• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    北祁连东段白银岩群双峰式火山岩锆石U-Pb年龄、Hf同位素及地球化学特征

    计波 李向民 时超 余吉远 王国强

    计波, 李向民, 时超, 余吉远, 王国强, 2024. 北祁连东段白银岩群双峰式火山岩锆石U-Pb年龄、Hf同位素及地球化学特征. 地球科学, 49(7): 2490-2507. doi: 10.3799/dqkx.2022.484
    引用本文: 计波, 李向民, 时超, 余吉远, 王国强, 2024. 北祁连东段白银岩群双峰式火山岩锆石U-Pb年龄、Hf同位素及地球化学特征. 地球科学, 49(7): 2490-2507. doi: 10.3799/dqkx.2022.484
    Ji Bo, Li Xiangmin, Shi Chao, Yu Jiyuan, Wang Guoqiang, 2024. Zircon U-Pb Ages, Hf Isotopes and Geochemistry of Bimodal Volcanic Rocks in Baiyin Group, Eastern North Qilian. Earth Science, 49(7): 2490-2507. doi: 10.3799/dqkx.2022.484
    Citation: Ji Bo, Li Xiangmin, Shi Chao, Yu Jiyuan, Wang Guoqiang, 2024. Zircon U-Pb Ages, Hf Isotopes and Geochemistry of Bimodal Volcanic Rocks in Baiyin Group, Eastern North Qilian. Earth Science, 49(7): 2490-2507. doi: 10.3799/dqkx.2022.484

    北祁连东段白银岩群双峰式火山岩锆石U-Pb年龄、Hf同位素及地球化学特征

    doi: 10.3799/dqkx.2022.484
    基金项目: 

    陕西省自然科学面上基金项目 2023-JC-YB-274

    国家自然科学青年基金项目 41802133

    中国地质调查局项目 DD20221636

    详细信息
      作者简介:

      计波(1986-),男,高级工程师,硕士,从事区域地质调查、沉积学、岩石地球化学研究.ORCID:0000-0001-6588-8889. E-mail:jiboxa@126.com

    • 中图分类号: P581

    Zircon U-Pb Ages, Hf Isotopes and Geochemistry of Bimodal Volcanic Rocks in Baiyin Group, Eastern North Qilian

    • 摘要: 白银厂矿田的含矿岩系白银岩群位于北祁连造山带东南缘,为了揭示该火山岩系的形成时代、成因及其构造环境,运用岩石学、岩石地球化学、同位素年代学等分析测试方法对其进行了系统的研究.白银岩群中石英角斑岩和流纹岩的LA-ICP-MS锆石U-Pb年龄分别为473.0±1.7 Ma和473.9±2.1 Ma,表明白银岩群火山岩形成于早奥陶世.玄武岩具有高Al2O3、低K2O、TiO2和P2O5特征,属亚碱性低钾拉斑系列;流纹岩SiO2含量(> 70%)较高,FeOT/MgO比值(2.44~2.80)与稀土元素含量较低(32.1×10-6~44.3×10-6),显示湿冷氧化性流纹岩特征.玄武岩与流纹岩不相容元素Ba、Th、U等相对富集,高场强元素Nb、Ta、Ti明显亏损,Eu负异常不明显(δEu=0.76~0.92),显示岛弧岩浆特征.流纹岩锆石εHft)值变化于-4.14~14.78,二阶段模式年龄为1 707~505 Ma.上述结果表明白银岩群玄武岩是受俯冲流体改造的亏损地幔部分熔融的产物,并在岩浆上升过程中受到地壳混染;流纹岩与玄武岩具有不同的岩浆来源,其主要来自地壳物质的部分熔融,并混入了少量幔源物质.白银岩群双峰式火山岩形成于岛弧向弧后盆地过渡的环境,是早奥陶世北祁连洋向北俯冲的产物.

       

    • 图  1  中国大地构造格架简图(a)与祁连山地质略图(兼示北祁连地区早古生代主要花岗岩位置及其年龄)(b)(据夏林圻等, 2016)

      Fig.  1.  Tectonic framework of China (a) and geological sketch map of the Qilian Mountain with localities of major Early Caledonian granites and their ages (b) (after Xia et al., 2016)

      图  2  白银研究区地质简图及采样位置

      据甘肃地质调查院, 2003; 1∶25万兰州市幅区调说明书

      Fig.  2.  Simplified geological map of the Baiyin area and sample locations

      图  3  白银地区A-A’实测剖面及采样位置

      Fig.  3.  Geological cross-section with sample locations in Baiyin area

      图  4  白银岩群火山岩野外露头与镜下照片

      a.灰黄色石英角斑岩;b.浅肉红色酸性火山岩夹灰绿色基性火山岩;c.灰绿色玄武岩中劈理发育;d.石英角斑岩的显微照片;e.浅肉红色流纹岩的显微照片;f.灰绿色玄武岩的显微照片. 矿物缩写:Chl.绿泥石;Pl.斜长石;Q.石英;Ser.云母

