• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    炼油污染场地地下水DOM三维荧光指纹特征及指示意义

    李小倩 刘鋆 何宁洁 宋晓东 邢新丽 刘运德

    李小倩, 刘鋆, 何宁洁, 宋晓东, 邢新丽, 刘运德, 2024. 炼油污染场地地下水DOM三维荧光指纹特征及指示意义. 地球科学, 49(6): 2199-2212. doi: 10.3799/dqkx.2022.473
    引用本文: 李小倩, 刘鋆, 何宁洁, 宋晓东, 邢新丽, 刘运德, 2024. 炼油污染场地地下水DOM三维荧光指纹特征及指示意义. 地球科学, 49(6): 2199-2212. doi: 10.3799/dqkx.2022.473
    Li Xiaoqian, Liu Yun, He Ningjie, Song Xiaodong, Xing Xinli, Liu Yunde, 2024. Fluorescence Excitation-Emission Matrix Characteristics and Implication of Dissolved Organic Matter in Groundwater at a Typical Refinery-Polluted Site. Earth Science, 49(6): 2199-2212. doi: 10.3799/dqkx.2022.473
    Citation: Li Xiaoqian, Liu Yun, He Ningjie, Song Xiaodong, Xing Xinli, Liu Yunde, 2024. Fluorescence Excitation-Emission Matrix Characteristics and Implication of Dissolved Organic Matter in Groundwater at a Typical Refinery-Polluted Site. Earth Science, 49(6): 2199-2212. doi: 10.3799/dqkx.2022.473

    炼油污染场地地下水DOM三维荧光指纹特征及指示意义

    doi: 10.3799/dqkx.2022.473
    基金项目: 

    国家重点研发计划项目 2020YFC1807101

    详细信息
      作者简介:

      李小倩(1982-),女,博士,副教授,主要从事地下水污染与防治、水文地球化学与环境地球化学等方面的教学与科研工作. ORCID:0000-0002-5153-3929. E-mail:lixiaoqian@cug.edu.cn

    • 中图分类号: P592

    Fluorescence Excitation-Emission Matrix Characteristics and Implication of Dissolved Organic Matter in Groundwater at a Typical Refinery-Polluted Site

    • 摘要: 综合应用荧光峰识别、三维荧光光谱(excitation-emission matrix, EEMs)区域积分法、聚类分析和相关性分析等方法,探究污黄土高原某炼油厂污染场地地下水溶解性有机物(dissolved organic matter, DOM)三维荧光光谱特征及其对有机污染的指示作用.结果显示,污染场地地下水DOM的EEMs表现出显著的石油类污染物的指纹特征.EEMs中表征苯和石油烃的区域Ⅰ和区域Ⅱ的荧光区域积分标准体积占总区域积分标准体积的55%~88%,与地下水样品有机污染组分的测试结果吻合.基于三维荧光指纹特征相似性的聚类分析揭示了污染场地地下水有机污染类型与空间异质性分布特征.污染地下水EEMs区域积分标准体积与有机组分、光谱参数、水化学组成的相关性分析,表明DOM的三维荧光指纹谱能够有效指示场地地下水的有机污染程度、组成特征和水化学的响应,为地下水污染监测和预警的有效提供示踪工具.

       

    • 图  1  研究区地形高程、场地地下水水位与采样点分布图

      Fig.  1.  The DEM diagram, groundwater level contour and sampling location of the study area

      图  2  地下水代表样品的有机污染物类型与含量相对占比

      Fig.  2.  Types and relative contents of organic pollutants in groundwater samples based on GC-MS results

      图  3  炼油厂场内地下水与上游地下水、下游河水DOM的紫外光谱、荧光光谱参数对比

      Fig.  3.  Comparison plots of ultraviolet absorption spectra and fluorescence parameters of groundwater and river water samples of the study area

