• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏松多地区蛇纹岩成因及其对松多古特提斯洋俯冲的约束

    王斌 解超明 董永胜 段梦龙 宋宇航 郝宇杰

    王斌, 解超明, 董永胜, 段梦龙, 宋宇航, 郝宇杰, 2024. 西藏松多地区蛇纹岩成因及其对松多古特提斯洋俯冲的约束. 地球科学, 49(3): 837-849. doi: 10.3799/dqkx.2022.474
    引用本文: 王斌, 解超明, 董永胜, 段梦龙, 宋宇航, 郝宇杰, 2024. 西藏松多地区蛇纹岩成因及其对松多古特提斯洋俯冲的约束. 地球科学, 49(3): 837-849. doi: 10.3799/dqkx.2022.474
    Wang Bin, Xie Chaoming, Dong Yongsheng, Duan Menglong, Song Yuhang, Hao Yujie, 2024. Origin of Serpentinite in Sumdo Area, Xizang and Its Constraint on Subduction of the Sumdo Paleo-Tethys Ocean. Earth Science, 49(3): 837-849. doi: 10.3799/dqkx.2022.474
    Citation: Wang Bin, Xie Chaoming, Dong Yongsheng, Duan Menglong, Song Yuhang, Hao Yujie, 2024. Origin of Serpentinite in Sumdo Area, Xizang and Its Constraint on Subduction of the Sumdo Paleo-Tethys Ocean. Earth Science, 49(3): 837-849. doi: 10.3799/dqkx.2022.474

    西藏松多地区蛇纹岩成因及其对松多古特提斯洋俯冲的约束

    doi: 10.3799/dqkx.2022.474
    基金项目: 

    国家自然科学基金项目 42172226

    自然资源部东北亚矿产资源评价重点实验室自主课题基金项目 DBY-ZZ-18-06

    详细信息
      作者简介:

      王斌(1992-),男,博士研究生,矿物学、岩石学、矿床学专业,主要从事青藏高原古特提斯洋构造演化研究. ORCID:0000-0003-2039-1654. E-mail:18844194079@163.com

      通讯作者:

      解超明,ORCID:0000-0003-2325-038X. E-mail: xcmxcm1983@jlu.edu.cn

    • 中图分类号: P581

    Origin of Serpentinite in Sumdo Area, Xizang and Its Constraint on Subduction of the Sumdo Paleo-Tethys Ocean

    • 摘要: 蛇纹岩中的锆石不仅可以提供年代学信息,还可以约束蛇纹岩的成因和区域构造演化过程.本文以唐加‒松多古特提斯缝合带中的龙崖松多蛇纹岩为研究对象,对其进行了全岩地球化学、锆石U-Pb年代学和Lu-Hf同位素研究.结果显示,龙崖松多蛇纹岩具较高的MgO和TFeO含量、高Mg#值以及较低的Al2O3和TiO2含量.样品稀土元素配分曲线呈较为宽缓的“U”型.微量元素蛛网图显示,样品富集U、Ta,亏损Th、Nb、Zr和Hf.龙崖松多蛇纹岩锆石U-Pb定年结果为(230.3±2.3)Ma,εHft)值在+13.4到+16.0之间.年代学和地球化学研究表明,龙崖松多蛇纹岩的原岩为地幔楔内尖晶石二辉橄榄岩部分熔融后的残留体.龙崖松多蛇纹岩受到松多古特提斯洋板片俯冲产生的超临界流体的交代形成了交代锆石,可能还受到富水流体的交代,导致流体活动性元素的富集.结合前人研究,本文认为松多古特提斯洋在晚三叠世可能尚处于北向俯冲阶段.

       

    • 图  1  青藏高原及其邻区大地构造单元划分简图(a;据Xu et al., 2015修改),唐加‒松多地区地质简图(b;据Wang et al., 2021修改),龙崖松多蛇纹岩采样位置(c)

      1.下白垩统楚木龙组;2.上侏罗统‒下白垩统林布宗组;3.下侏罗统叶巴组;4.上三叠统雄来组;5.上石炭统‒下二叠统松多岩组;6.下石炭统诺错组;7.白垩纪岩浆岩;8.侏罗纪岩浆岩;9.三叠纪岩浆岩;10.大理岩;11.洋岛辉长岩;12.洋岛玄武岩;13.蛇绿岩;14.超基性岩;15.二叠纪闪长岩;16.二叠纪玄武岩;17.榴辉岩;18.蓝片岩;19.断层;20.本文采样点;21.洋壳残片年龄;22.榴辉岩年龄;23.岛弧岩浆岩年龄;24.松多岩组年龄

