Fluorescence Excitation-Emission Matrix Characteristics and Implication of Dissolved Organic Matter in Groundwater at a Typical Refinery-Polluted Site
-
摘要: 综合应用荧光峰识别、三维荧光光谱(excitation-emission matrix, EEMs)区域积分法、聚类分析和相关性分析等方法,探究污黄土高原某炼油厂污染场地地下水溶解性有机物(dissolved organic matter, DOM)三维荧光光谱特征及其对有机污染的指示作用.结果显示,污染场地地下水DOM的EEMs表现出显著的石油类污染物的指纹特征.EEMs中表征苯和石油烃的区域Ⅰ和区域Ⅱ的荧光区域积分标准体积占总区域积分标准体积的55%~88%,与地下水样品有机污染组分的测试结果吻合.基于三维荧光指纹特征相似性的聚类分析揭示了污染场地地下水有机污染类型与空间异质性分布特征.污染地下水EEMs区域积分标准体积与有机组分、光谱参数、水化学组成的相关性分析,表明DOM的三维荧光指纹谱能够有效指示场地地下水的有机污染程度、组成特征和水化学的响应,为地下水污染监测和预警的有效提供示踪工具.Abstract: The excitation-emission matrix (EEMs) fluorescence spectroscopy of dissolved organic matter (DOM) has been widely used in monitoring and warning of water pollution. To clarify the indicator of EEMs fluorescence fingerprint on groundwater organic pollution at refinery sites, the EEMs characteristics of DOM and spatial distribution of organic pollution in groundwater was studied at a typical refinery-polluted site by EEMs regional integration, correlation analysis and hierarchical clustering. The EEMs results show that DOM in groundwater of the polluted site had significant fluorescence spectral fingerprint as oil contaminants. The constituents of DOM in the polluted groundwater were quantified by EMMs regional integration based on fluorescence of model compounds. The normalized volumetric integration of regions Ⅰ and Ⅱ representing benzene series and petroleum hydrocarbons accounts for 55%-88% of the total volumetric integration of all regions, which is consistent with GC-MS results of organic compositions. The hierarchical clustering on the similarity of EEMs can effectively distinguish the types of groundwater organic pollution and their spatial distribution in the polluted site. The correlation analyses between normalized volumetric integration of EEMs regions and organic components, spectra parameters and water chemistry further suggest that the fluorescence EEMs fingerprint of DOM can effectively reveal organic pollution and effect on geochemistry of groundwater at the refinery site, indicating as an effective tracer to monitor and warn groundwater organic pollution.
-
表 1 污染场地地下水EEMs荧光区域积分与其有机组分的相关性分析(N=11)
Table 1. Correlation analysis of FRI and organic components of groundwater in the contaminated site (N=11)
ΦI, n ΦII, n ΦIII, n ΦIV, n ΦV, n ΦT, n 苯系物 氯代烃 萘 石油烃 总有机污染物 苯 甲苯 乙苯 对间二甲苯 苯乙烯 邻二甲苯 异丙苯 2-氯甲苯 1,3,5-三甲苯 4-异丙基甲苯 正丁基苯 1,2,4-三甲苯 1,2-二氯乙烷 1,1,2,2-四氯乙烷 ΦI, n 1 0.935** 0.769** 0.815** 0.572 0.952** 0.683* 0.235 0.397 0.111 0.684* 0.674* 0.647* 0.6 0.545 -0.3 0.626* 0.350 0.579 0.455 0.067 0.605* 0.822** -0.3 0.427 ΦII, n 1 0.915** 0.944** 0.793** 0.998** 0.620* 0.135 0.581 0.676* 0.635* 0.624* 0.709* 0.482 0.640* -0.242 0.733* 0.128 0.625* 0.51 0.231 0.633* 0.842** -0.242 0.425 ΦIII, n 1 0.895** 0.899** 0.908** 0.209 0.387 0.602 -0.244 0.267 -0.42 0.670* 0.393 0.575 -0.318 0.635* -0.069 0.717* 0.378 0.254 0.720* 0.702* -0.318 0.740** ΦIV, n 1 0.905** 0.936** 0.515 0.023 0.812** -0.105 0.366 -0.174 0.873** 0.449 0.749** -0.174 0.854** 0.082 0.802** 0.634* 0.428 0.795** 0.889** -0.174 0.818** ΦV, n 1 0.776** 0.263 0.095 0.845** -0.324 0.385 -0.429 0.817** 0.326 0.674* -0.07 0.806** -0.138 0.845** 0.497 0.577 0.875** 0.754** -0.07 0.891** ΦT, n 1 0.633* 0.159 0.567 0.049 0.859** -0.208 0.694* 0.512 0.634* -0.263 0.725* 0.165 0.6 0.506 0.212 0.599 0.849** -0.263 0.614* 苯系物 1 0.209 0.576 0.528 0.804** 0.690* 0.696* 0.604* 0.731* 0.1 0.583 0.644* 0.454 0.831** 0.397 0.438 0.645* 0.1 0.449 氯系物 1 0.236 -0.171 0.215 0.067 0.189 0.045 0.259 0.978** 0.402 0.009 0.038 0.264 0.813** -0.004 0.173 0.978** 0.006 萘 1 -0.083 0.223 -0.03 0.920** 0.342 0.751** 0.054 0.868** 0.056 0.851** 0.706* 0.709* 0.910** 0.772** 0.054 0.916** 石油烃 1 0.928** 0.569 0.155 0.502 0.333 -0.13 -0.16 0.865** -0.025 0.551 -0.22 -0.138 0.028 -0.13 -0.109 总有机污染物 1 0.676* 0.438 0.619* 0.572 -0.037 0.163 0.883** 0.207 0.768** 0.047 0.121 0.315 -0.037 0.146 注:**表示极显著相关(P<0.01, 双尾检验),*表示显著相关(P<0.05, 双尾检验). 表 2 污染场地地下水EEMs荧光区域积分与DOM光谱参数、水化学组成的相关性分析(N=22)
Table 2. Correlation analysis of FRI with DOM spectral parameters and hydrochemical compositios of groundwater in the contaminated site (N=22)
ΦT, n ΦI, n ΦII, n ΦIII, n ΦIV, n ΦV, n FI BIX HIX β: α α(355) SUVA254 E253/E203 DOC HCO3- SO42- NO3- ΦT, n 1 0.972** 0.998** 0.910** 0.881** 0.633** -0.217 0.654** -0.703** 0.676** 0.034 0.227 0.562** 0.153 0.502** -0.472* -0.376* ΦI, n 1 0.963** 0.835** 0.804** 0.509** -0.223 0.557** -0.766** 0.586** 0.038 0.290 0.565** 0.179 0.550** -0.495** -0.377* ΦII, n 1 0.897** 0.889** 0.618** -0.211 0.675** -0.700** 0.696** 0.029 0.229 0.552** 0.165 0.490** -0.469* -0.371 ΦIII, n 1 0.760** 0.770** -0.204 0.518** -0.444* 0.532** 0.017 0.028 0.547** -0.010 0.431* -0.395* -0.425* ΦIV, n 1 0.692** -0.227 0.879** -0.739** 0.883** 0.017 0.028 0.547** -0.010 0.431* -0.395* -0.425* ΦV, n 1 -0.125 0.494** -0.232 0.482** -0.007 0.017 0.167 -0.118 0.107 -0.050 0.118 注:**表示极显著相关(P<0.01, 双尾检验),*表示显著相关(P<0.05, 双尾检验). -
Bahram, M., Bro, R., Stedmon, C., et al., 2006. Handling of Rayleigh and Raman Scatter for PARAFAC Modeling of Fluorescence Data Using Interpolation. Journal of Chemometrics, 20(3-4): 99-105. https://doi.org/10.1002/cem.978 Bai, X. M., Li, Y. Z., Yao, Z. P., et al., 2020. Application Progress of Three-Dimensional Excitation Emission Matrix Fluorescence Spectroscopy in Source Tracing of Water Pollution. Environmental Science & Technology, 43(1): 172-180, 193(in Chinese with English abstract). Baker, A., 2001. Fluorescence Excitation-Emission Matrix Characterization of Some Sewage-Impacted Rivers. Environmental Science & Technology, 35(5): 948-953. https://doi.org/10.1021/es000177t Baker, A., 2002. Fluorescence Properties of Some Farm Wastes: Implications for Water Quality Monitoring. Water Research, 36(1): 189-195. https://doi.org/10.1016/s0043-1354(01)00210-x Cai, H. L., Ning, X. A., Chen, X. H., et al., 2021. Fluorescence Characteristics of Dissolved Organic Matter in Textile-Dyeing Effluents. Environmental Chemistry, 40(5): 1592-1601(in Chinese with English abstract). Cao, Z. K., Dong, X. D., 2005. Fluorescence Analysis of Mineral Oil in Water. Journal of Northeast Normal University (Natural Science Edition), 37(3): 64-68(in Chinese with English abstract). Chen, J., LeBoeuf, E. J., Dai, S., et al., 2003a. Fluorescence Spectroscopic Studies of Natural Organic Matter Fractions. Chemosphere, 50(5): 639-647. https://doi.org/10.1016/s0045-6535(02)00616-1 Chen, W., Westerhoff, P., Leenheer, J. A., et al., 2003b. Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology, 37(24): 5701-5710. https://doi.org/10.1021/es034354c Cohen, E., Levy, G. J., Borisover, M., 2014. Fluorescent Components of Organic Matter in Wastewater: Efficacy and Selectivity of the Water Treatment. Water Research, 55: 323-334. https://doi.org/10.1016/j.watres.2014.02.040 Guo, W. D., Wang, C., Li, Y., et al., 2020. Characterization of Aquatic Dissolved Organic Matter by Spectral Analysis: From Watershed to Deep Ocean. Advances in Earth Science, 35(9): 933-947(in Chinese with English abstract). Graham, P. W., Baker, A., Andersen, M. S., et al., 2015. Field Measurement of Fluorescent Dissolved Organic Material as a Means of Early Detection of Leachate Plumes. Water, Air, & Soil Pollution, 226(7): 211. https://doi.org/10.1007/s11270-015-2475-6 He, X. S., Fan, Q. D., 2016. Investigating the Effect of Landfill Leachates on the Characteristics of Dissolved Organic Matter in Groundwater Using Excitation-Emission Matrix Fluorescence Spectra Coupled with Fluorescence Regional Integration and Self-Organizing Map. Environmental Science and Pollution Research, 23(21): 21229-21237. https://doi.org/10.1007/s11356-016-7308-7 He, X. S., Xi, B. D., Zhang, P., et al., 2015. The Seasonal Distribution Characteristics and Its Reasons of Dissolved Organic Matter in Groundwater. China Environmental Science, 35(3): 862-870(in Chinese with English abstract). He, R. S., Xu, R. H., Wei, C. H., 2015. Spectral Characterization of Dissolved Organic Matter in Bio-Treated Effluent of Coking Wastewater. Environmental Chemistry, 34(1): 129-136(in Chinese with English abstract). He, X. S., Xi, B. D., Wei, Z. M., et al., 2011. Spectroscopic Characterization of Water Extractable Organic Matter during Composting of Municipal Solid Waste. Chemosphere, 82(4): 541-548. https://doi.org/10.1016/j.chemosphere.2010.10.057 Huguet, A., Vacher, L., Relexans, S., et al., 2009. Properties of Fluorescent Dissolved Organic Matter in the Gironde Estuary. Organic Geochemistry, 40(6): 706-719. https://doi.org/10.1016/j.orggeochem.2009.03.002 Jiang, T., Skyllberg, U., Björn, E., et al., 2017. Characteristics of Dissolved Organic Matter (DOM) and Relationship with Dissolved Mercury in Xiaoqing River-Laizhou Bay Estuary, Bohai Sea, China. Environmental Pollution, 223: 19-30. https://doi.org/10.1016/j.envpol.2016.12.006 Lapworth, D. J., Gooddy, D. C., Butcher, A. S., et al., 2008. Tracing Groundwater Flow and Sources of Organic Carbon in Sandstone Aquifers Using Fluorescence Properties of Dissolved Organic Matter (DOM). Applied Geochemistry, 23(12): 3384-3390. https://doi.org/10.1016/j.apgeochem.2008.07.011 Li, A. M., Lian, Z. Y., Yang, R. J., et al., 2018. Direct Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Soil Based on Three-Dimensional Fluorescence Spectroscopy. Environmental Chemistry, 37(4) : 910-912(in Chinese with English abstract). Li, L. B., Qi, M., Shen, K. L., et al., 2000. Characterization