      图  4  污染场地地下水与上游地下水、下游河水DOM代表性的三维荧光光谱图

      右侧纵坐标为荧光强度,单位RFU

      Fig.  4.  Representative EEMs of DOM in water samples of the study area

      图  5  各水样EMM光谱积分标准体积百分比Pi, n分布

      Fig.  5.  Pi, n distribution in EEM spectra of water samples

      图  6  基于EEMs荧光区域积分的聚类分析及场地地下水有机污染的空间分布

      Fig.  6.  HCA of groundwater samples based on FRI and spatial distribution of organic pollution in the refinery site

      表  1  污染场地地下水EEMs荧光区域积分与其有机组分的相关性分析(N=11)

      Table  1.   Correlation analysis of FRI and organic components of groundwater in the contaminated site (N=11)

      ΦI, n ΦII, n ΦIII, n ΦIV, n ΦV, n ΦT, n 苯系物 氯代烃 石油烃 总有机污染物 甲苯 乙苯 对间二甲苯 苯乙烯 邻二甲苯 异丙苯 2-氯甲苯 1,3,5-三甲苯 4-异丙基甲苯 正丁基苯 1,2,4-三甲苯 1,2-二氯乙烷 1,1,2,2-四氯乙烷
      ΦI, n 1 0.935** 0.769** 0.815** 0.572 0.952** 0.683* 0.235 0.397 0.111 0.684* 0.674* 0.647* 0.6 0.545 -0.3 0.626* 0.350 0.579 0.455 0.067 0.605* 0.822** -0.3 0.427
      ΦII, n 1 0.915** 0.944** 0.793** 0.998** 0.620* 0.135 0.581 0.676* 0.635* 0.624* 0.709* 0.482 0.640* -0.242 0.733* 0.128 0.625* 0.51 0.231 0.633* 0.842** -0.242 0.425
      ΦIII, n 1 0.895** 0.899** 0.908** 0.209 0.387 0.602 -0.244 0.267 -0.42 0.670* 0.393 0.575 -0.318 0.635* -0.069 0.717* 0.378 0.254 0.720* 0.702* -0.318 0.740**
      ΦIV, n 1 0.905** 0.936** 0.515 0.023 0.812** -0.105 0.366 -0.174 0.873** 0.449 0.749** -0.174 0.854** 0.082 0.802** 0.634* 0.428 0.795** 0.889** -0.174 0.818**
      ΦV, n 1 0.776** 0.263 0.095 0.845** -0.324 0.385 -0.429 0.817** 0.326 0.674* -0.07 0.806** -0.138 0.845** 0.497 0.577 0.875** 0.754** -0.07 0.891**
      ΦT, n 1 0.633* 0.159 0.567 0.049 0.859** -0.208 0.694* 0.512 0.634* -0.263 0.725* 0.165 0.6 0.506 0.212 0.599 0.849** -0.263 0.614*
      苯系物 1 0.209 0.576 0.528 0.804** 0.690* 0.696* 0.604* 0.731* 0.1 0.583 0.644* 0.454 0.831** 0.397 0.438 0.645* 0.1 0.449
      氯系物 1 0.236 -0.171 0.215 0.067 0.189 0.045 0.259 0.978** 0.402 0.009 0.038 0.264 0.813** -0.004 0.173 0.978** 0.006
      1 -0.083 0.223 -0.03 0.920** 0.342 0.751** 0.054 0.868** 0.056 0.851** 0.706* 0.709* 0.910** 0.772** 0.054 0.916**
      石油烃 1 0.928** 0.569 0.155 0.502 0.333 -0.13 -0.16 0.865** -0.025 0.551 -0.22 -0.138 0.028 -0.13 -0.109
      总有机污染物 1 0.676* 0.438 0.619* 0.572 -0.037 0.163 0.883** 0.207 0.768** 0.047 0.121 0.315 -0.037 0.146
      注:**表示极显著相关(P<0.01, 双尾检验),*表示显著相关(P<0.05, 双尾检验).
      下载: 导出CSV

      表  2  污染场地地下水EEMs荧光区域积分与DOM光谱参数、水化学组成的相关性分析(N=22)