      Fig.  4.  Outcrop and micrographs of volcanic rocks from the Baiyin Group

      图  5  白银岩群火山岩样品代表性锆石CL图像(a、c)(白色圈为U-Pb测试点位,红色圈为U-Pb-Hf联机测试点位)及锆石U-Pb年龄谐和图(b、d)

      Fig.  5.  CL image of representative zircons (a, c) (the white circles indicate the spots of U-Pb dating and the red circles indicate the spots of U-Pb-Hf analyses) and U-Pb concordia diagrams for zircons from the volcanics in Baiyin Group (b, d)

      图  6  流纹岩锆石Hf同位素图解(a)、εHf(t)值直方图(b)和Hf同位素二阶段模式年龄直方图(c)

      Fig.  6.  Plots of the zircon εHf(t) values vs. age (a), and histograms of εHf(t) values (b) and Hf model ages (c) of zircons for the rhyolite

      图  7  白银岩群火山岩岩石地球化学分类判别图解

      a.TAS图解(据Irvine et al.,1971);b. Nb/Y vs. SiO2图解(据Winchester et al.,1977);c.SiO2 vs. K2O图解(据Peccerillo et al.,1976);d. A/NK vs. A/CNK图解(据Maniar et al.,1989

      Fig.  7.  Geochemical classification diagrams for volcanics in Baiyin Group

      图  8  白银岩群火山岩球粒陨石标准化稀土元素配分图(a、c)和原始地幔标准化微量元素蛛网图(b、d)

      图a、b中OIB、E-MORB、N-MORB数据来源于Sun and McDonough(1989),IAB数据来源于Turner et al.(2003);图b中阴影表示弧亚碱性玄武岩(据Tatsumi et al.,1995)和白银岛弧裂谷玄武岩(据夏林圻等,2016);图c中阴影表示干热流纹岩和湿冷流纹岩(据Bachmann and Bergantz, 2008

      Fig.  8.  Chondrite-normalized REE patterns (a, c) and primitive mantle-normalized trace multi-element patterns (b, d) for the volcanics in Baiyin Group

      图  9  玄武岩微量元素构造判别图解(据Wood, 1980; Pearce et al., 1982; Meschede, 1986

      Fig.  9.  Trace element discrimination diagrams for the tectonic interpretation of the basalts (after Wood, 1980; Pearce et al., 1982; Meschede, 1986)

      表  1  白银岩群火山岩锆石LA-ICP-MS U-Pb定年数据

      Table  1.   Zircons LA-ICP-MS U-Pb dating data for volcanics from the Baiyin Group

