Glacier Movement Characteristics and Influencing Factors in High Mountain Asia
-
摘要: 冰川运动速度通过控制冰量输送变化影响冰川进退,认识冰川运动及影响机制有助于理解冰川变化差异性机理.利用ITS_LIVE冰川运动速度数据分析了亚洲高山区冰川运动时空特征,并基于地理探测器和相关分析探讨了亚洲高山区冰川运动及其变化的影响因素.青藏高原东南部和兴都库什山冰川运动特征值较大,西昆仑山、青藏高原中部、青藏高原东部、东天山等区域冰川运动特征值较小. 2000—2016年,亚洲高山区大多数冰川呈现减速的状态,念青唐古拉、横断山等地区冰川减速幅度最大,而西昆仑等地区冰川呈现增速状态.冰川运动主要受规模因素控制,兼受地形和气候等因素的影响,冰川运动变化主要受冰川物质平衡或者厚度变化的影响.Abstract: Under climate change, glacier movement controls mass transport changes, which further leads to the response of changes in glacier length, area and thickness. However, there are differences on response time and degree for glaciers in different scales and types. For further understanding the mechanism of heterogeneous glacier changes, the spatial and temporal characteristics of glacier movement in the High Mountain Asia were analyzed by using ITS_LIVE glacier velocity data. And the influencing factors of glacier movement, glacier velocity change were analysed by Geodetector and correlation analysis. The results are as follows: The characteristic values of glacier movement are larger in the southeastern Tibetan Plateau and the Hindu Kush, but smaller in the West Kunlun, the eastern Tianshan and the eastern Tibetan Plateau. Most glaciers in the High Mountain Asia were slowing down during 2000-2016. Glaciers in Hengduan and Nianqentanglha Mountains decelerate most dramatically. In contrast, West Kunlun experience slightly accelerated glacier movement. Glacier movement is mainly controlled by glacier length and area (thickness), as well as terrain and climate factors. The change of glacier mass balance or thickness is the most important reason for glacier movement change.
-
Key words:
- glacier movement /
- glacier mass balance /
- high mountain Asia /
- remote sensing monitoring /
- geodetector
-
表 1 不同山系冰川运动速度及特征值
Table 1. Velocities and characteristic values of glacier movement in different mountains
山系 统计冰川平均规模 平均运动速度 最大运动速度平均值 特征值 A N A N A N A N Dzhungarsky Alatau 7.4 7.4 3.0 3.0 11.3 11.3 0.13 0.13 东天山 10.3 10.3 4.2 4.2 21.2 21.2 0.19 0.19 西天山 19.1 14.2 10.4 6.9 106.3 59.3 0.31 0.26 希萨尔-阿莱山 12.9 13.1 7.0 7.1 41.5 41.9 0.30 0.30 帕米尔 17.3 15.7 13.2 11.6 108.6 105.1 0.37 0.22 兴都库什 14.9 14.9 10.8 10.8 103.5 103.5 0.54 0.54 喀喇昆仑山 24.9 13.4 19.7 8.9 219.3 78.6 0.39 0.24 西喜马拉雅 14.1 14.1 9.2 9.2 52.2 52.2 0.35 0.35 中喜马拉雅 13.2 13.2 6.7 6.7 42.6 42.6 0.32 0.32 东喜马拉雅 13.9 14.0 10.7 10.7 68.4 68.7 0.47 0.47 西昆仑山 19.2 16.8 5.4 4.0 34.6 25.5 0.19 0.17 东昆仑山 15.0 12.2 6.1 4.3 30.6 19.5 0.19 0.12 青藏高原内部 11.9 11.9 4.1 4.1 15.0 15.0 0.17 0.17 冈底斯山 7.9 7.9 1.7 1.7 6.8 6.8 0.10 0.10 念青唐古拉 14.3 13.5 15.0 12.4 138.3 110.3 0.55 0.54 唐古拉山 14.8 13.1 5.3 5.1 29.1 26.9 0.30 0.25 横断山 9.7 9.7 6.0 6.0 45.9 45.9 0.37 0.37 青藏高原东部 6.9 6.9 1.9 1.9 6.3 6.3 0.08 0.08 祁连山 9.1 9.1 3.0 3.0 11.8 11.8 0.15 0.15 阿尔金山 7.3 7.3 2.3 2.3 9.7 9.7 0.09 0.09 注:A为区域所有冰川,N为排除跃动冰川外的区域冰川,下同. 表 2 不同山系冰川运动速度变化与物质平衡