      Table  2.   Correlation analysis of FRI with DOM spectral parameters and hydrochemical compositios of groundwater in the contaminated site (N=22)

      ΦT, n ΦI, n ΦII, n ΦIII, n ΦIV, n ΦV, n FI BIX HIX β: α α(355) SUVA254 E253/E203 DOC HCO3- SO42- NO3-
      ΦT, n 1 0.972** 0.998** 0.910** 0.881** 0.633** -0.217 0.654** -0.703** 0.676** 0.034 0.227 0.562** 0.153 0.502** -0.472* -0.376*
      ΦI, n 1 0.963** 0.835** 0.804** 0.509** -0.223 0.557** -0.766** 0.586** 0.038 0.290 0.565** 0.179 0.550** -0.495** -0.377*
      ΦII, n 1 0.897** 0.889** 0.618** -0.211 0.675** -0.700** 0.696** 0.029 0.229 0.552** 0.165 0.490** -0.469* -0.371
      ΦIII, n 1 0.760** 0.770** -0.204 0.518** -0.444* 0.532** 0.017 0.028 0.547** -0.010 0.431* -0.395* -0.425*
      ΦIV, n 1 0.692** -0.227 0.879** -0.739** 0.883** 0.017 0.028 0.547** -0.010 0.431* -0.395* -0.425*
      ΦV, n 1 -0.125 0.494** -0.232 0.482** -0.007 0.017 0.167 -0.118 0.107 -0.050 0.118
      注:**表示极显著相关(P<0.01, 双尾检验),*表示显著相关(P<0.05, 双尾检验).
      下载: 导出CSV
    • Bahram, M., Bro, R., Stedmon, C., et al., 2006. Handling of Rayleigh and Raman Scatter for PARAFAC Modeling of Fluorescence Data Using Interpolation. Journal of Chemometrics, 20(3-4): 99-105. https://doi.org/10.1002/cem.978
      Bai, X. M., Li, Y. Z., Yao, Z. P., et al., 2020. Application Progress of Three-Dimensional Excitation Emission Matrix Fluorescence Spectroscopy in Source Tracing of Water Pollution. Environmental Science & Technology, 43(1): 172-180, 193(in Chinese with English abstract).
      Baker, A., 2001. Fluorescence Excitation-Emission Matrix Characterization of Some Sewage-Impacted Rivers. Environmental Science & Technology, 35(5): 948-953. https://doi.org/10.1021/es000177t
      Baker, A., 2002. Fluorescence Properties of Some Farm Wastes: Implications for Water Quality Monitoring. Water Research, 36(1): 189-195. https://doi.org/10.1016/s0043-1354(01)00210-x
      Cai, H. L., Ning, X. A., Chen, X. H., et al., 2021. Fluorescence Characteristics of Dissolved Organic Matter in Textile-Dyeing Effluents. Environmental Chemistry, 40(5): 1592-1601(in Chinese with English abstract).
      Cao, Z. K., Dong, X. D., 2005. Fluorescence Analysis of Mineral Oil in Water. Journal of Northeast Normal University (Natural Science Edition), 37(3): 64-68(in Chinese with English abstract).
      Chen, J., LeBoeuf, E. J., Dai, S., et al., 2003a. Fluorescence Spectroscopic Studies of Natural Organic Matter Fractions. Chemosphere, 50(5): 639-647. https://doi.org/10.1016/s0045-6535(02)00616-1
      Chen, W., Westerhoff, P., Leenheer, J. A., et al., 2003b. Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology, 37(24): 5701-5710. https://doi.org/10.1021/es034354c
      Cohen, E., Levy, G. J., Borisover, M., 2014. Fluorescent Components of Organic Matter in Wastewater: Efficacy and Selectivity of the Water Treatment. Water Research, 55: 323-334. https://doi.org/10.1016/j.watres.2014.02.040
      Guo, W. D., Wang, C., Li, Y., et al., 2020. Characterization of Aquatic Dissolved Organic Matter by Spectral Analysis: From Watershed to Deep Ocean. Advances in Earth Science, 35(9): 933-947(in Chinese with English abstract).