      测点号 含量(10-6 Th/U 同位素比值 年龄(Ma)
      U Th 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 206Pb/238U
      20BY01石英角斑岩
      1 387.7 405.4 0.96 0.056 90 0.004 2 0.593 79 0.042 3 0.075 74 0.001 5 487.1 154.7 473.3 27.0 470.7 8.8
      2 93.7 172.2 0.54 0.055 51 0.002 8 0.581 36 0.028 3 0.076 01 0.001 1 432.6 107.7 465.3 18.2 472.3 6.5
      3 71.5 154.2 0.46 0.054 95 0.002 2 0.578 87 0.022 8 0.076 47 0.000 9 410.0 88.2 463.7 14.7 475.0 5.6
      4 44.0 135.0 0.33 0.056 58 0.004 0 0.591 86 0.040 2 0.075 92 0.001 4 474.5 148.4 472.1 25.7 471.7 8.5
      5 90.6 218.1 0.42 0.055 46 0.004 3 0.585 41 0.044 3 0.076 62 0.001 6 430.5 164.5 467.9 28.4 475.9 9.3
      6 32.5 64.2 0.51 0.056 75 0.004 9 0.593 70 0.050 1 0.075 94 0.001 7 481.0 181.7 473.2 31.9 471.8 10.2
      7 114.0 214.5 0.53 0.056 92 0.002 4 0.601 15 0.024 3 0.076 65 0.001 0 487.7 90.4 478.0 15.4 476.1 5.8
      8 60.9 171.6 0.36 0.055 14 0.002 9 0.575 27 0.029 6 0.075 72 0.001 1 417.6 113.8 461.4 19.1 470.5 6.6
      9 68.7 139.3 0.49 0.055 47 0.003 5 0.582 00 0.035 7 0.076 15 0.001 3 430.8 135.0 465.7 22.9 473.1 7.7
      10 31.5 79.6 0.40 0.057 03 0.006 0 0.601 92 0.062 1 0.076 60 0.002 1 492.0 218.4 478.4 39.3 475.8 12.3
      11 54.6 128.0 0.43 0.055 96 0.002 8 0.590 95 0.029 1 0.076 64 0.001 1 450.3 109.4 471.5 18.6 476.0 6.6
      12 177.8 264.1 0.67 0.056 53 0.001 9 0.600 11 0.019 1 0.077 04 0.000 8 472.5 72.3 477.3 12.1 478.4 5.0
      13 333.1 476.6 0.70 0.058 37 0.002 0 0.618 77 0.020 5 0.076 93 0.000 9 543.5 73.6 489.1 12.9 477.8 5.2
      14 171.9 234.7 0.73 0.056 62 0.003 1 0.592 43 0.031 1 0.075 93 0.001 1 475.9 116.0 472.4 19.8 471.8 6.8
      15 38.8 111.2 0.35 0.056 69 0.004 1 0.594 08 0.041 4 0.076 03 0.001 4 478.9 151.5 473.5 26.3 472.4 8.6
      16 77.1 142.5 0.54 0.056 94 0.003 7 0.598 52 0.037 9 0.076 27 0.001 3 488.4 138.2 476.3 24.1 473.8 8.0
      17 119.5 193.9 0.62 0.057 11 0.002 4 0.602 10 0.024 9 0.076 49 0.001 0 495.3 92.0 478.6 15.8 475.1 5.8
      18 37.8 111.3 0.34 0.056 98 0.003 9 0.597 15 0.039 4 0.076 03 0.001 4 489.9 143.7 475.4 25.1 472.4 8.1
      19 52.4 118.5 0.44 0.058 51 0.004 3 0.610 66 0.043 3 0.075 71 0.001 5 549.0 151.6 484.0 27.3 470.5 8.7
      20 50.4 120.9 0.42 0.057 76 0.003 4 0.606 38 0.034 1 0.076 15 0.001 2 520.6 122.6 481.3 21.6 473.1 7.3
      21 72.6 145.5 0.50 0.057 42 0.003 3 0.598 16 0.033 5 0.075 56 0.001 2 507.4 122.6 476.1 21.3 469.6 7.2
      22 82.2 161.6 0.51 0.057 07 0.002 6 0.598 27 0.026 8 0.076 04 0.001 0 493.7 99.7 476.1 17.0 472.4 6.1
      23 62.4 121.3 0.51 0.056 97 0.002 9 0.597 78 0.029 2 0.076 11 0.001 1 489.7 107.8 475.8 18.5 472.9 6.4
      24 66.2 157.6 0.42 0.056 26 0.002 8 0.592 68 0.028 7 0.076 41 0.001 1 461.9 107.7 472.6 18.3 474.7 6.4
      25 71.6 136.5 0.52 0.055 97 0.003 5 0.589 10 0.036 0 0.076 35 0.001 3 450.7 134.2 470.3 23.0 474.3 7.6
      26 42.4 119.5 0.35 0.057 09 0.003 8 0.598 99 0.038 3 0.076 10 0.001 3 494.3 139.3 476.6 24.3 472.8 8.0
      27 233.2 293.9 0.79 0.056 14 0.002 1 0.590 62 0.021 5 0.076 30 0.000 9 457.6 81.4 471.3 13.7 474.0 5.4
      28 48.2 112.5 0.43 0.056 91 0.006 9 0.595 02 0.070 8 0.075 82 0.002 3 487.5 249.2 474.1 45.0 471.1 13.7
      20EDW01流纹岩
      1 298.5 172.3 0.58 0.058 39 0.001 7 0.617 87 0.017 0 0.076 67 0.000 8 544.4 61.3 488.5 10.7 476.2 4.8
      2 716.2 665.9 0.93 0.057 97 0.001 4 0.614 44 0.014 1 0.076 80 0.000 8 528.2 52.4 486.4 8.9 477.0 4.6
      3 469.6 419.5 0.89 0.058 82 0.001 5 0.623 10 0.015 6 0.076 76 0.000 8 560.3 56.0 491.8 9.7 476.8 4.7
      4 395.5 326.9 0.83 0.056 63 0.001 9 0.598 38 0.019 6 0.076 58 0.000 9 476.3 74.2 476.2 12.5 475.7 5.2
