• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    桂北中奥陶统升坪组黑色页岩沉积环境与有机质富集

    余烨 蔡灵慧 王莉 吴海东

    余烨, 蔡灵慧, 王莉, 吴海东, 2024. 桂北中奥陶统升坪组黑色页岩沉积环境与有机质富集. 地球科学, 49(7): 2315-2329. doi: 10.3799/dqkx.2022.485
    引用本文: 余烨, 蔡灵慧, 王莉, 吴海东, 2024. 桂北中奥陶统升坪组黑色页岩沉积环境与有机质富集. 地球科学, 49(7): 2315-2329. doi: 10.3799/dqkx.2022.485
    Yu Ye, Cai Linghui, Wang Li, Wu Haidong, 2024. Sedimentary Environment and Organic Matter Accumulation of Black Shale in Middle Ordovician Shengping Formation, Northern Guangxi. Earth Science, 49(7): 2315-2329. doi: 10.3799/dqkx.2022.485
    Citation: Yu Ye, Cai Linghui, Wang Li, Wu Haidong, 2024. Sedimentary Environment and Organic Matter Accumulation of Black Shale in Middle Ordovician Shengping Formation, Northern Guangxi. Earth Science, 49(7): 2315-2329. doi: 10.3799/dqkx.2022.485

    桂北中奥陶统升坪组黑色页岩沉积环境与有机质富集

    doi: 10.3799/dqkx.2022.485
    基金项目: 

    湖南省自然科学基金项目 2023JJ30239

    湖南省教育厅资助科研项目 23B0467

    详细信息
      作者简介:

      余烨(1983-),男,副教授,博士,从事沉积学及页岩气勘探综合研究工作.ORCID:0000-0001-5548-7555.E-mail:yuye1983@163.com

      通讯作者:

      王莉,ORCID:0000-0002-9458-4099.E-mail:wangli@hnust.edu.cn

    • 中图分类号: P595

    Sedimentary Environment and Organic Matter Accumulation of Black Shale in Middle Ordovician Shengping Formation, Northern Guangxi

    • 摘要: 为了探讨桂北中奥陶统升坪组黑色页岩沉积环境与有机质富集的关系,利用有机碳、主量元素、微量元素及碳同位素等地球化学方法,分析了广西北部全州县文桥镇溪水源剖面中奥陶统升坪组黑色页岩的古氧化还原条件、古生产力、热水沉积作用、碎屑注入及水体局限程度等古沉积环境.结果表明:升坪组下段以富泥硅质页岩为主,TOC含量为1.45%~3.04%;上段以硅质页岩为主,TOC含量为0.63%~2.69%.升坪组下段有机质来源为I型干酪根,上段有机质来源除了I型干酪根外,可能还有Ⅱ型干酪根的参与.升坪组沉积时期总体为贫氧‒厌氧的深水陆棚‒盆地相环境.下段富泥硅质页岩中有机质富集为“生产力”和“保存条件”的双控模式;上段硅质页岩中有机质富集为“保存条件”模式.

       

    • 图  1  中国南方广西及其周缘中奥陶世古地理图

      冯增昭等,2001张允白等,2002Chen et al.,2012

      Fig.  1.  Middle Ordovician paleogeographic map of Guangxi and its surrounding areas in southern China

      图  2  溪水源剖面升坪组页岩岩相分类

      Fig.  2.  Lithofacies classification of Shengping Shale at Xishuiyuan

      图  3  溪水源剖面升坪组页岩地球化学参数分布柱状图

      Fig.  3.  Stratigraphic variation of geochemical parameters of Shengping Shale at Xishuiyuan

      图  4  溪水源剖面升坪组页岩Al2O3-SiO2判别图解(底图据Spry,1990)

      Fig.  4.  Al2O3-SiO2 discrimination diagram of Shengping Shale at Xishuiyuan (modified from Spry, 1990)

      图  5  溪水源剖面升坪组沉积水体局限程度判别

      a. Mo-TOC校正关系与现代厌氧海盆对比(底图据Algeo and Rowe, 2012),TOC校正为恢复后的古TOC值;b. MoEF-UEF协变模式(底图据Algeo and Tribovillard, 2009),4条虚线分别代表Mo/U比值是海水0.1倍、0.3倍、1倍和3倍

      Fig.  5.  Discriminating the limitation of sedimentary water body of Shengping Formation at Xishuiyuan

      图  6  溪水源剖面升坪组下段和上段页岩部分地球化学参数相关系数

      Fig.  6.  Correlation coeffidiets among geochemical paramenters of Lower and Upper Shengping Shale at Xishuiyuan