      Graham, P. W., Baker, A., Andersen, M. S., et al., 2015. Field Measurement of Fluorescent Dissolved Organic Material as a Means of Early Detection of Leachate Plumes. Water, Air, & Soil Pollution, 226(7): 211. https://doi.org/10.1007/s11270-015-2475-6
      He, X. S., Fan, Q. D., 2016. Investigating the Effect of Landfill Leachates on the Characteristics of Dissolved Organic Matter in Groundwater Using Excitation-Emission Matrix Fluorescence Spectra Coupled with Fluorescence Regional Integration and Self-Organizing Map. Environmental Science and Pollution Research, 23(21): 21229-21237. https://doi.org/10.1007/s11356-016-7308-7
      He, X. S., Xi, B. D., Zhang, P., et al., 2015. The Seasonal Distribution Characteristics and Its Reasons of Dissolved Organic Matter in Groundwater. China Environmental Science, 35(3): 862-870(in Chinese with English abstract).
      He, R. S., Xu, R. H., Wei, C. H., 2015. Spectral Characterization of Dissolved Organic Matter in Bio-Treated Effluent of Coking Wastewater. Environmental Chemistry, 34(1): 129-136(in Chinese with English abstract).
      He, X. S., Xi, B. D., Wei, Z. M., et al., 2011. Spectroscopic Characterization of Water Extractable Organic Matter during Composting of Municipal Solid Waste. Chemosphere, 82(4): 541-548. https://doi.org/10.1016/j.chemosphere.2010.10.057
      Huguet, A., Vacher, L., Relexans, S., et al., 2009. Properties of Fluorescent Dissolved Organic Matter in the Gironde Estuary. Organic Geochemistry, 40(6): 706-719. https://doi.org/10.1016/j.orggeochem.2009.03.002
      Jiang, T., Skyllberg, U., Björn, E., et al., 2017. Characteristics of Dissolved Organic Matter (DOM) and Relationship with Dissolved Mercury in Xiaoqing River-Laizhou Bay Estuary, Bohai Sea, China. Environmental Pollution, 223: 19-30. https://doi.org/10.1016/j.envpol.2016.12.006
      Lapworth, D. J., Gooddy, D. C., Butcher, A. S., et al., 2008. Tracing Groundwater Flow and Sources of Organic Carbon in Sandstone Aquifers Using Fluorescence Properties of Dissolved Organic Matter (DOM). Applied Geochemistry, 23(12): 3384-3390. https://doi.org/10.1016/j.apgeochem.2008.07.011
      Li, A. M., Lian, Z. Y., Yang, R. J., et al., 2018. Direct Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Soil Based on Three-Dimensional Fluorescence Spectroscopy. Environmental Chemistry, 37(4) : 910-912(in Chinese with English abstract).
      Li, L. B., Qi, M., Shen, K. L., et al., 2000. Characterization of Organic Components in Wastewater Discharged from Refinery by Gas Chromatography-Mass Spectrometry. Environmental Monitoring in China, 16(2): 32-36(in Chinese with English abstract). doi: 10.3969/j.issn.1002-6002.2000.02.013
      Li, W. T., Xu, Z. X., Wu, Q., et al., 2015. Characterization of Fluorescent-Dissolved Organic Matter and Identification of Specific Fluorophores in Textile Effluents. Environmental Science and Pollution Research International, 22(6): 4183-4189. https://doi.org/10.1007/s11356-014-3201-4