      Fig.  1.  Tectonic framework of the Qinghai-Xizang Plateau and adjacent area (a; modified from Xu et al., 2015), geological sketch of the Tangjia-Sumdo area (b; modified from Wang et al., 2021), sampling location map of Longyasongduo serpentinite (c)

      图  2  西藏松多地区龙崖松多蛇纹岩野外照片和镜下照片

      a. 龙崖松多蛇纹岩与松多岩组野外接触关系;b. 龙崖松多蛇纹岩宏观照片;c. 龙崖松多蛇纹岩近景照片;d. 龙崖松多蛇纹岩显微照片. Serp.蛇纹石;Phl.金云母;Mag.磁铁矿

      Fig.  2.  Field photos and photomicrographs of Longyasongduo serpentinite in Sumdo area, Xizang

      图  3  龙崖松多蛇纹岩球粒陨石标准化稀土元素配分图和原始地幔标准化微量元素蛛网图

      球粒陨石、原始地幔和OIB/E-MORB/N-MORB数据引自McDonough and Sun(1995);松多古特提斯洋深海橄榄岩数据引自王斌(2019

      Fig.  3.  Chondrite-normalized REE patterns, and primitive-mantle-normalized spider diagrams for Longyasongduo serpentinite

      图  4  龙崖松多蛇纹岩中锆石阴极发光照片、U-Pb年龄谐和图和稀土元素球粒陨石标准化配分曲线

      球粒陨石数据引自McDonough and Sun(1995

      Fig.  4.  Zircon cathodoluminescence, zircon U-Pb concordia diagram and chondrite-normalized zircon REE patterns for Longyasongduo serpentinite

      图  5  Al2O3-CaO-MgO图解(a, b; Coleman, 1977); TFeO-Na2O+K2O-MgO图解(c; Irvine and Baragar, 1971); SiO2/MgO-Al2O3图解(d; Bodinier and Godard, 2014)

      Fig.  5.  Al2O3-CaO-MgO diagram (a, b; Coleman, 1977); TFeO-Na2O+K2O-MgO diagram (c; Irvine and Baragar, 1971); SiO2/MgO-Al2O3 diagram (d; Bodinier and Godard, 2014)

      图  6  龙崖松多蛇纹岩Ti-Yb图解(a; Parkinson and Pearce, 1998) 和全岩稀土元素部分熔融模型(b; Niu, 2004)

      Fig.  6.  Ti versus Yb diagram (a; Parkinson and Pearce, 1998) and whole rock REE partial melting model (b; Niu, 2004) of Longyasongduo serpentinite

      图  7  龙崖松多蛇纹岩流体活动性元素和烧失量协变关系图

      Fig.  7.  Covariation relationship diagrams between fluid activity elements and LOI of Longyasongduo serpentinite

    • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X
      Belousova, E. A., Jiménez, J. M. G., J. M., Graham, I., et al., 2015. The Enigma of Crustal Zircons in Upper-Mantle Rocks: Clues from the Tumut Ophiolite, Southeast Australia. Geology, 43(2): 119-122. https://doi.org/10.1130/G36231.1
      Bodinier, J. L., Godard, M., 2014. Orogenic, Ophiolitic, and Abyssal Peridotites. Treatise on Geochemistry, 2: 103-167. https://doi.org/10.1016/B978-0-08-095975-7.00204-7
      Chen, S. Y., 2010. The Development of Sumdo Suture in the Lhasa Block, Tibet (Dissertation). Chinese Academy of Geological Science, Beijing (in Chinese with English abstract).
      Cheng, H., Liu, Y. M., Vervoort, J. D., et al., 2015. Combined U-Pb, Lu-Hf, Sm-Nd and Ar-Ar Multichronometric Dating on the Bailang Eclogite Constrains the Closure Timing of the Paleo-Tethys Ocean in the Lhasa Terrane, Tibet. Gondwana Research, 28(4): 1482-1499. https://doi.org/10.1016/j.gr.2014.09.017
      Cheng, H., Zhang, C., Vervoort, J. D., et al., 2012. Zircon U-Pb and Garnet Lu-Hf Geochronology of Eclogites from the Lhasa Block, Tibet. Lithos, 155: 341-359. https://doi.org/10.1016/j.lithos.2012.09.011
      Coleman, R. G., 1977. Ophiolites: Ancient Oceanie Lithosphere? Springer-Verlag, Berlin.
      Deschamps, F., Godard, M., Guillot, S., et al., 2013. Geochemistry of Subduction Zone Serpentinites: A Review. Lithos, 178: 96-127. https://doi.org/10.1016/j.lithos.2013.05.019
      Deschamps, F., Guillot, S., Godard, M., et al., 2010. In Situ Characterization of Serpentinites from Forearc Mantle Wedges: Timing of Serpentinization and Behavior of Fluid-Mobile Elements in Subduction Zones. Chemical Geology, 269(3-4): 262-277. https://doi.org/10.1016/j.chemgeo.2009.10.002
      Dong, Y. C., 2021. The Metamorphism of Sumdo High/Ultra High Pressure in Tibet and Its Tectonic Significance (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Duan, M. L., Xie, C. M., Fan, J. J., et al., 2019. Identification of the Middle Triassic Oceanic Crust of the Sumdo in the Tibet Plateau and Its Constraints on the Evolution of the Sumdo Paleo-Tethys Ocean. Earth Science, 44(7): 2249-2264 (in Chinese with English abstract).
      Duan, M. L., Xie, C. M., Wang, B., et al., 2022. Ocean Island Rock Assembly and Its Tectonic Significance in Tangga-Sumdo Area, Tibet. Earth Science, 47(8): 2968-2984 (in Chinese with English abstract).
      Evans, B. W., Hattori, K., Baronnet, A., 2013. Serpentinite: What, Why, Where? Elements, 9(2): 99-106. https://doi.org/10.2113/gselements.9.2.99
      Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
      Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract).
      Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055
      Katayama, I., Muko, A., Iizuka, T., et al., 2003. Dating of Zircon from Ti-Clinohumite-Bearing Garnet Peridotite: Implication for Timing of Mantle Metasomatism. Geology, 31(8): 713-716. https://doi.org/10.1130/g19525.1
      Kawamoto, T., Kanzaki, M., Mibe, K., et al., 2012. Separation of Supercritical Slab-Fluids to Form Aqueous Fluid and Melt Components in Subduction Zone Magmatism. Proceedings of the National Academy of Sciences of the United States of America, 109(46): 18695-18700. https://doi.org/10.1073/pnas.1207687109
      Kodolányi, J., Pettke, T., 2011. Loss of Trace Elements from Serpentinites during Fluid-Assisted Transformation of Chrysotile to Antigorite: An Example from Guatemala. Chemical Geology, 284(3-4): 351-362. https://doi.org/10.1016/j.chemgeo.2011.03.016
      Li, H. Y., Chen, R. X., Zheng, Y. F., et al., 2016. The Crust-Mantle Interaction in Continental Subduction Channels: Zircon Evidence from Orogenic Peridotite in the Sulu Orogen. Journal of Geophysical Research (Solid Earth), 121(2): 687-712. https://doi.org/10.1002/2015JB012231