      5 420.1 256.8 0.61 0.056 73 0.001 7 0.599 96 0.017 2 0.076 64 0.000 8 480.4 65.2 477.2 10.9 476.0 4.9
      6 401.0 319.2 0.80 0.057 77 0.001 9 0.600 69 0.018 5 0.075 35 0.000 8 520.8 68.9 477.7 11.7 468.3 5.0
      7 383.9 280.3 0.73 0.055 79 0.001 4 0.588 75 0.013 7 0.076 48 0.000 8 443.7 53.1 470.1 8.8 475.1 4.5
      8 362.2 310.8 0.86 0.057 02 0.001 8 0.600 15 0.018 6 0.076 28 0.000 9 491.7 70.0 477.3 11.8 473.9 5.1
      9 686.1 591.2 0.86 0.059 21 0.002 5 0.623 59 0.026 0 0.076 34 0.001 0 574.6 90.8 492.1 16.2 474.2 6.0
      10 216.3 158.2 0.73 0.055 32 0.002 2 0.584 49 0.022 5 0.076 57 0.000 9 425.2 86.1 467.3 14.4 475.6 5.6
      11 206.5 137.7 0.67 0.056 31 0.002 3 0.593 00 0.023 5 0.076 33 0.001 0 463.6 88.9 472.8 15.0 474.2 5.7
      12 399.4 366.0 0.92 0.055 96 0.001 6 0.590 26 0.016 2 0.076 46 0.000 8 450.2 62.0 471.0 10.3 474.9 4.8
      13 305.7 247.9 0.81 0.056 56 0.001 7 0.596 42 0.016 9 0.076 43 0.000 8 473.8 64.0 475.0 10.8 474.8 4.9
      14 252.3 179.3 0.71 0.056 43 0.002 3 0.584 65 0.022 7 0.075 10 0.000 9 468.4 87.0 467.4 14.5 466.8 5.6
      15 141.1 77.1 0.55 0.056 18 0.003 0 0.589 98 0.030 6 0.076 12 0.001 1 458.6 114.9 470.9 19.6 472.9 6.7
      16 132.4 44.2 0.33 0.056 18 0.003 5 0.588 37 0.035 6 0.075 91 0.001 3 458.6 132.8 469.8 22.8 471.7 7.5
      17 72.0 20.5 0.28 0.056 64 0.003 7 0.588 48 0.037 6 0.075 31 0.001 3 476.7 139.4 469.9 24.0 468.1 7.7
      18 343.5 382.0 1.11 0.056 56 0.001 8 0.594 71 0.017 9 0.076 22 0.000 8 473.5 67.7 473.9 11.4 473.5 5.0
      19 315.9 238.7 0.76 0.056 56 0.002 5 0.588 12 0.025 5 0.075 37 0.001 0 473.5 96.6 469.7 16.3 468.4 6.0
      20 420.8 309.9 0.74 0.056 66 0.002 7 0.594 70 0.027 9 0.076 07 0.001 1 477.7 104.1 473.9 17.8 472.6 6.3
      21 78.5 26.2 0.33 0.092 11 0.003 3 3.168 09 0.109 8 0.249 29 0.003 5 1 469.5 67.0 1 449.4 26.8 1 434.8 17.8
      22 199.5 171.2 0.86 0.082 43 0.001 6 2.442 09 0.045 3 0.214 74 0.002 1 1 255.7 38.0 1 255.1 13.4 1 254.0 11.2
      23 201.7 119.3 0.59 0.056 82 0.002 1 0.595 98 0.021 6 0.076 02 0.000 9 483.9 81.2 474.7 13.7 472.3 5.4
      24 267.5 392.2 1.47 0.059 01 0.002 5 0.623 83 0.025 8 0.076 62 0.001 0 567.5 90.2 492.2 16.1 475.9 5.9
      25 535.4 52.1 0.10 0.088 66 0.001 3 2.967 47 0.037 9 0.242 59 0.002 2 1 396.7 26.7 1 399.3 9.7 1 400.1 11.4
      26 130.3 62.6 0.48 0.056 64 0.003 1 0.596 96 0.031 7 0.076 37 0.001 2 477.0 117.0 475.3 20.2 474.4 6.9
      27 321.4 136.1 0.42 0.060 05 0.002 3 0.632 78 0.023 5 0.076 36 0.000 9 605.4 81.0 497.8 14.6 474.4 5.6
      28 270.7 210.5 0.78 0.059 11 0.002 1 0.622 97 0.021 7 0.076 36 0.000 9 571.3 76.5 491.7 13.6 474.4 5.4
      29 149.7 84.5 0.56 0.058 97 0.003 3 0.622 15 0.033 4 0.076 44 0.001 2 566.2 115.8 491.2 20.9 474.8 7.0
      30 534.2 629.7 1.18 0.056 75 0.002 1 0.597 13 0.021 6 0.076 25 0.000 9 481.0 81.0 475.4 13.7 473.7 5.4
      下载: 导出CSV
    • Bachmann, O., Bergantz, G. W., 2008. Rhyolites and Their Source Mushes across Tectonic Settings. Journal of Petrology, 49(12): 2277-2285. https://doi.org/10.1093/petrology/egn068
      Cen, T., Li, W. X., Tao, J. H., et al., 2017. Geochronology, Geochemistry and Zircon Hf Isotope for Banshi and Caifang Volcanic Rocks from Southern Jiangxi Province and Their Geological Implications. Geotectonica et Metallogenia, 41(5): 933-949 (in Chinese with English abstract).
      Chen, F. K., Siebel, W., Satir, M., et al., 2002. Geochronology of the Karadere Basement (NW Turkey) and Implications for the Geological Evolution of the Istanbul Zone. International Journal of Earth Sciences, 91(3): 469-481. https://doi.org/10.1007/s00531-001-0239-6