      Li, Y., Wei, H. J., Wang, K., et al., 2019. Analysis of the Relationship between Dissolved Organic Matter (DOM) and Watershed Land-Use Based on Three-Dimensional Fluorescence-Parallel Factor (EEM-PARAFAC) Analysis. Environmental Science, 40(4): 1751-1759(in Chinese with English abstract).
      Li, Y. G., Wu, B. C., He, C., et al., 2022. Comprehensive Chemical Characterization of Dissolved Organic Matter in Typical Point-Source Refinery Wastewaters. Chemosphere, 286: 131617. https://doi.org/10.1016/j.chemosphere.2021.131617
      Li, Z., Zhang, X. F., Wu, B. C., et al., 2018. The Application of Three Dimensional Fluorescence Spectrometry in Oil Refining and Chemical Engineering Industry. Chinese Journal of Analysis Laboratory, 37(7): 863-868(in Chinese with English abstract).
      Liu, B., Wu, J., Cheng, C., et al., 2019. Identification of Textile Wastewater in Water Bodies by Fluorescence Excitation Emission Matrix-Parallel Factor Analysis and High-Performance Size Exclusion Chromatography. Chemosphere, 216: 617-623. https://doi.org/10.1016/j.chemosphere.2018.10.154
      Liu, W., Hu, B., Yu, D. Y., et al., 2004. Three Dimensional Fluorescence Character of Heavy Oil in China and Its Geological Significance. Spectriscopy and Spectrl Analysis, 41(3): 822-827(in Chinese with English abstract).
      Liu, Z. Z., Gu, H. W., Guo, X. Z., et al., 2022. Tracing Sources of Oilfield Wastewater Based on Excitation-Emission Matrix Fluorescence Spectroscopy Coupled with Chemical Pattern Recognition Techniques. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 281: 121596. https://doi.org/10.1016/j.saa.2022.121596
      Lu, Z. J., Deng, Y. M., Du, Y., et al., 2017. EEMs Characteristics of Dissolved Organic Matter and Their Implication in High Arsenic Groundwater of Jianghan Plain. Earth Science, 42(5): 771-782(in Chinese with English abstract).
      Ma, Y., Zhao, H. Z., Yu, M. D., et al., 2021. Rapid Identification of Water Body Characteristics in Petroleum Hydrocarbon Contaminated Sites by Spectral Parameter Method. Spectroscopy and Spectral Analysis, 41(3): 822-827(in Chinese with English abstract).
      Mahamuni, G., Rutherford, J., Davis, J., et al., 2020. Excitation-Emission Matrix Spectroscopy for Analysis of Chemical Composition of Combustion Generated Particulate Matter. Environmental Science & Technology, 54(13): 8198-8209. https://doi.org/10.1021/acs.est.0c01110
      McKnight, D. M., Boyer, E. W., Westerhoff, P. K., et al., 2001. Spectrofluorometric Characterization of Dissolved Organic Matter for Indication of Precursor Organic Material and Aromaticity. Limnology and Oceanography, 46(1): 38-48. https://doi.org/10.4319/lo.2001.46.1.0038
      Old, G. H., Naden, P. S., Granger, S. J., et al., 2012. A Novel Application of Natural Fluorescence to Understand the Sources and Transport Pathways of Pollutants from Livestock Farming in Small Headwater Catchments. Science of the Total Environment, 417: 169-182. https://doi.org/10.1016/j.scitotenv.2011.12.013
      Ren, D., Chen, F., Pu, H. Y., et al., 2019. Photochemical Behaviors and Environmental Effects of Dissolved Organic Matter. Journal of Ecology and Rural Environment, 35(5): 563-572(in Chinese with English abstract).