      Li, W. C., Ni, H. W., 2020. Dehydration at Subduction Zones and the Geochemistry of Slab Fluids. Science in China (Series D), 50(12): 1770-1784 (in Chinese).
      Li, W. Q., 2019. Testing Accuracy of 10 Major Elements in Diabase by Borate Melting Sample Preparation Method. World Geology, 38(3): 843-851 (in Chinese with English abstract).
      Liu, Y., 2020. The U-Pb Chronological Characteristics of Detrital Zircons of Sumdo Formation in Zhikong Area of Tibet and Its Significance (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Liu, Y., Liu, H. F., Theye, T., et al., 2009. Evidence for Oceanic Subduction at the NE Gondwana Margin during Permo-Triassic Times. Terra Nova, 21(3): 195-202. https://doi.org/10.1111/j.1365-3121.2009.00874.x
      Ma, L., Kerr, A. C., Wang, Q., et al., 2019. Nature and Evolution of Crust in Southern Lhasa, Tibet: Transformation from Microcontinent to Juvenile Terrane. Journal of Geophysical Research: Solid Earth, 124(7): 6452-6474. https://doi.org/10.1029/2018jb017106
      Mai, Y. J., Zhu, L. D., Yang, W. G., et al., 2021. Zircon U-Pb and Hf Isotopic Composition of Permian Felsic Tuffs in Southeastern Margin of Lhasa, Tibet. Earth Science, 46(11): 3880-3891 (in Chinese with English abstract).
      McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Niu, Y. L., 2004. Bulk-Rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and Post-Melting Processes beneath Mid-Ocean Ridges. Journal of Petrology, 45(12): 2423-2458. https://doi.org/10.1093/petrology/egh068
      Parkinson, I. J., Pearce, J. A., 1998. Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): Evidence for Mantle Melting and Melt-Mantle Interaction in a Supra-Subduction Zone Setting. Journal of Petrology, 39(9): 1577-1618. https://doi.org/10.1093/petroj/39.9.1577
      Rubatto, D., Hermann, J., 2003. Zircon Formation during Fluid Circulation in Eclogites (Monviso, Western Alps): Implications for Zr and Hf Budget in Subduction Zones. Geochimica et Cosmochimica Acta, 67(12): 2173-2187. https://doi.org/10.1016/S0016-7037(02)01321-2
      Savov, I. P., Ryan, J. G., D'Antonio, M., et al., 2005. Geochemistry of Serpentinized Peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: Implications for the Elemental Recycling at Subduction Zones. Geochemistry, Geophysics, Geosystems, 6(4): Q04J15. https://doi.org/10.1029/2004GC000777
      Song, Y. H., Xie, C. M., Gao, Z. W., et al., 2022. Tectonic Transition from Paleo- to Neo-Tethyan Ocean in Tangjia-Sumdo Area, Southern Tibet: Constraints from Early Jurassic Magmatism. Gondwana Research, 105: 12-24. https://doi.org/10.1016/j.gr.2021.11.016
      Wang, B., 2019. Recognition and Tectonic Significance of Sumdo Ophiolite, Tibet (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Wang, B., Xie, C. M., Dong, Y. S., et al., 2021. Middle-Late Permian Mantle Plume/Hotspot-Ridge Interaction in the Sumdo Paleo-Tethys Ocean Region, Tibet: Evidence from Mafic Rocks. Lithos, 390/391: 106128. https://doi.org/10.1016/j.lithos.2021.106128
      Weller, O. M., St-Onge, M. R., Rayner, N., et al., 2016. U-Pb Zircon Geochronology and Phase Equilibria Modelling of a Mafic Eclogite from the Sumdo Complex of South-East Tibet: Insights into Prograde Zircon Growth and the Assembly of the Tibetan Plateau. Lithos, 262: 729-741. https://doi.org/10.1016/j.lithos.2016.06.005
      Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract).
      Xiong, X. L., Liu, X. C., Li, L., et al., 2020. The Partitioning Behavior of Trace Elements in Subduction Zones: Advances and Prospects. Science in China (Series D), 50(12): 1785-1798 (in Chinese).
      Xu, Z. Q., Dilek, Y., Cao, H., et al., 2015. Paleo-Tethyan Evolution of Tibet as Recorded in the East Cimmerides and West Cathaysides. Journal of Asian Earth Sciences, 105: 320-337. https://doi.org/10.1016/j.jseaes.2015.01.021
