Petroleum, 3(4): 406-413. https://doi.org/10.1016/j.petlm.2017.06.003 Yu, J. J., Song, J. M., Liu, S. G., et al., 2020. Genesis of Dolomite in the Lower Cambrian Longwangmiao Formation, Northeastern Sichuan Basin. Acta Sedimentologica Sinica, 38(6): 1284-1295 (in Chinese with English abstract). Zhang, J. Y., Luo, W. J., Zhou, J. G., et al., 2015. Main Origins of High Quality Reservoir of Lower Cambrian Longwangmiao Formation in the Giant Anyue Gas Field, Sichuan Basin, SW China. Natural Gas Geoscience, 26(11): 2063-2074 (in Chinese with English abstract). Zheng, R. C., Dang, L. R., Wen, H. G., et al., 2011. Diagenesis Characteristics and System for Dolostone in Feixianguan Formation of Northeast Sichuan. Earth Science, 36(4): 659-669 (in Chinese with English abstract). Zhou, J. G., Xu, C. C., Yao, G. S., et al., 2015. Genesis and Evolution of Lower Cambrian Longwangmiao Formation Reservoirs, Sichuan Basin, SW China. Petroleum Exploration and Development, 42(2): 175-184. https://doi.org/10.1016/S1876-3804(15)30004-5 Zhu, L. Q., Liu, G. D., Song, Z. Z., et al., 2021. The Differences in Natural Gas from the Dengying Formation in Different Areas of the North Slope of the Central Sichuan Paleo-Uplift and Its Controlling Factors— Taking Pengtan-1 and Zhongjiang-2 Wells as Examples. Petroleum Science Bulletin, 6(3): 344-355 (in Chinese with English abstract). 杜金虎, , 汪泽成, 邹才能, 等, 2015. 古老碳酸盐岩大气田地质理论与勘探实践. 北京: 石油工业出版社. 高达, 胡明毅, 李安鹏, 等, 2021. 川中地区龙王庙组高频层序与沉积微相及其对有利储层的控制. 地球科学, 46(10): 3520-3534. doi: 10.3799/dqkx.2020.382 韩波, 李新, 钟晓勤, 等, 2021. 中上扬子地区龙王庙组储层特征及白云石化作用. 西安石油大学学报(自然科学版), 36(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY202101003.htm 黄亮, 2012. 川东南坳褶带清虚洞组优质储层发育主控因素分析. 天然气地球科学, 23(3): 508-513. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201203015.htm 李北康, 2016. 川中下寒武统龙王庙组白云岩阴极发光特征与成岩流体(硕士学位论文). 成都: 成都理工大学, 18-36. 李皎, 何登发, 2014. 四川盆地及邻区寒武纪古地理与构造‒沉积环境演化. 古地理学报, 16(4): 441-460. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201404002.htm 柳妮, 2015. 川中南地区下寒武统龙王庙组白云岩储层形成机理研究(博士学位论文). 成都: 成都理工大学, 57-85. 刘树根, 宋金民, 赵异华, 等, 2014. 四川盆地龙王庙组优质储层形成与分布的主控因素. 成都理工大学学报(自然科学版), 41(6): 657-670. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201406001.htm 刘志波, 邢凤存, 胡华蕊, 等, 2021. 四川盆地下奥陶统桐梓组白云岩多元成因. 地球科学, 46(2): 583-599. doi: 10.3799/dqkx.2020.026 梅庆华, 何登发, 文竹, 等, 2014. 四川盆地乐山‒龙女寺古隆起地质结构及构造演化. 石油学报, 35(1): 11-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401002.htm 牛泽华, 2018. 川北下寒武统龙王庙组储层特征及控制因素(硕士学位论文). 成都: 成都理工大学, 39-57. 任娜娜, 韩波, 张军涛, 等, 2018. 海水进退、滩坪出没、云化岩溶等与碳酸盐岩储层关系研究——以上扬子地台龙王庙组为例. 沉积学报, 36(6): 1190-1205. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201806013.htm 任影, 钟大康, 高崇龙, 等, 2016. 川东寒武系龙王庙组白云岩地球化学特征、成因及油气意义. 石油学报, 37(9): 1102-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201609004.htm 田艳红, 刘树根, 赵异华, 等, 2015. 川中地区下寒武统龙王庙组优质储层形成机理. 桂林理工大学学报, 35(2): 217-226. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201502001.htm 魏魁生, 徐怀大, 叶淑芬, 1997. 四川盆地层序地层特征. 石油与天然气地质, 18(2): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202205002.htm 谢武仁, 杨威, 李熙喆, 等, 2018. 四川盆地川中地区寒武系龙王庙组颗粒滩储层成因及其影响. 天然气地球科学, 29(12): 1715-1726. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201812003.htm 徐哲航, 兰才俊, 马肖琳, 等, 2020. 四川盆地震旦系灯影组丘滩体储层沉积模式与物性特征. 地球科学, 45(4): 1281-1294. doi: 10.3799/dqkx.2019.138 杨怀信, 2018. 川西北龙王庙组白云岩储层特征及控制因素(硕士学位论文). 成都: 成都理工大学, 44-55. 杨伟强, 刘正, 陈浩如, 等, 2020. 四川盆地下寒武统龙王庙组颗粒滩沉积组合及其对储集层的控制作用. 古地理学报, 22(2): 251-265. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202002004.htm 余晶洁, 宋金民, 刘树根, 等, 2020. 川东北地区下寒武统龙王庙组白云岩成因分析. 沉积学报, 38(6): 1284-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202006014.htm 张建勇, 罗文军, 周进高, 等, 2015. 四川盆地安岳特大型气田下寒武统龙王庙组优质储层形成的主控因素. 天然气地球科学, 26(11): 2063-2074. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201511007.htm 郑荣才, 党录瑞, 文华国, 等, 2011. 川东北地区飞仙关组白云岩成岩作用与系统划分. 地球科学, 36(4): 659-669. doi: 10.3799/dqkx.2011.067 朱联强, 柳广弟, 宋泽章, 等, 2021. 川中古隆起北斜坡不同地区灯影组天然气差异及其影响因素——以蓬探1井和中江2井为例. 石油科学通报, 6(3): 344-355. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE202103002.htm -