Table 2. Velocity variation and mass balance of glacier in different mountains
山系 运动速度变化(%/dec) 物质平衡(m w.e/a) A N A N Dzhungarsky Alatau -6.0 -6.0 -0.46 -0.46 东天山 -17.1 -17.1 -0.38 -0.38 西天山 -3.2 -2.0 -0.19 -0.18 希萨尔-阿莱山 -15.9 -14.0 -0.04 -0.04 帕米尔 -10.0 -12.7 -0.07 -0.06 兴都库什 -8.6 -8.7 -0.13 -0.13 喀喇昆仑山 -2.7 -2.2 -0.04 0.00 西喜马拉雅 -21.7 -21.7 -0.35 -0.35 中喜马拉雅 -15.1 -15.1 -0.33 -0.33 东喜马拉雅 -14.0 -14.0 -0.41 -0.41 西昆仑山 2.5 4.5 0.16 0.17 东昆仑山 -14.0 -7.4 -0.02 0.01 青藏高原内部 -8.1 -8.1 -0.03 -0.03 冈底斯山 -19.1 -19.1 -0.37 -0.37 念青唐古拉 -21.5 -25.0 -0.53 -0.51 唐古拉山 -10.5 -10.5 -0.32 -0.32 横断山 -25.6 -25.6 -0.60 -0.60 青藏高原东部 Null Null -0.41 -0.41 祁连山 -14.7 -14.7 -0.28 -0.28 阿尔金山 Null Null 0.11 0.11 注:Null为数值缺失,阿尔金山冰川物质平衡数据仅包括阿尔金山西段. 表 3 亚洲高山区冰川运动速度地理探测结果
Table 3. Geodetector results of glacier velocity in High Mountain Asia
因素 L A Zai Zei Zae Zi Za P D S Ze T As q1 a 0.38 0.34 0.34 0.30 0.23 0.18 0.13 0.04 0.03 0.02 0.01 0.00 0.00 i 0.40 0.33 0.28 0.23 0.21 0.14 0.12 0.06 0.03 0.01 0.02 0.01 0.00 q2 a 0.30 0.25 0.24 0.22 0.15 0.11 0.07 0.04 0.03 0.01 0.01 0.01 0.00 i 0.31 0.23 0.22 0.18 0.16 0.09 0.07 0.08 0.04 0.03 0.02 0.02 0.00 注:q1为区域所有冰川的q值,q2为排除跃动冰川外的区域冰川的q值,a为最大运动速度,i为平均运动速度,下同. 表 4 亚洲高山区冰川运动速度与影响因子之间相关性分析结果
Table 4. Correlation analysis results between glacier velocity and influencing factors in High Mountain Asia
因素 L A Zai Zei Zae Zi Za P D S Ze T As r1 a 0.61 0.48 0.53 0.51 0.44 -0.31 0.27 0.08 0.06 0.08 -0.03 0.01 -0.06 i 0.64 0.46 0.52 0.47 0.45 -0.30 0.26 0.12 0.07 -0.01 -0.05 0.03 -0.04 r2 a 0.53 0.43 0.48 0.47 0.39 -0.28 0.21 0.13 0.08 0.05 -0.05 0.08 -0.04 i 0.56 0.42 0.47 0.43 0.40 -0.27 0.20 0.19 0.09 -0.06 -0.05 0.15 -0.01 注:r1为区域所有冰川的相关系数; r2为排除跃动冰川外的区域冰川相关系数,下同. 表 5 亚洲高山区冰川运动变化地理探测结果
Table 5. Geodetector results of glacier movement variation in High Mountain Asia
因素 M P T Za Ze D Pc S Tc Zi A Zei Zae L Zai As q1 0.18 0.12 0.08 0.05 0.05 0.05 0.04 0.04 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 q2 0.18 0.12 0.08 0.06 0.06 0.06 0.06 0.03 0.03 0.04 0.02 0.02 0.01 0.01 0.01 0.01 表 6 亚洲高山区冰川运动变化相关性分析结果
Table 6. Correlation analysis results between glacier movement variation and influencing factors in High Mountain Asia
因素 M P T Za Ze D Pc S Tc Zi A Zei Zae L Zai As r1 0.41 -0.26 -0.24 0.13 0.10 -0.13 -0.02 0.18 0.07 0.06 0.10 0.04 0.06 0.08 0.06 0.06 r2 0.43 -0.24 -0.20 0.13 0.12 -0.12 -0.02 0.16 0.07 0.10 0.05 0.02 0.03 0.03 0.03 0.09 -
Brun, F., Berthier, E., Wagnon, P., et al., 2017. A Spatially Resolved Estimate of High Mountain Asia Glacier Mass Balances from 2000 to 2016. Nature Geoscience, 10(9): 668-673. https://doi.org/10.1038/ngeo2999 Dehecq, A., Gourmelen N., Gardner, A. S., et al., 2018. Twenty-First Century Glacier Slowdown Driven by Mass Loss in High Mountain Asia. Nature Geoscience, 12(1): 22-27. https://doi.org/10.1038/s41561-018-0271-9 Gardelle, J., Berthier, E., Arnaud, Y., et al., 2013. Region-wide Glacier Mass Balances Over the Pamir-Karakoram-Himalaya During 1999-2011. The