      Yang, J. S., Xu, Z. Q., Li, Z. L., et al., 2009. Discovery of an Eclogite Belt in the Lhasa Block, Tibet: A New Border for Paleo-Tethys? Journal of Asian Earth Sciences, 34(1): 76-89. https://doi.org/10.1016/j.jseaes.2008.04.001
      Yu, Y. P., 2020. Permian-Jurassic Magmatism and Its Tectonic Significance in Sumdo Area, Southern Tibet (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x
      Zhang, R. Y., Yang, J. S., Wooden, J. L., et al., 2005. U-Pb SHRIMP Geochronology of Zircon in Garnet Peridotite from the Sulu UHP Terrane, China: Implications for Mantle Metasomatism and Subduction-Zone UHP Metamorphism. Earth and Planetary Science Letters, 237(3-4): 729-743. https://doi.org/10.1016/j.epsl.2005.07.003
      Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2006. A Refractory Mantle Protolith in Younger Continental Crust, East-Central China: Age and Composition of Zircon in the Sulu Ultrahigh-Pressure Peridotite. Geology, 34(9): 705-708. https://doi.org/10.1130/G22569.1
      Zheng, J. P., Tang, H. Y., Xiong, Q., et al., 2014. Linking Continental Deep Subduction with Destruction of a Cratonic Margin: Strongly Reworked North China SCLM Intruded in the Triassic Sulu UHP Belt. Contributions to Mineralogy and Petrology, 168(1): 1028. https://doi.org/10.1007/s00410-014-1028-0
      Zheng, J. P., Zhao, Y., Xiong, Q., 2019. Genesis and Geological Significance of Zircons in Orogenic Peridotite. Earth Science, 44(4): 1067-1082 (in Chinese with English abstract).
      Zheng, L., Zhi, X. C., Reisberg, L., 2009. Re-Os Systematics of the Raobazhai Peridotite Massifs from the Dabie Orogenic Zone, Eastern China. Chemical Geology, 268(1-2): 1-14. https://doi.org/10.1016/j.chemgeo.2009.06.021
      Zheng, Y. F., Chen, Y. X., 2019. Crust-Mantle Interaction in Continental Subduction Zones. Earth Science, 44(12): 3961-3983 (in Chinese with English abstract).
      Zhu, D. C., Mo, X. X., Niu, Y. L., et al., 2009. Zircon U-Pb Dating and In-Situ Hf Isotopic Analysis of Permian Peraluminous Granite in the Lhasa Terrane, Southern Tibet: Implications for Permian Collisional Orogeny and Paleogeography. Tectonophysics, 469(1-4): 48-60. https://doi.org/10.1016/j.tecto.2009.01.017
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      陈松永, 2010. 西藏拉萨地块中古特提斯缝合带的厘定(博士学位论文). 北京: 中国地质科学院.
      董宇超, 2021. 西藏松多高压/超高压变质作用及其构造意义(博士学位论文). 长春: 吉林大学.
      段梦龙, 解超明, 范建军, 等, 2019. 青藏高原松多中三叠世洋壳的识别及其对松多古特提斯洋演化的制约. 地球科学, 44(7): 2249-2264. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201907005.htm
      段梦龙, 解超明, 王斌, 等, 2022. 西藏唐加地区石炭纪洋岛型岩石组合及其构造意义. 地球科学, 47(8): 2968-2984. doi: 10.3799/dqkx.2021.156
      侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710026.htm
      李万财, 倪怀玮, 2020. 俯冲带脱水作用与板片流体地球化学. 中国科学(D辑), 50(12): 1770-1784. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202012006.htm
      李文庆, 2019. 硼酸盐熔融制样法测定辉绿岩中10种常量元素的准确度. 世界地质, 38(3): 843-851. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201903029.htm
      刘宇, 2020. 西藏直孔地区松多岩组碎屑锆石U-Pb年代学特征及其意义(硕士学位论文). 成都: 成都理工大学.
      麦源君, 朱利东, 杨文光, 等, 2021. 西藏东南缘早二叠世长英质凝灰岩锆石U-Pb年龄和Hf同位素特征. 地球科学, 46(11): 3880-3891. doi: 10.3799/dqkx.2020.397
      王斌, 2019. 西藏松多地区蛇绿岩的识别及构造意义(硕士学位论文). 长春: 吉林大学.
      吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      熊小林, 刘星成, 李立, 等, 2020. 俯冲带微量元素分配行为研究: 进展和展望. 中国科学(D辑), 50(12): 1785-1798. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202402002.htm
      于云鹏, 2020. 藏南松多地区二叠纪‒侏罗纪岩浆作用及构造意义(博士学位论文). 长春: 吉林大学.
      郑建平, 赵伊, 熊庆, 2019. 造山带橄榄岩中锆石的成因及其地质意义. 地球科学, 44(4): 1067-1082. doi: 10.3799/dqkx.2018.375
      郑永飞, 陈伊翔, 2019. 大陆俯冲带壳幔相互作用. 地球科学, 44(12): 3961-3983. doi: 10.3799/dqkx.2019.982
    • dqkxzx-49-3-837-附表.docx
    • 加载中
    图(7)
    计量
    • 文章访问数:  249
    • HTML全文浏览量:  89
    • PDF下载量:  43
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-08-25
    • 网络出版日期:  2024-04-12
    • 刊出日期:  2024-03-25

    目录

      /

      返回文章
      返回