of Organic Components in Wastewater Discharged from Refinery by Gas Chromatography-Mass Spectrometry. Environmental Monitoring in China, 16(2): 32-36(in Chinese with English abstract). doi: 10.3969/j.issn.1002-6002.2000.02.013 Li, W. T., Xu, Z. X., Wu, Q., et al., 2015. Characterization of Fluorescent-Dissolved Organic Matter and Identification of Specific Fluorophores in Textile Effluents. Environmental Science and Pollution Research International, 22(6): 4183-4189. https://doi.org/10.1007/s11356-014-3201-4 Li, Y., Wei, H. J., Wang, K., et al., 2019. Analysis of the Relationship between Dissolved Organic Matter (DOM) and Watershed Land-Use Based on Three-Dimensional Fluorescence-Parallel Factor (EEM-PARAFAC) Analysis. Environmental Science, 40(4): 1751-1759(in Chinese with English abstract). Li, Y. G., Wu, B. C., He, C., et al., 2022. Comprehensive Chemical Characterization of Dissolved Organic Matter in Typical Point-Source Refinery Wastewaters. Chemosphere, 286: 131617. https://doi.org/10.1016/j.chemosphere.2021.131617 Li, Z., Zhang, X. F., Wu, B. C., et al., 2018. The Application of Three Dimensional Fluorescence Spectrometry in Oil Refining and Chemical Engineering Industry. Chinese Journal of Analysis Laboratory, 37(7): 863-868(in Chinese with English abstract). Liu, B., Wu, J., Cheng, C., et al., 2019. Identification of Textile Wastewater in Water Bodies by Fluorescence Excitation Emission Matrix-Parallel Factor Analysis and High-Performance Size Exclusion Chromatography. Chemosphere, 216: 617-623. https://doi.org/10.1016/j.chemosphere.2018.10.154 Liu, W., Hu, B., Yu, D. Y., et al., 2004. Three Dimensional Fluorescence Character of Heavy Oil in China and Its Geological Significance. Spectriscopy and Spectrl Analysis, 41(3): 822-827(in Chinese with English abstract). Liu, Z. Z., Gu, H. W., Guo, X. Z., et al., 2022. Tracing Sources of Oilfield Wastewater Based on Excitation-Emission Matrix Fluorescence Spectroscopy Coupled with Chemical Pattern Recognition Techniques. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 281: 121596. https://doi.org/10.1016/j.saa.2022.121596 Lu, Z. J., Deng, Y. M., Du, Y., et al., 2017. EEMs Characteristics of Dissolved Organic Matter and Their Implication in High Arsenic Groundwater of Jianghan Plain. Earth Science, 42(5): 771-782(in Chinese with English abstract). Ma, Y., Zhao, H. Z., Yu, M. D., et al., 2021. Rapid Identification of Water Body Characteristics in Petroleum Hydrocarbon Contaminated Sites by Spectral Parameter Method. Spectroscopy and Spectral Analysis, 41(3): 822-827(in Chinese with English abstract). Mahamuni, G., Rutherford, J., Davis, J., et al., 2020. Excitation-Emission Matrix Spectroscopy for Analysis of Chemical Composition of Combustion Generated Particulate Matter. Environmental Science & Technology, 54(13): 8198-8209. https://doi.org/10.1021/acs.est.0c01110 McKnight, D. M., Boyer, E. W., Westerhoff, P. K., et al., 2001. Spectrofluorometric Characterization of Dissolved Organic Matter for Indication of Precursor Organic Material and Aromaticity. Limnology and Oceanography, 46(1): 38-48. https://doi.org/10.4319/lo.2001.46.1.0038 