      Reynolds, D., 2002. The Differentiation of Biodegradable and Non-Biodegradable Dissolved Organic Matter in Wastewaters Using Fluorescence Spectroscopy. Journal of Chemical Technology & Biotechnology, 77(8): 965-972. https://doi.org/10.1002/jctb.664
      Santos, E. B. H., Filipe, O. M. S., Duarte, R. M. B. O., et al., 2001. Fluorescence as a Tool for Tracing the Organic Contamination from Pulp Mill Effluents in Surface Waters. Acta Hydrochimica et Hydrobiologica, 28(7): 364-371. https://doi.org/10.1002/1521-401x(20017)28:7364:aid-aheh364>3.0.co;2-m doi: 10.1002/1521-401x(20017)28:7364:aid-aheh364>3.0.co;2-m
      Wang, B., 2017. Study on Three Dimensional Fluorescence Spectra of Synthetic Wastewater and Its Characteristic Pollutants (Dissertation). Lanzhou Jiaotong University, Lanzhou(in Chinese with English abstract).
      Wang, C., Guo, W. D., Guo, Z. R., et al., 2013. Characterization of Dissolved Organic Matter in Groundwater from the Coastal Dagu River Watershed, China Using Fluorescence Excitation-Emission Matrix Spectroscopy. Spectroscopy and Spectral Analysis, 33(9): 2460-2465(in Chinese with English abstract). doi: 10.3964/j.issn.1000-0593(2013)09-2460-06
      Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., et al., 2003. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environmental Science & Technology, 37(20): 4702-4708. https://doi.org/10.1021/es030360x
      Wilson, H. F., Xenopoulos, M. A., 2009. Effects of Agricultural Land Use on the Composition of Fluvial Dissolved Organic Matter. Nature Geoscience, 2: 37-41. https://doi.org/10.1038/ngeo391
      Wu, J., Cao, Z. P., Xie, C. B., et al., 2011.3-D Fluorescence Properties of Petrochemical Wastewater. Spectroscopy and Spectral Analysis, 31(9): 2437-2441(in Chinese with English abstract).
      Wu, J., Chen, Q. J., Chen, M. F., et al., 2008. Comparison of Three-Dimensional Fluorescence Fingerprint Characteristics of Municipal Wastewater. Acta Optica Sinica, 28(10): 2022-2025(in Chinese with English abstract). doi: 10.3788/AOS20082810.2022
      Wu, J., Xie, C. B., Cao, Z. P., et al., 2012. Fluorescence Fingerprint Properties of Refinery Wastewater. Spectroscopy and Spectral Analysis, 32(2): 415-419(in Chinese with English abstract). doi: 10.3964/j.issn.1000-0593(2012)02-0415-05
      Yao, X., Zou, S. Z., Xia, R. Y., et al., 2014. Dissolved Organic Matter (DOM) Dynamics in Karst Aquifer Systems. Environmental Science, 35(5): 1766-1772(in Chinese with English abstract).
      Yamashita, Y., Tanoue, E., 2003. Chemical Characterization of Protein-Like Fluorophores in DOM in Relation to Aromatic Amino Acids. Marine Chemistry, 82(3-4): 255-271. https://doi.org/10.1016/s0304-4203(03)00073-2
      Yang, W. L., Wang, J. C., Hua, M., et al., 2018. Characterization of Effluent Organic Matter from Different Coking Wastewater Treatment Plants. Chemosphere, 203: 68-75. https://doi.org/10.1016/j.chemosphere.2018.03.167
      Ye, H. F., Liu, B. D., Wang, Q. H., et al., 2020. Comprehensive Chemical Analysis and Characterization of Heavy Oil Electric Desalting Wastewaters in Petroleum Refineries. Science of the Total Environment, 724: 138117. https://doi.org/10.1016/j.scitotenv.2020.138117