      图  7  升坪组下段(a)和上段(b)有机质富集模式(据冯增昭等,2001夏鹏等,2020修改)

      Fig.  7.  Accumulation pattern of organic matter in Lower (a) and Upper (b) Shengping Formation (modified from Feng et al., 2001; Xia et al., 2020)

      表  1  溪水源剖面升坪组页岩矿物组成及有机质含量

      Table  1.   Mineral compositions and TOC content of Shengping Shale at Xishuiyuan

      组段 样品编号 岩相 TOC(%) 全岩定量分析(%) 黏土矿物相对含量(%)
      黏土 石英 长石 方解石 白云石 菱铁矿 黄铁矿 石膏 硬石膏 K C I I/S
      升坪组上段 S14 SS 0.63 9.9 84.4 0.7 - 2.4 0.4 1.5 0.1 0.4 5 2 50 43
      S13 SS 1.83 21.5 74.6 1.7 0.2 - 0.7 0.5 - 0.8 31 2 40 27
      S12 SS 0.90 13.2 85.3 0.6 - - 0.3 0.1 - 0.5
      S11 SS 2.69 20.7 71.0 2.2 0.3 0.1 1.2 3.1 - 1.2 3 1 53 43
      S10 SS 1.35 13.6 82.7 1.0 - - 0.5 1.6 - 0.6
      S09 SS 2.06 19.0 74.5 1.7 0.5 0.1 0.8 2.5 - 0.9 15 7 46 32
      S08 SS 2.58 22.9 71.5 1.7 0.3 - 0.8 2.0 - 0.8
      平均值 1.72 17.3 77.7 1.4 0.12 0.37 0.7 1.6 0.01 0.7 13.5 3 47.3 36.3
      升坪组下段 S07 MSS 1.97 41.7 46.1 3.7 - - 1.8 4.5 0.1 1.9 5 3 50 42
      S06 MSS 1.56 35.5 44.5 2.9 - - 1.1 14.5 0.1 1.4
      S05 MSS 2.33 43.9 45.5 3.5 - - 1.6 3.7 - 1.8 8 13 51 28
      S04 MSS 1.45 39.3 51.0 3.5 0.4 - 1.8 2.0 - 2.0
      S03 MSS 3.04 26.7 66.6 2.0 - - 1.0 2.8 - 0.9 9 13 48 30
      S02 SS 2.99 22.6 66.7 2.4 - 0.1 1.1 5.7 0.2 1.2
      S01 MSS 2.73 27.8 60.5 2.5 - - 1.2 6.7 - 1.3 18 1 50 31
      平均值 2.30 33.9 54.4 2.9 0.06 0.01 1.4 5.7 0.06 1.5 10 7.5 49.8 32.8
      注:SS.硅质页岩;MSS.富泥硅质页岩;K.高岭石;C.绿泥石;I.伊利石;I/S.伊/蒙混层;“-”表示空值.
      下载: 导出CSV

      表  2  溪水源剖面升坪组页岩主量元素含量(%)及元素比值

      Table  2.   Major element contents (%) and element ratios of Shengping Shale at Xishuiyuan