Cryosphere, 7(4): 1263-1286. https://doi.org/10.5194/tc-7-1263-2013 Guo, W. Q., Zhang, Z., Wu, K. P., et al., 2022. A Review on the Advances in Surge-Type Glacier Study. Journal of Glaciology and Geocryology, 44(3): 954-970(in Chinese with English abstract). Hewitt, K., 2005. The Karakoram Anomaly? Glacier Expansion and the 'Elevation Effect, ' Karakoram Himalaya. Mountain Research and Development, 25(4): 332-340. https://doi.org/10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2 Horgan, H. J., Anderson, B., Alley, R. B., et al., 2015. Glacier Velocity Variability Due to Rain-induced Sliding and Cavity Formation. Earth and Planetary Science Letters, 432, 273-282. https://doi.org/10.1016/j.epsl. 2015. 10.016 doi: 10.1016/j.epsl.2015.10.016 Huang, D. N., Zhang, Z., Zhang, S. S., et al., 2021. Characteristics of Glacier Movement in the Eastern Pamir Plateau. Arid Land Geography, 44(1): 131-140(in Chinese with English abstract). Huang, M. H., Sun, Z. Z., 1982. Some Flow Characteristics of Continental-Type Glaciers in China. Journal of Glaciology and Geocryology, 4(2): 35-45(in Chinese with English abstract). Immerzeel, W. W., van Beek L. P. H., Bierkens M. F. P., 2010. Climate Change Will Affect the Asian Water Towers. Science, 328(5984): 1382-1385. https://doi.org/10.1126/science.1183188 Kääb, A., 2005. Combination of SRTM3 and Repeat ASTER Data for Deriving Alpine Glacier Flow Velocities in the Bhutan Himalaya. Remote Sensing of Environment, 94(4): 463-474. https://doi.org/10.1016/j.rse.2004.11.003 Li, Y., Cui, Y. F., Li, Z. H., et al., 2022. Evolution of Glacier Debris Flow and Its Monitoring System along Sichuan Tibet Traffic Corridor. Earth Science, 47(6): 1969-1984(in Chinese with English abstract). Lv, M. Y., Guo, H. D., Lu, X. C., et al., 2019. Characterizing the Behaviour of Surge- and Non-Surge-Type Glaciers in the Kingata Mountains, Eastern Pamir, from 1999 to 2016. The Cryosphere, 13(1): 219-236. https://doi.org/10.5194/tc-13-219-2019 Paul, F., Bolch, T., Kääb, A., et al., 2015. The Glaciers Climate Change Initiative: Methods for Creating Glacier Area, Elevation Change and Velocity Products. Remote Sensing of Environment, 162: 408-426. https://doi.org/10.1016/j.rse.2013.07.043 Scherler, D., Bookhagen, B., Strecker, M. R., 2011. Spatially Variable Response of Himalayan Glaciers to Climate Change Affected by Debris Cover. Nature Geoscience, 4(3): 156-159. https://doi.org/10.1038/ngeo1068 Usman, M., Furuya, M., 2018. Interannual Modulation of Seasonal Glacial Velocity Variations in the Eastern Karakoram Detected by ALOS-1/2 Data. Journal of Glaciology, 64: 465-476. https://doi.org/10.1017/jog.2018.39 Wang, J. F., Xu, C. D., 2017. Geodetector: Principle and Prospective. Acta Geographica Sinica, 72(1): 116-134(in Chinese with English abstract). Wang, X., Liu, Q. H., Jiang, L. H., et al., 2015. Characteristics and Influence Factors of Glacier Surface Flow Velocity in the