      Chen, S., Niu, Y. L., Sun, W. L., et al., 2015. On the Origin of Mafic Magmatic Enclaves (MMEs) in Syn-Collisional Granitoids: Evidence from the Baojishan Pluton in the North Qilian Orogen, China. Mineralogy and Petrology, 109(5): 577-596. https://doi.org/10.1007/s00710-015-0383-5
      Chen, S., Niu, Y. L., Li, J. Y., et al., 2016. Syn-Collisional Adakitic Granodiorites Formed by Fractional Crystallization: Insights from Their Enclosed Mafic Magmatic Enclaves (MMEs) in the Qumushan Pluton, North Qilian Orogen at the Northern Margin of the Tibetan Plateau. Lithos, 248-251: 455-468. https://doi.org/10.1016/j.lithos.2016.01.033
      Christiansen, R. L., 1984. Yellowstone Magmatic Evolution: Its Bearing on Understanding Large-Volume Explosive Volcanism. In: Jr Boyd, F. R., ed., Explosive Volcanism: Inception, Evolution and Hazards. National Academy Press, Washington, D. C..
      Condie, K. C., 1999. Mafic Crustal Xenoliths and the Origin of the Lower Continental Crust. Lithos, 46(1): 95-101. https://doi.org/10.1016/s0024-4937(98)00056-5
      Cull, J. P., O'Reilly, S. Y., Griffin, W. L., 1991. Xenolith Geotherms and Crustal Models in Eastern Australia. Tectonophysics, 192(3-4): 359-366. https://doi.org/10.1016/0040-1951(91)90109-6
      Deering, C. D., Gravley, D. M., Vogel, T. A., et al., 2010. Origins of Cold-Wet-Oxidizing to Hot-Dry-Reducing Rhyolite Magma Cycles and Distribution in the Taupo Volcanic Zone, New Zealand. Contributions to Mineralogy and Petrology, 160(4): 609-629. https://doi.org/10.1007/s00410-010-0496-0
      Dong, K., 2018. Petrogenic, Metallogenetic Environment and Its Exploration Significance in Baiyinchang Copper Deposit, Gansu Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Du, Z. Z., 2014. Research on Mineralization of the Baiyinchang Copper Multimetal Field, Gansu Province, China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Edwards, C. M. H., Morris, J. D., Thirlwall, M. F., 1993. Separating Mantle from Slab Signatures in Arc Lavas Using B/Be and Radiogenic Isotope Systematics. Nature, 362(6420): 530-533. https://doi.org/10.1038/362530a0
      Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
      Geist, D., Howard, K. A., Larson, P., 1995. The Generation of Oceanic Rhyolites by Crystal Fractionation: The Basalt-Rhyolite Association at Volcán Alcedo, Galápagos Archipelago. Journal of Petrology, 36(4): 965-982. https://doi.org/10.1093/petrology/36.4.965
      Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
      Guo, J., Li, Y. S., Zhang, J. X., et al., 2021. Formation Age and Tectonic Environment of Shuidongxia Ophiolite in North Qilian Mountains. Earth Science, 46(5): 1644-1656 (in Chinese with English abstract).
      Guo, Y. S., Wang, J. R., Fu, S. M., et al., 2003. Geochemical Constraints on the Genesis and Source Characteristics of Early and Middle Cambrian Acid Volcanic Rocks in Baiyinchang Ore Field, Gansu Province. Journal of Lanzhou University (Natural Sciences), 39(5): 95-100 (in Chinese with English abstract).
      He, S. P., Wang, H. L., Chen, J. L., et al., 2006. A LA-ICP-MS U-Pb Chronological Study of Zircons from Meta-Acidic Volcanics in Baiyin Orefield, Gansu Province: New Evidence for Metallogenic Age of Baiyin Type Massive Sulfide Deposits. Mineral Deposits, 25(4): 401-411 (in Chinese with English abstract).
      Hess, P. C., 1992. Phase Equilibria Constraints on the Origin of Ocean Floor Basalts. In: Morgan, J. P., Blackman, D. K., Sinton, J. M., eds., Mantle Flow and Melt Generation at Mid-Ocean Ridges. American Geophysical Union, Washington, D. C., 67-102. https://doi.org/10.1029/gm071p0067
      Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055
      Ishizuka, O., Taylor, R. N., Geshi, N., et al., 2015. Progressive Mixed-Magma Recharging of Izu-Oshima Volcano, Japan: A Guide to Magma Chamber Volume. Earth and Planetary Science Letters, 430: 19-29. https://doi.org/10.1016/j.epsl.2015.08.004
      Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
      Kieffer, B., Arndt, N., Lapierre, H., et al., 2004. Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell. Journal of Petrology, 45(4): 793-834. https://doi.org/10.1093/petrology/egg112
      Lara, P., Oyhantçabal, P., Dadd, K., 2017. Post-Collisional, Late Neoproterozoic, High-Ba-Sr Granitic Magmatism from the Dom Feliciano Belt and Its Cratonic Foreland, Uruguay: Petrography, Geochemistry, Geochronology, and Tectonic Implications. Lithos, 277: 178-198. https://doi.org/10.1016/j.lithos.2016.11.026
      Lee, C. T. A., Morton, D. M., 2015. High Silica Granites: Terminal Porosity and Crystal Settling in Shallow Magma Chambers. Earth and Planetary Science Letters, 409: 225-231. doi: 10.1016/j.epsl.2014.10.042
      Li, X. M., Ma, Z. P., Sun, J. M., et al., 2009. A LA-ICP-MS Chronological Study of Basic Volcanics in Baiyin Orefield, Gansu, China. Geological Bulletin of China, 28(7): 901-906 (in Chinese with English abstract).
      Li, X. M., Yu, J. Y., Wang, G. Q., et al., 2018. Late Neoproterozoic to Early Paleozoic Volcanism and Iron-Copper Polyme-Tallic Mineralization of the Qilian Mountain. Geological Bulletin of China, 37(4): 693-703 (in Chinese with English abstract).
      Li, Y., Fu, G. M., Miao, Q., et al., 2009. Geochemical Characteristics and Tectonic Setting of Intermediate-Basic Volcanic Rocks in Baiyin Area, Gansu Province. Journal of Lanzhou University (Natural Sciences), 45(S1): 55-60 (in Chinese with English abstract).
      Liao, F. Y., Chen, W., Cao, X. F., et al., 2020. Petrogenesis and Forming Environment of Monzonitic Granite in Yushishan Nb-Ta Mining Area, Akesai, Gansu Province: Evidences from Chronology and Geochemistry. Earth Science, 45(12): 4589-4603 (in Chinese with English abstract).
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      Marsaglia, K. M., 1995. Interarc and Back-Arc Basin. In: Busby, C. J., Ingersoll, R. V., eds., Tectonics of Sedimentary Basins. Blackwell Science, Cambridge, 299-329.
      Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4): 207-218. https://doi.org/10.1016/0009-2541(86)90004-5
      Morel, M. L. A., Nebel, O., Nebel-Jacobsen, Y. J., et al. 2008. Hafnium Isotope Characterization of the GJ-1 Zircon Reference Material by Solution and Laser-Ablation MC-ICPMS. Chemical Geology, 255(1-2): 231-235. https://doi.org/10.1016/j.chemgeo.2008.06.040
      Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. John Wiley and Sons, Chichester, 525-548.
      Pearce, J. A., Parkinson, I. J., 1993. Trace Element Models for Mantle Melting: Application to Volcanic Arc Petrogenesis. Geological Society of London Special Publications, 76(1): 373-403. https://doi.org/10.1144/GSL.SP.1993.076.01.19
      Pearce, J. A., van der Laan, S. R., Arculus, R. J., et al., 1992. Boninite and Harzburgite from ODP Leg 125 (Bonin-Mariana Forearc): A Case Study of Magma Genesis during the Initial Stages of Subduction. Proceedings of the Ocean Drilling Program Scientific Results, 125: 623-659. https://doi.org/10.2973/odp.proc.sr.125.172.1992
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