      组段 样品编号 岩相 SiO2 Fe2O3 Al2O3 CaO MgO K2O Na2O MnO TiO2 P2O5 Ti/Al K/Al Si/Al P/Al×104 Si+Fe+Mn+P Al+Ti+Mg
      升坪组上段 S14 SS 77.69 4.58 8.26 0.10 0.98 2.19 0.03 0.04 0.42 0.05 0.050 0.265 9.40 54.54 82.35 9.66
      S13 SS 86.44 1.52 5.96 0.05 0.42 1.49 0.03 0.07 0.33 0.03 0.055 0.250 14.49 42.46 88.05 6.71
      S12 SS 85.81 0.77 7.03 0.01 0.46 1.64 0.02 0.04 0.36 0.02 0.051 0.233 12.20 33.68 86.65 7.86
      S11 SS 76.40 1.95 10.27 0.01 0.71 3.35 0.06 0.03 0.45 0.03 0.044 0.326 7.44 32.49 78.42 11.43
      S10 SS 91.65 1.66 2.88 0.02 0.27 0.86 0.01 0.06 0.12 0.02 0.043 0.299 31.81 60.24 93.40 3.27
      S09 SS 86.22 1.77 6.00 0.02 0.56 1.88 0.03 0.03 0.25 0.03 0.042 0.313 14.36 56.15 88.05 6.81
      S08 SS 86.31 1.31 5.58 0.02 0.42 1.50 0.03 0.05 0.25 0.02 0.045 0.269 15.46 39.90 87.69 6.25
      平均值 84.36 1.94 6.57 0.03 0.54 1.84 0.03 0.04 0.31 0.03 0.047 0.279 15.03 45.64 86.37 7.43
      升坪组下段 S07 MSS 66.10 2.70 16.92 0.01 1.11 5.41 0.09 0.03 0.85 0.04 0.050 0.320 3.91 22.77 68.86 18.87
      S06 MSS 62.37 8.49 13.68 0.02 1.35 3.97 0.05 0.02 0.62 0.07 0.045 0.290 4.56 52.55 70.96 15.65
      S05 MSS 63.82 7.85 13.49 0.03 2.17 3.39 0.05 0.04 0.68 0.11 0.051 0.251 4.73 82.42 71.83 16.34
      S04 MSS 70.15 3.46 13.72 0.01 0.97 4.43 0.08 0.02 0.62 0.03 0.045 0.323 5.11 24.72 73.67 15.31
      S03 MSS 68.03 4.17 13.56 0.03 1.90 3.45 0.05 0.03 0.65 0.08 0.048 0.254 5.02 55.46 72.31 16.11
      S02 SS 80.39 3.68 7.07 0.07 0.51 2.13 0.03 0.03 0.30 0.06 0.042 0.301 11.37 91.11 84.17 7.88
      S01 MSS 79.21 1.78 9.53 0.02 0.70 2.94 0.05 0.03 0.44 0.02 0.046 0.308 8.31 24.66 81.04 10.68
      平均值 70.01 4.59 12.57 0.03 1.24 3.68 0.06 0.03 0.59 0.06 0.047 0.293 6.14 50.53 74.69 14.41
      总平均值 77.19 3.26 9.57 0.03 0.89 2.76 0.04 0.04 0.45 0.04 0.047 0.286 10.58 48.08 80.53 10.92
      北美页岩 64.80 7.18 16.90 3.56 2.85 3.99 1.15 0.06 0.78 0.11
      地壳 66.62 5.04 15.40 3.59 0.10 2.80 3.27 0.10 0.64 0.15
      注:SS.硅质页岩;MSS.富泥硅质页岩;北美页岩数据引自Gromet et al.(1984);地壳数据引自Rudnick and Gao (2004).
      下载: 导出CSV

      表  3  溪水源剖面升坪组页岩微量元素含量(10-6)及元素比值

      Table  3.   Trace element contents (10-6) and element ratios of Shengping Shale at Xishuiyuan

