• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    土壤微藻对盐胁迫的响应及其对盐渍化土壤的改良作用

    崔丽洋 谢茜 毛青 黄腾飞 刘太坤 蒋磊 李广琛 裴福文 钟兆淇

    崔丽洋, 谢茜, 毛青, 黄腾飞, 刘太坤, 蒋磊, 李广琛, 裴福文, 钟兆淇, 2023. 土壤微藻对盐胁迫的响应及其对盐渍化土壤的改良作用. 地球科学, 48(11): 4270-4278. doi: 10.3799/dqkx.2022.454
    引用本文: 崔丽洋, 谢茜, 毛青, 黄腾飞, 刘太坤, 蒋磊, 李广琛, 裴福文, 钟兆淇, 2023. 土壤微藻对盐胁迫的响应及其对盐渍化土壤的改良作用. 地球科学, 48(11): 4270-4278. doi: 10.3799/dqkx.2022.454
    Cui Liyang, Xie Xi, Mao Qing, Huang Tengfei, Liu Taikun, Jiang Lei, Li Guangchen, Pei Fuwen, Zhong Zhaoqi, 2023. Response of Soil Microalgae to Salt Stress and Its Improvement Effect on Salinized Soil. Earth Science, 48(11): 4270-4278. doi: 10.3799/dqkx.2022.454
    Citation: Cui Liyang, Xie Xi, Mao Qing, Huang Tengfei, Liu Taikun, Jiang Lei, Li Guangchen, Pei Fuwen, Zhong Zhaoqi, 2023. Response of Soil Microalgae to Salt Stress and Its Improvement Effect on Salinized Soil. Earth Science, 48(11): 4270-4278. doi: 10.3799/dqkx.2022.454

    土壤微藻对盐胁迫的响应及其对盐渍化土壤的改良作用

    doi: 10.3799/dqkx.2022.454
    基金项目: 

    国家自然科学基金面上项目 41572230

    国家自然科学基金面上项目 41172219

    详细信息
      作者简介:

      崔丽洋(1990-),男,学士,工程师,主要从事生态保护与修复方面的研究. ORCID:0000-0002-3143-7921. E-mail:1831701669@qq.com

      通讯作者:

      毛青, E-mail: 1520856787@qq.com

    • 中图分类号: P69

    Response of Soil Microalgae to Salt Stress and Its Improvement Effect on Salinized Soil

    • 摘要: 土壤盐渍化已成为世界性环境问题.为探究盐渍化土壤生物改良新技术,利用从新疆盐渍化土壤表层生物结皮中筛选的一株微藻,通过室内模拟实验,研究了该藻的耐盐性能及其对盐碱土的改良作用.结果表明:该藻具有较高的耐盐性,能够在1 mol/L NaCl溶液中存活并生长;盐胁迫降低了微藻光合色素的含量,表现出明显的梯度效应;经过18 d的培养,0.5 mol/L,1.0 mol/L,1.5 mol/L NaCl处理组中可溶性盐分别下降16.99%,9.23%,3.27%;将土壤微藻接种在高盐碱土表层,初始叶绿素a为3 μg/cm2,5 μg/cm2,8 μg/cm2土壤的实验组,经过20 d培育后,土壤含水率分别增加了29.41%,38.29%,39.54%,胞外聚合物(EPS)分别增加了82.84%,86.04%,116.06%.说明土壤微藻具有降低可溶性盐分,控制土壤盐分运移,以及保持土壤水分的作用.该研究为土壤藻改良盐渍化土壤提供重要的理论依据.

       

    • 图  1  盐胁迫下土壤微藻的生长

      Fig.  1.  Growth of soil microalgae under salt stress

      图  2  盐胁迫下土壤微藻色素含量变化

      Fig.  2.  Changes of soil microalgae pigment content under salt stress

      图  3  微藻对盐胁迫液态环境pH (a)和EC (b)的影响

      Fig.  3.  Effects of microalgae on pH (a) and EC (b) in liquid environment under salt stress

      图  4  微藻对液态环境中可溶性全盐的影响

      Fig.  4.  Effect of microalgae on soluble total salt in liquid environment

      图  5  土壤中微藻生物量的变化

      Fig.  5.  Changes of microalgae biomass in soil

      图  6  微藻生长对土壤pH (a)和EC (b)的影响

      Fig.  6.  Effects of microalgae growth on soil pH (a) and EC (b)