      Qin, H. P., Wu, C. L., Wang, C. S., et al., 2014. LA-ICP-MS Zircon U-Pb Dating and Geochemical Characteristics of High Sr / Y-Type Granite from Xigela, Eastern Qilian Area. Acta Petrologica Sinica, 30(12): 3759-3771 (in Chinese with English abstract).
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tatsumi, Y., Eggins, S. M., 1995. Subduction Zone Magmatism. Blackwell Science, Cambridge.
      Turner, S., Foden, J., George, R., et al., 2003. Rates and Processes of Potassic Magma Evolution beneath Sangeang Api Volcano, East Sunda Arc, Indonesia. Journal of Petrology, 44(3): 491-515. https://doi.org/10.1093/petrology/44.3.491
      Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
      Wang, C. Y., Zhang, Q., Qian, Q., et al., 2005. Geochemistry of the Early Paleozoic Baiyin Volcanic Rocks (NW China): Implications for the Tectonic Evolution of the North Qilian Orogenic Belt. The Journal of Geology, 113(1): 83-94. https://doi.org/10.1086/425970
      Wang, J. R., Wu, C. J., Cai, Z. H., et al., 2006. Early Paleozoic High-Mg Adakite from Yindongliang in the Eastern Section of the North Qilian: Implications for Geodynamics and Cu-Au Mineralization. Acta Petrologica Sinica, 22(11): 2655-2664 (in Chinese with English abstract).
      Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      Wilson, M., Wilson, B., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Unwin Hyman, London. https://doi.org/10.1007/978-94-010-9388-0
      Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30. https://doi.org/10.1016/0012-821X(80)90116-8
      Wu, C. L., Gao, Y. H., Frost, B. R., et al., 2011. An Early Palaeozoic Double-Subduction Model for the North Qilian Oceanic Plate: Evidence from Zircon SHRIMP Dating of Granites. International Geology Review, 53(2): 157-181. https://doi.org/10.1080/00206810902965346
      Wu, C. L., Xu, X. Y., Gao, Q. M., et al., 2010. Frost RB and Wooden JL. 2010. Early Palaezoic Grranitoid Magmatism and Tectonic Evolution in North Qilian, NW China. Acta Petrologica Sinica, 26(4): 1027-1044 (in Chinese with English abstract).
      Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract).
      Xia, L. Q., Li, X. M., Yu, J. Y., et al., 2016. Mid-Late Neoproterozoic to Early Paleozoic Volcanism and Tectonic Evolution of the Qilian Mountain. Geology in China, 43(4): 1087-1138 (in Chinese with English abstract).
      Xia, L. Q., Xia, Z. C., Xu, X. Y., 1995. Dynamics of Tectonic-Volcanic Magma Evolution in North Qilian Mountains. Northwest Geoscience, (1): 1-28 (in Chinese).
      Xia, L. Q., Xia, Z. C., Xu, X. Y., 1998. Early Palaeozoic Mid-Ocean Ridge-Ocean Island and Back-Arc Basin Volcanism in the North Qilian Mountains. Acta Geologica Sinica, 72(4): 301-312 (in Chinese with English abstract).
      Xia, L. Q., Xia, Z. C., Xu, X. Y., 2003. Magmagenesis of Ordovician Back-Arc Basins in the Northern Qilian Mountains. Geology in China, 30(1): 48-60 (in Chinese with English abstract).
      Xiong, Z. L., Zhang, H. F., Zhang, J., 2012. Petrogenesis and Tectonic Implications of the Maozangsi and Huangyanghe Granitic Intrusions in Lenglongling Area, the Eastern Part of North Qilian Mountains, NW China. Earth Science Frontiers, 19(3): 214-227 (in Chinese with English abstract).
      Xu, Y. W., Li, C. D., Zhao, L. G., et al., 2021. Bimodal Volcanic Rocks of Dingyuan Formation on the Northern Margin of Dabie Belt: A Witness of Late Neoproterozoic Rifting Event. Earth Science, 46(8): 2732-2750 (in Chinese with English abstract).