      Yu, J., Yu, M. D., Lan, Y., et al., 2017. Analysis of the Characteristics of Groundwater Quality in a Typical Vegetable Field, Northern China. Environmental Science, 38(9): 3696-3704(in Chinese with English abstract).
      白小梅, 李悦昭, 姚志鹏, 等, 2020. 三维荧光指纹谱在水体污染溯源中的应用进展. 环境科学与技术, 43(1): 172-180, 193. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS202001025.htm
      蔡华玲, 宁寻安, 陈晓晖, 等, 2021. 印染外排废水中溶解性有机质的荧光特性. 环境化学, 40(5): 1592-1601. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202105030.htm
      曹志奎, 董献堆, 2005. 水中矿物油的荧光分析. 东北师大学报(自然科学版), 37(3): 64-68. doi: 10.3321/j.issn:1000-1832.2005.03.016
      郭卫东, 王超, 李炎, 等, 2020. 水环境中溶解有机质的光谱表征: 从流域到深. 地球科学进展, 35(9): 933-947. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202009006.htm
      何小松, 席北斗, 张鹏, 等, 2015. 地下水中溶解性有机物的季节变化特征及成因. 中国环境科学, 35(3): 862-870. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201503039.htm
      贺润升, 徐荣华, 韦朝海, 2015. 焦化废水生物出水溶解性有机物特性光谱表征. 环境化学, 34(1): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201501017.htm
      李爱民, 连增艳, 杨仁杰, 等, 2018. 基于三维荧光光谱直测土壤中的多环芳烃环境化学, 37(4): 910-913.
      李凌波, 齐敏, 申开莲, 等, 2000. 气相色谱-质谱法表征炼油厂外排废水中的有机组分. 中国环境监测, 16(2): 32-36. doi: 10.3969/j.issn.1002-6002.2000.02.013
      李昀, 魏鸿杰, 王侃, 等, 2019. 溶解性有机物(DOM)与区域土地利用的关系: 基于三维荧光-平行因子分析(EEM-PARAFAC). 环境科学, 40(4): 1751-1759. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201904026.htm
      栗则, 张晓飞, 吴百春, 等, 2018. 三维荧光光谱技术在石油炼化行业的应用. 分析试验室, 37(7): 863-868. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201807025.htm
      刘伟, 胡斌, 于敦源, 等, 2004. 我国重质油的三维荧光特征及其地质意义物探与化探, 28(2): 123-125.
      鲁宗杰, 邓娅敏, 杜尧, 等, 2017. 江汉平原高砷地下水中DOM三维荧光特征及其指示意义. 地球科学, 42(5): 771-782. doi: 10.3799/dqkx.2017.065
      马妍, 赵航正, 虞敏达, 等, 2021. 光谱参数法快速识别石油烃污染场地水体特征. 光谱学与光谱分析, 41(3): 822-827. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202103027.htm
      任东, 陈芳, 蒲红玉, 等, 2019. 溶解有机质的光化学行为及其环境效应. 生态与农村环境学报, 35(5): 563-572. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201905003.htm
      王碧, 2017. 石化综合废水及其特征污染物的三维荧光光谱特性研究(硕士学位论文). 兰州: 兰州交通大学.
      王超, 郭卫东, 郭占荣, 等, 2013. 大沽河流域地下水溶解有机物的三维荧光光谱特征. 光谱学与光谱分析, 33(9): 2460-2465. doi: 10.3964/j.issn.1000-0593(2013)09-2460-06
      吴静, 曹知平, 谢超波, 等, 2011. 石化废水的三维荧光光谱特征. 光谱学与光谱分析, 31(9): 2437-2441. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201109037.htm
      吴静, 陈庆俊, 陈茂福, 等, 2008. 城市污水的三维荧光指纹特征比较. 光学学报, 28(10): 2022-2025. doi: 10.3321/j.issn:0253-2239.2008.10.034
      吴静, 谢超波, 曹知平, 等, 2012. 炼油废水的荧光指纹特征. 光谱学与光谱分析, 32(2): 415-419. doi: 10.3964/j.issn.1000-0593(2012)02-0415-05
      姚昕, 邹胜章, 夏日元, 等, 2014. 典型岩溶水系统中溶解性有机质的运移特征. 环境科学, 35(5): 1766-1772. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201405020.htm
      于静, 虞敏达, 蓝艳, 等, 2017. 北方典型设施蔬菜种植区地下水水质特征. 环境科学, 38(9): 3696-3704. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201709018.htm
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  370
    • HTML全文浏览量:  148
    • PDF下载量:  37
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-08-22
    • 网络出版日期:  2024-07-11
    • 刊出日期:  2024-06-25

    目录

      /

      返回文章
      返回