      图  7  土壤含水率的变化

      Fig.  7.  Changes of soil moisture content

      图  8  土壤中EPS的变化

      Fig.  8.  Changes of EPS in soil

    • Alvarez, A. L., Weyers, S. L., Goemann, H. M., et al., 2021. Microalgae, Soil and Plants: A Critical Review of Microalgae as Renewable Resources for Agriculture. Algal Research, 54: 102200. https://doi.org/10.1016/j.algal.2021.102200
      Arp, G., Reimer, A., Reitner, J., 1999. Calcification in Cyanobacterial Biofilms of Alkaline Salt Lakes. European Journal of Phycology, 34(4): 393-403. https://doi.org/10.1017/S0967026299002292
      Castle, S. C., Morrison, C. D., Barger, N. N., 2011. Extraction of Chlorophyll α from Biological Soil Crusts: A Comparison of Solvents for Spectrophotometric Determination. Soil Biology & Biochemistry, 43(4): 853-856. https://doi.org/10.1016/j.soilbio.2010.11.025
      Chamizo, S., Cantón, Y., Lázaro, R., et al., 2013. The Role of Biological Soil Crusts in Soil Moisture Dynamics in Two Semiarid Ecosystems with Contrasting Soil Textures. Journal of Hydrology, 489: 74-84. https://doi.org/10.1016/j.jhydrol.2013.02.051
      Chen, L., Li, D., Liu, Y., 2003. Salt Tolerance of Microcoleus Vaginatus Gom., a Cyanobacterium Isolated from Desert Algal Crust, was Enhanced by Exogenous Carbohydrates. Journal of Arid Environments, 55(4): 645-656. https://doi.org/10.1016/S0140-1963(02)00292-6
      Chen, L. Z., Liu, Y. D., Song, L. R., 2002. The Function of Exopolysaccharides of Microcoleus in the Formation of Desert Soil. Acta Hydrobiologica Sinica, 26(2): 155-159 (in Chinese with English abstract).
      Demidchik, V., Straltsova, D., Medvedev, S. S., et al., 2014. Stress-Induced Electrolyte Leakage: The Role of K+-Permeable Channels and Involvement in Programmed Cell Death and Metabolic Adjustment. Journal of Experimental Botany, 65(5): 1259-1270. https://doi.org/10.1093/jxb/eru004
      De Philippis, R., Paperi, R., Sili, C., et al., 2003. Assessment of the Metal Removal Capability of Two Capsulated Cyanobacteria, Cyanospira Capsulata and Nostoc PCC7936. Journal of Applied Phycology, 15(2): 155-160. https://doi.org/10.1023/A:1023889410912
      Feng, Y. J., Li, C., Zhang, D. W., 2011. Lipid Production of Chlorella Vulgaris Cultured in Artificial Wastewater Medium. Bioresource Technology, 102(1): 101-105. https://doi.org/10.1016/j.biortech.2010.06.016
      Gr, S., Yadav, R. K., Chatrath, A., et al., 2021. Perspectives on the Potential Application of Cyanobacteria in the Alleviation of Drought and Salinity Stress in Crop Plants. Journal of Applied Phycology, 33(6): 3761-3778. https://doi.org/10.1007/s10811-021-02570-5
      Jassey, V. E. J., Walcker, R., Kardol, P., et al., 2022. Contribution of Soil Algae to the Global Carbon Cycle. The New Phytologist, 234(1): 64-76. https://doi.org/10.1111/nph.17950
      Ji, X., Cheng, J., Gong, D. H., et al., 2018. The Effect of NaCl Stress on Photosynthetic Efficiency and Lipid Production in Freshwater Microalga-Scenedesmus Obliquus XJ002. The Science of the Total Environment, 633: 593-599. https://doi.org/10.1016/j.scitotenv.2018.03.240
      Kakeh, J., Gorji, M., Sohrabi, M., et al., 2018. Effects of Biological Soil Crusts on Some Physicochemical Characteristics of Rangeland Soils of Alagol, Turkmen Sahra, NE Iran. Soil and Tillage Research, 181: 152-159. https://doi.org/10.1016/j.still.2018.04.007