Old, G. H., Naden, P. S., Granger, S. J., et al., 2012. A Novel Application of Natural Fluorescence to Understand the Sources and Transport Pathways of Pollutants from Livestock Farming in Small Headwater Catchments. Science of the Total Environment, 417: 169-182. https://doi.org/10.1016/j.scitotenv.2011.12.013 Ren, D., Chen, F., Pu, H. Y., et al., 2019. Photochemical Behaviors and Environmental Effects of Dissolved Organic Matter. Journal of Ecology and Rural Environment, 35(5): 563-572(in Chinese with English abstract). Reynolds, D., 2002. The Differentiation of Biodegradable and Non-Biodegradable Dissolved Organic Matter in Wastewaters Using Fluorescence Spectroscopy. Journal of Chemical Technology & Biotechnology, 77(8): 965-972. https://doi.org/10.1002/jctb.664 Santos, E. B. H., Filipe, O. M. S., Duarte, R. M. B. O., et al., 2001. Fluorescence as a Tool for Tracing the Organic Contamination from Pulp Mill Effluents in Surface Waters. Acta Hydrochimica et Hydrobiologica, 28(7): 364-371. https://doi.org/10.1002/1521-401x(20017)28:7364:aid-aheh364>3.0.co;2-m doi: 10.1002/1521-401x(20017)28:7364:aid-aheh364>3.0.co;2-m Wang, B., 2017. Study on Three Dimensional Fluorescence Spectra of Synthetic Wastewater and Its Characteristic Pollutants (Dissertation). Lanzhou Jiaotong University, Lanzhou(in Chinese with English abstract). Wang, C., Guo, W. D., Guo, Z. R., et al., 2013. Characterization of Dissolved Organic Matter in Groundwater from the Coastal Dagu River Watershed, China Using Fluorescence Excitation-Emission Matrix Spectroscopy. Spectroscopy and Spectral Analysis, 33(9): 2460-2465(in Chinese with English abstract). doi: 10.3964/j.issn.1000-0593(2013)09-2460-06 Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., et al., 2003. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environmental Science & Technology, 37(20): 4702-4708. https://doi.org/10.1021/es030360x Wilson, H. F., Xenopoulos, M. A., 2009. Effects of Agricultural Land Use on the Composition of Fluvial Dissolved Organic Matter. Nature Geoscience, 2: 37-41. https://doi.org/10.1038/ngeo391 Wu, J., Cao, Z. P., Xie, C. B., et al., 2011.3-D Fluorescence Properties of Petrochemical Wastewater. Spectroscopy and Spectral Analysis, 31(9): 2437-2441(in Chinese with English abstract). Wu, J., Chen, Q. J., Chen, M. F., et al., 2008. Comparison of Three-Dimensional Fluorescence Fingerprint Characteristics of Municipal Wastewater. Acta Optica Sinica, 28(10): 2022-2025(in Chinese with English abstract). doi: 10.3788/AOS20082810.2022 Wu, J., Xie, C. B., Cao, Z. P., et al., 2012. Fluorescence Fingerprint Properties of Refinery Wastewater. Spectroscopy and Spectral Analysis, 32(2): 415-419(in Chinese with English abstract). doi: 10.3964/j.issn.1000-0593(2012)02-0415-05 Yao, X., Zou, S. Z., Xia, R. Y., et al., 2014. Dissolved Organic Matter (DOM) Dynamics in Karst Aquifer Systems. Environmental Science, 35(5): 1766-1772(in Chinese with English abstract). Yamashita, Y., Tanoue, E., 2003. Chemical Characterization of Protein-Like Fluorophores in DOM in Relation to Aromatic Amino Acids. Marine Chemistry, 82(3-4): 255-271. https://doi.org/10.1016/s0304-4203(03)00073-2 