      Yu, S. Y., Zhang, J. X., Qin, H. P., et al., 2015. Petrogenesis of the Early Paleozoic Low-Mg and High-Mg Adakitic Rocks in the North Qilian Orogenic Belt, NW China: Implications for Transition from Crustal Thickening to Extension Thinning. Journal of Asian Earth Sciences, 107: 122-139. https://doi.org/10.1016/j.jseaes.2015.04.018
      Yuan, H. L., Gao, S., Dai, M. N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1-2): 100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003
      Zhang, H. R., Zhao, J. L., Yu, H. Y., 2019. Petrogenesis and Tectonic Implications of the Laohushan Quartz Diorite from the Eastern Part of North Qilian Orogen, NW China. Geological Journal of China Universities, 25(5): 641-653 (in Chinese with English abstract).
      岑涛, 李武显, 陶继华, 等, 2017. 赣南版石‒蔡坊火山岩年代学、地球化学和锆石Hf同位素特征及其地质意义. 大地构造与成矿学, 41(5): 933-949. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201705010.htm
      董凯, 2018. 甘肃白银厂铜矿成岩‒成矿环境及其找矿意义(博士学位论文). 武汉: 中国地质大学.
      杜泽忠, 2014. 甘肃白银厂铜多金属矿田成矿作用研究(博士学位论文). 北京: 中国地质大学.
      郭晶, 李云帅, 张建新, 等, 2021. 北祁连水洞峡蛇绿岩形成时代与构造环境. 地球科学, 46(5): 1644-1656. doi: 10.3799/dqkx.2020.176
      郭原生, 王金荣, 付善明, 等, 2003. 甘肃白银厂矿田早中寒武世酸性火山岩成因及源区特征的地球化学制约. 兰州大学学报(自然科学版), 39(5): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200305022.htm
      何世平, 王洪亮, 陈隽璐, 等, 2006. 甘肃白银矿田变酸性火山岩锆石LA-ICP-MS测年——白银式块状硫化物矿床形成时代新证据. 矿床地质, 25(4): 401-411. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604004.htm
      李向民, 马中平, 孙吉明, 等, 2009. 甘肃白银矿田基性火山岩的LA-ICP-MS同位素年代学. 地质通报, 28(7): 901-906. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200907012.htm
      李向民, 余吉远, 王国强, 等, 2018. 祁连山新元古代‒早古生代火山作用与铁‒铜多金属成矿. 地质通报, 37(4): 693-703. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201804016.htm
      李莹, 付国民, 苗箐, 等, 2009. 甘肃白银地区中基性火山岩岩石地球化学特征及构造背景. 兰州大学学报(自然科学版), 45(S1): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK2009S1014.htm
      廖风云, 陈威, 曹晓峰, 等, 2020. 甘肃阿克塞余石山铌钽矿区二长花岗岩成因和形成环境: 来自年代学及地球化学的证据. 地球科学, 45(12): 4589-4603. doi: 10.3799/dqkx.2019.260
      秦海鹏, 吴才来, 王次松, 等, 2014. 祁连东部西格拉高Sr/Y型花岗岩LA-ICP-MS锆石U-Pb定年及其地球化学特征. 岩石学报, 30(12): 3759-3771. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201412024.htm
      王金荣, 吴春俊, 蔡郑红, 等, 2006. 北祁连山东段银硐粱早古生代高镁埃达克岩: 地球动力学及成矿意义. 岩石学报, 22(11): 2655-2664. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200611003.htm
      吴才来, 徐学义, 高前明, 等, 2010. 北祁连早古生代花岗质岩浆作用及构造演化. 岩石学报, 26(4): 1027-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004004.htm
      吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      夏林圻, 李向民, 余吉远, 等, 2016. 祁连山新元古代中‒晚期至早古生代火山作用与构造演化. 中国地质, 43(4): 1087-1138. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201604002.htm
      夏林圻, 夏祖春, 徐学义, 1995. 北祁连山构造‒火山岩浆演化动力学. 西北地质科学, (1): 1-28. https://www.cnki.com.cn/Article/CJFDTOTAL-XBFK501.000.htm
      夏林圻, 夏祖春, 徐学义, 1998. 北祁连山早古生代洋脊‒洋岛和弧后盆地火山作用. 地质学报, 72(4): 301-312. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199804001.htm
      夏林圻, 夏祖春, 徐学义, 2003. 北祁连山奥陶纪弧后盆地火山岩浆成因. 中国地质, 30(1): 48-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200301005.htm
      熊子良, 张宏飞, 张杰, 2012. 北祁连东段冷龙岭地区毛藏寺岩体和黄羊河岩体的岩石成因及其构造意义. 地学前缘, 19(3): 214-227. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203023.htm
      许雅雯, 李承东, 赵利刚, 等, 2021. 大别山北缘定远组双峰式火山岩‒新元古代晚期裂解事件记录. 地球科学, 46(8): 2732-2750. doi: 10.3799/dqkx.2020.322
      张海瑞, 赵姣龙, 于汇洋, 2019. 北祁连造山带东段老虎山石英闪长岩成因及其地质意义. 高校地质学报, 25(5): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201905001.htm
    • dqkxzx-49-7-2490-附表.docx
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  374
    • HTML全文浏览量:  217
    • PDF下载量:  56
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-08-15
    • 网络出版日期:  2024-08-03
    • 刊出日期:  2024-07-25

    目录

      /

      返回文章
      返回