      Lan, S. B., Wu, L., Yang, H. J., et al., 2017. A New Biofilm Based Microalgal Cultivation Approach on Shifting Sand Surface for Desert Cyanobacterium Microcoleus Vaginatus. Bioresource Technology, 238: 602-608. https://doi.org/10.1016/j.biortech.2017.04.058
      Liang, Y., Zhang, M., Wang, M., et al., 2020. Freshwater Cyanobacterium Synechococcus Elongatus PCC 7942 Adapts to an Environment with Salt Stress via Ion-Induced Enzymatic Balance of Compatible Solutes. Applied and Environmental Microbiology, 86(7): E02904-19. https://doi.org/10.1128/AEM.02904-19
      Lichtenthaler, H. K., 1987. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology, 148: 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
      Liu, F. J., Tan, Q. G., Weiss, D., et al., 2020. Unravelling Metal Speciation in the Microenvironment Surrounding Phytoplankton Cells to Improve Predictions of Metal Bioavailability. Environmental Science & Technology, 54(13): 8177-8185. https://doi.org/10.1021/acs.est.9b07773
      Mishra, A., Kavita, K., Jha, B., 2011. Characterization of Extracellular Polymeric Substances Produced by Micro-Algae Dunaliella Salina. Carbohydrate Polymers, 83(2): 852-857. https://doi.org/10.1016/j.carbpol.2010.08.067
      Nisha, R., Kiran, B., Kaushik, A., et al., 2018. Bioremediation of Aalt Affected Soils Using Cyanobacteria in Terms of Physical Structure, Nutrient Status and Microbial Activity. International Journal of Environmental Science and Technology, 15(3): 571-580. https://doi.org/10.1007/s13762-017-1419-7
      Peng, J. L., Guo, J. H., Lei, Y., et al., 2021. Integrative Analyses of Transcriptomics and Metabolomics in Raphidocelis Subcapitata Treated with Clarithromycin. Chemosphere, 266: 128933. https://doi.org/10.1016/j.chemosphere.2020.128933
      Prajapati, S. K., Kumar, P., Malik, A., et al., 2014. Bioconversion of Algae to Methane and Subsequent Utilization of Digestate for Algae Cultivation: A Closed Loop Bioenergy Generation Process. Bioresource Technology, 158: 174-180. https://doi.org/10.1016/j.biortech.2014.02.023
      Shetty, P., Gitau, M. M., Maróti, G., 2019. Salinity Stress Responses and Adaptation Mechanisms in Eukaryotic Green Microalgae. Cells, 8(12): 1657. https://doi.org/10.3390/cells8121657
      Singh, J. S., Kumar, A., Singh, M., 2019. Cyanobacteria: A Sustainable and Commercial Bio-Resource in Production of Bio-Fertilizer and Bio-Fuel from Waste Waters. Environmental and Sustainability Indicators, 3: 100008. https://doi.org/10.1016/j.indic.2019.100008
      Singh, R., Upadhyay, A. K., Chandra, P., et al., 2018. Sodium Chloride Incites Reactive Oxygen Species in Green Algae Chlorococcum Humicola and Chlorella Vulgaris: Implication on Lipid Synthesis, Mineral Nutrients and Antioxidant System. Bioresource Technology, 270: 489-497. https://doi.org/10.1016/j.biortech.2018.09.065
      Solovchenko, A. E., 2012. Physiological Role of Neutral Lipid Accumulation in Eukaryotic Microalgae under Stresses. Russian Journal of Plant Physiology, 59(2): 167-176. https://doi.org/10.1134/S1021443712020161
      Tao, Y. Z., Su, C. L., Xie, X. J., et al., 2021. Research on Soil Salinization Improvement Technology and Mechanism Based on Gravel Barrier. Earth Science, 46(11): 4118-4126 (in Chinese with English abstract).
      Tiwari, O. N., Bhunia, B., Mondal, A., et al., 2019. System Metabolic Engineering of Exopolysaccharide-Producing Cyanobacteria in Soil Rehabilitation by Inducing the Formation of Biological Soil Crusts: A Review. Journal of Cleaner Production, 211: 70-82. https://doi.org/10.1016/j.jclepro.2018.11.188