Everest Region, the Himalayas Derived from ALOS/PALSAR Images. Journal of Glaciology and Geocryology, 37(3): 570-579(in Chinese with English abstract). Xu, J. L., Zhang, S. Q., Han, H. D., et al., 2011. Change of the Surface Velocity of Koxkar Baxi Glacier Interpreted from Remote Sensing Data, Tianshan Mountains. Journal of Glaciology and Geocryology, 33(2): 268-275 (in Chinese with English abstract). Yan, X. G., Ma, J. Z., Ma, X. Y., et al., 2020. Hydrothermal Combination and Geometry Control the Spatial and Temporal Rhythm of Glacier Flow. Science of The Total Environment, 760: 144315-144327. https://doi.org/10.1016/j.scitotenv.2020.144315 Yang, Q. Q., Zheng, X. Y., Su, Z. M., et al., 2022. Review on Rock-Ice Avalanches. Earth Science, 47(3): 935-949(in Chinese with English abstract). Yu, B., He, Y. X., Liu, Y., 2022. Quantitative Susceptibility Assessment of Breach of Moraine-Dammed Lakes. Earth Science, 47(6): 1999-2014(in Chinese with English abstract). Yao, T., Thompson, L., Yang, W., et al., 2012. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nature Climate Change, 2(9): 663-667. https://doi.org/10.1038/Nclimate1580 Zhang, Q., Zheng, Y. T., Zhang L., et al., 2020. South Inylchek Glacier Surface Motion Extraction and Analysis Based on Time-Series Pixel Tracking Algorithm. Remote Sensing Technology and Application, 35(6): 1273-1282(in Chinese with English abstract). Zhang, Y., Liu, S. Y., 2017. Research Progress on Debris Thickness Estimation and Its Effect on Debris-Covered Glaciers in Western China. Acta Geographica Sinica, 72(9): 1606-1620(in Chinese with English abstract). 郭万钦, 张震, 吴坤鹏, 等, 2022. 跃动冰川研究进展. 冰川冻土, 44(3): 954-970. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202203019.htm 黄丹妮, 张震, 张莎莎, 等, 2021. 东帕米尔高原冰川运动特征分析. 干旱区地理, 44(1): 131-140. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202101016.htm 黄茂桓, 孙作哲. 1982. 我国大陆型冰川运动的某些特征. 冰川冻土, 4(2): 35-45. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198202005.htm 李尧, 崔一飞, 李振洪, 等, 2022. 川藏交通廊道林波段冰川泥石流发育动态演化分析及监测预警方案. 地球科学, 47(6): 1969-1984. doi: 10.3799/dqkx.2021.194 王劲峰, 徐成东. 2017. 地理探测器: 原理与展望. 地理学报, 72(1): 116-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201905015.htm 王欣, 刘琼欢, 蒋亮虹, 等, 2015. 基于SAR影像的喜马拉雅山珠穆朗玛峰地区冰川运动速度特征及其影响因素分析. 冰川冻土, 37(3): 570-579. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201503002.htm 许君利, 张世强, 韩海东, 等, 2011. 天山托木尔峰科其喀尔巴西冰川表面运动速度特征分析. 冰川冻土, 33(2): 268-275. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201102009.htm 杨情情, 郑欣玉, 苏志满, 等, 2022. 高速远程冰-岩碎屑流研究进展. 地球科学, 47(3): 935-949. doi: 10.3799/dqkx.2021.158 余斌, 何元勋, 刘秧. 2022. 冰碛湖溃决易发性的定量评价. 地球科学, 47(6): 1999-2014. doi: 10.3799/dqkx.2021.161 张齐民, 郑一桐, 张露, 等, 2020. 基于时序像素跟踪算法的南伊内里切克冰川运动提取与特征分析. 遥感技术与应用, 35(6): 1273-1282. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS202006003.htm 张勇, 刘时银, 2017. 中国冰川区表碛厚度估算及其影响研究进展. 地理学报, 72(9): 1606-1620. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201709007.htm -