Yang, W. L., Wang, J. C., Hua, M., et al., 2018. Characterization of Effluent Organic Matter from Different Coking Wastewater Treatment Plants. Chemosphere, 203: 68-75. https://doi.org/10.1016/j.chemosphere.2018.03.167 Ye, H. F., Liu, B. D., Wang, Q. H., et al., 2020. Comprehensive Chemical Analysis and Characterization of Heavy Oil Electric Desalting Wastewaters in Petroleum Refineries. Science of the Total Environment, 724: 138117. https://doi.org/10.1016/j.scitotenv.2020.138117 Yu, J., Yu, M. D., Lan, Y., et al., 2017. Analysis of the Characteristics of Groundwater Quality in a Typical Vegetable Field, Northern China. Environmental Science, 38(9): 3696-3704(in Chinese with English abstract). 白小梅, 李悦昭, 姚志鹏, 等, 2020. 三维荧光指纹谱在水体污染溯源中的应用进展. 环境科学与技术, 43(1): 172-180, 193. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS202001025.htm 蔡华玲, 宁寻安, 陈晓晖, 等, 2021. 印染外排废水中溶解性有机质的荧光特性. 环境化学, 40(5): 1592-1601. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202105030.htm 曹志奎, 董献堆, 2005. 水中矿物油的荧光分析. 东北师大学报(自然科学版), 37(3): 64-68. doi: 10.3321/j.issn:1000-1832.2005.03.016 郭卫东, 王超, 李炎, 等, 2020. 水环境中溶解有机质的光谱表征: 从流域到深. 地球科学进展, 35(9): 933-947. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202009006.htm 何小松, 席北斗, 张鹏, 等, 2015. 地下水中溶解性有机物的季节变化特征及成因. 中国环境科学, 35(3): 862-870. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201503039.htm 贺润升, 徐荣华, 韦朝海, 2015. 焦化废水生物出水溶解性有机物特性光谱表征. 环境化学, 34(1): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201501017.htm 李爱民, 连增艳, 杨仁杰, 等, 2018. 基于三维荧光光谱直测土壤中的多环芳烃环境化学, 37(4): 910-913. 李凌波, 齐敏, 申开莲, 等, 2000. 气相色谱-质谱法表征炼油厂外排废水中的有机组分. 中国环境监测, 16(2): 32-36. doi: 10.3969/j.issn.1002-6002.2000.02.013 李昀, 魏鸿杰, 王侃, 等, 2019. 溶解性有机物(DOM)与区域土地利用的关系: 基于三维荧光-平行因子分析(EEM-PARAFAC). 环境科学, 40(4): 1751-1759. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201904026.htm 栗则, 张晓飞, 吴百春, 等, 2018. 三维荧光光谱技术在石油炼化行业的应用. 分析试验室, 37(7): 863-868. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201807025.htm 刘伟, 胡斌, 于敦源, 等, 2004. 我国重质油的三维荧光特征及其地质意义物探与化探, 28(2): 123-125. 鲁宗杰, 邓娅敏, 杜尧, 等, 2017. 江汉平原高砷地下水中DOM三维荧光特征及其指示意义. 地球科学, 42(5): 771-782. doi: 10.3799/dqkx.2017.065 马妍, 赵航正, 虞敏达, 等, 2021. 光谱参数法快速识别石油烃污染场地水体特征. 光谱学与光谱分析, 41(3): 822-827. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202103027.htm 任东, 陈芳, 蒲红玉, 等, 2019. 溶解有机质的光化学行为及其环境效应. 生态与农村环境学报, 35(5): 563-572. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201905003.htm 王碧, 2017. 石化综合废水及其特征污染物的三维荧光光谱特性研究(硕士学位论文). 兰州: 兰州交通大学. 王超, 郭卫东, 郭占荣, 等, 2013. 大沽河流域地下水溶解有机物的三维荧光光谱特征. 光谱学与光谱分析, 33(9): 2460-2465. doi: 10.3964/j.issn.1000-0593(2013)09-2460-06 吴静, 曹知平, 谢超波, 等, 2011. 石化废水的三维荧光光谱特征. 光谱学与光谱分析, 31(9): 2437-2441. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201109037.htm 吴静, 陈庆俊, 陈茂福, 等, 2008. 城市污水的三维荧光指纹特征比较. 光学学报, 28(10): 2022-2025. doi: 10.3321/j.issn:0253-2239.2008.10.034 吴静, 谢超波, 曹知平, 等, 2012. 炼油废水的荧光指纹特征. 光谱学与光谱分析, 32(2): 415-419. doi: 10.3964/j.issn.1000-0593(2012)02-0415-05 姚昕, 邹胜章, 夏日元, 等, 2014. 典型岩溶水系统中溶解性有机质的运移特征. 环境科学, 35(5): 1766-1772. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201405020.htm 于静, 虞敏达, 蓝艳, 等, 2017. 北方典型设施蔬菜种植区地下水水质特征. 环境科学, 38(9): 3696-3704. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201709018.htm -