      Wang, J., Chen, R., Fan, L., et al., 2021a. Construction of Fungi-Microalgae Symbiotic System and Adsorption Study of Heavy Metal Ions. Separation and Purification Technology, 268: 118689. https://doi.org/10.1016/j.seppur.2021.118689
      Wang, W., Zhang, Z., Yin, L., et al., 2021b. Topical Collection: Groundwater Recharge and Discharge in Arid and Semi-Arid Areas of China. Hydrogeology Journal, 29(2): 521-524. https://doi.org/10.1007/s10040-021-02308-0
      Wang, S. F., Jiao, X. Y., Guo, W. H., et al., 2018. Adaptability of Shallow Subsurface Drip Irrigation of Alfalfa in an Arid Desert Area of Northern Xinjiang. PLoS One, 13(4): e0195965. https://doi.org/10.1371/journal.pone.0195965
      Xie, Z. M., Chen, L. Z., Li, D. H., et al., 2007. The Research on the Function of Soil Filamentous Cyanobacteria in Desertification. Acta Hydrobiologica Sinica, 31(6): 886-890 (in Chinese with English abstract).
      Yandigeri, M. S., Kashyap, S., Yadav, A. K., et al., 2011. Studies on Mineral Phosphate Solubilization by Cyanobacteria Westiellopsis and Anabaena. Mikrobiologiia, 80(4): 552-559. https://doi.org/10.1134/S0026261711040229
      Zeng, H. B., Su, C. L., Xie, X. J., et al., 2021. Mechanism of Salinization of Shallow Groundwater in Western Hetao Irrigation Area. Earth Science, 46(6): 2267-2277 (in Chinese with English abstract).
      Zhan, J., Sun, Q. Y., 2012. Diversity of Free-Living Nitrogen-Fixing Microorganisms in the Rhizosphere and Non-Rhizosphere of Pioneer Plants Growing on Wastelands of Copper Mine Tailings. Microbiological Research, 167(3): 157-165. https://doi.org/10.1016/j.micres.2011.05.006
      Zhang, X. N., Yu, P., Luo, Y. B., 2004. Study on Kinetics of Formation of CaCO3 Crystal by Solution Conductivity Measurement. Chinese Journal of Applied Chemistry, 21(2): 187-191 (in Chinese with English abstract).
      Zheng, Y. P., Zhao, J. C., Zhang, B. C., et al., 2010. Influences of Different Physico-Chemical Factors on Three Cyanobacteria Separated from Biological Soil. Agricultural Research in the Arid Areas, 28(1): 206-211 (in Chinese with English abstract).
      Zhong, Z. Q., Xie, Z. M., Mao, Q., et al., 2022. As(Ⅲ) Oxidation Mediated by Anabaena Anabaena and Its Response to Ammonium Nitrogen Input. Earth Science, 1-13 (in Chinese with English abstract).
      陈兰周, 刘永定, 宋立荣, 2002. 微鞘藻胞外多糖在沙漠土壤成土中的作用. 水生生物学报, 26(2): 155-159. https://www.cnki.com.cn/Article/CJFDTOTAL-SSWX200202007.htm
      陶彦臻, 苏春利, 谢先军, 等, 2021. 基于碎石屏障的土壤盐渍化改良技术及机理研究. 地球科学, 46(11): 4118-4126. doi: 10.3799/dqkx.2020.377
      谢作明, 陈兰洲, 李敦海, 等, 2007. 土壤丝状蓝藻在荒漠治理中的作用研究. 水生生物学报, 31(6): 886-890. https://www.cnki.com.cn/Article/CJFDTOTAL-SSWX200706017.htm
      曾邯斌, 苏春利, 谢先军, 等, 2021. 河套灌区西部浅层地下水咸化机制. 地球科学, 46(6): 2267-2277. doi: 10.3799/dqkx.2020.259
      张小霓, 于萍, 罗运柏, 2004. 溶液电导率法对碳酸钙结晶动力学的研究. 应用化学, 21(2): 187-191. https://www.cnki.com.cn/Article/CJFDTOTAL-YYHX200402017.htm
      郑云普, 赵建成, 张丙昌, 等, 2010. 不同理化因子对荒漠生物结皮中三种蓝藻生长的影响. 干旱地区农业研究, 28(1): 206-211. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201001039.htm
      钟兆淇, 谢作明, 毛青, 等, 2022. 固氮鱼腥藻介导As(Ⅲ)氧化及其对铵氮输入的响应. 地球科学, 1-13.
    • 加载中
    图(8)
    计量
    • 文章访问数:  379
    • HTML全文浏览量:  292
    • PDF下载量:  25
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-10-26
    • 网络出版日期:  2023-11-30
    • 刊出日期:  2023-11-25

    目录

      /

      返回文章
      返回