      组段 样品编号 岩相 V Cr Co Ni Cu Zn Rb Sr Zr Mo Ba Pb Th U V/(V+Ni) V/Cr Ni/Co U/Th Sr/Ba Mo/TOC
      升坪组上段 S14 SS 85.62 41.55 6.41 20.43 28.51 54.72 52.65 50.10 31.29 5.26 435.05 9.92 4.95 1.98 0.81 2.06 3.19 0.40 0.12 8.31
      S13 SS 31.63 22.97 0.66 3.67 4.33 31.74 16.43 16.58 20.05 2.15 179.36 4.03 1.59 0.73 0.90 1.38 5.58 0.46 0.09 1.18
      S12 SS 18.92 49.31 0.44 9.31 2.64 3.05 14.07 7.75 4.32 0.59 98.99 2.52 0.94 0.37 0.67 0.38 21.16 0.40 0.08 0.65
      S11 SS 18.05 6.78 0.35 3.72 1.17 20.15 8.44 7.30 3.67 1.39 44.32 0.89 0.47 0.34 0.83 2.66 10.52 0.71 0.16 0.52
      S10 SS 5.19 6.53 0.25 2.42 1.53 1.86 2.60 2.33 1.51 0.44 45.07 0.77 0.19 0.13 0.68 0.79 9.63 0.65 0.05 0.33
      S09 SS 23.39 7.91 0.34 3.82 1.69 4.44 6.39 5.63 3.21 1.26 57.71 0.96 0.61 0.63 0.86 2.96 11.33 1.03 0.10 0.61
      S08 SS 20.78 12.83 0.30 5.66 35.35 2.40 10.35 9.12 6.03 1.28 96.19 2.07 0.78 0.60 0.79 1.62 18.86 0.76 0.09 0.49
      平均值 29.08 21.13 1.25 7.00 10.75 16.91 15.85 14.11 10.01 1.77 136.67 3.02 1.36 0.68 0.79 1.69 11.47 0.63 0.10 1.73
      升坪组下段 S07 MSS 9.78 14.68 0.28 3.41 1.06 0.80 8.31 7.39 5.92 0.91 40.54 2.29 0.63 0.38 0.74 0.67 12.17 0.60 0.18 0.46
      S06 MSS 34.68 9.50 3.17 7.26 6.33 4.67 29.67 29.72 20.85 6.29 173.13 11.68 3.67 2.21 0.83 3.65 2.29 0.60 0.17 4.03
      S05 MSS 24.90 14.84 3.25 13.09 9.73 9.62 25.84 20.28 38.55 6.12 163.07 7.28 4.50 3.20 0.66 1.68 4.03 0.71 0.12 2.63
      S04 MSS 9.15 8.65 0.73 2.71 2.12 0.98 10.55 9.53 5.62 1.41 60.06 2.32 1.06 0.34 0.77 1.06 3.72 0.32 0.16 0.98
      S03 MSS 75.29 20.10 1.63 10.82 26.76 10.22 21.17 23.70 19.96 2.74 141.33 2.26 3.16 2.37 0.87 3.75 6.64 0.75 0.17 0.90
      S02 SS 71.28 50.44 2.94 29.02 9.67 22.62 17.93 17.24 9.59 8.17 174.11 5.18 2.35 3.17 0.71 1.41 9.87 1.35 0.10 2.74
      S01 MSS 26.59 7.94 0.25 3.28 1.42 3.62 9.10 8.60 5.57 2.32 61.94 1.60 0.60 0.46 0.89 3.35 13.12 0.76 0.14 0.85
      平均值 35.95 18.02 1.75 9.94 8.15 7.50 17.51 16.64 15.15 3.99 116.31 4.66 2.28 1.73 0.78 2.22 7.41 0.73 0.15 1.80
      总平均值 32.52 19.57 1.50 8.47 9.45 12.21 16.68 15.37 12.58 2.88 126.49 3.84 1.82 1.21 0.79 1.96 9.44 0.68 0.12 1.76
      北美页岩 97.00 92.00 17.30 47.00 28.00 67.00 84.00 320.0 193.0 1.10 624.00 17.00 10.5 2.70
      地壳 130.0 124.5 25.70 58.00 45.00 95.00 125.0 142.0 20.00 2.60 636.00 20.00 12.3 2.66
      注:SS.硅质页岩;MSS.富泥硅质页岩;北美页岩数据引自Gromet et al.(1984);地壳数据引自Rudnick and Gao (2004).
      下载: 导出CSV

      表  4  溪水源剖面升坪组页岩干酪根有机碳同位素

      Table  4.   Organic carbon isotope of kerogen of Shengping Shale at Xishuiyuan

      组段 样品编号 岩相 δ13Corg(‰)
      升坪组上段 S14 SS ‒28.8
      S09 SS ‒30.0
      平均值 ‒29.4
      升坪组下段 S05 MSS ‒30.0
      S03 MSS ‒30.5
      S01 MSS ‒30.4
      平均值 ‒30.3
      总平均值 ‒29.94
      注:SS.硅质页岩;MSS.富泥硅质页岩.
      下载: 导出CSV
    • Algeo, T. J., Rowe, H., 2012. Paleoceanographic Applications of Trace-Metal Concentration Data. Chemical Geology, 324-325: 6-18. https://doi.org/10.1016/j.chemgeo.2011.09.002
      Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268(3-4): 211-225. https://doi.org/10.1016/j.chemgeo.2009.09.001
      Canfield, D. E., 1994. Factors Influencing Organic Carbon Preservation in Marine Sediments. Chemical Geology, 114(3): 315-329. 10.1016/0009-2541(94)90061-2 doi: 10.1016/0009-2541(94)90061-2
      Charvet, J., Shu, L. S., Faure, M., et al., 2010. Structural Development of the Lower Paleozoic Belt of South China: Genesis of an Intracontinental Orogen. Journal of Asian Earth Sciences, 39(4): 309-330. https://doi.org/10.1016/j.jseaes.2010.03.006
      Chen, X., Yang, W. R., He, Z. Q., et al., 1981. Ordovician Graptolite-Bearing Strata in Xing'an, Guangxi. Journal of Stratigraphy, 5(1): 36-45 (in Chinese).
      Chen, X., Zhang, Y. D., Fan, J. X., et al., 2012. Onset of the Kwangsian Orogeny as Evidenced by Biofacies and Lithofacies. Science China Earth Sciences, 55(10): 1592-1600. https://doi.org/10.1007/s11430-012-4490-4
      Chen, Y., Huang, W. F., Liang, Y. P., et al., 2017. Analysis on Black Shale Feature and Depositional Environment of the First Member of Luzhai Formation, Luzhai Area of Guangxi. Mineral Resources and Geology, 31(3): 605-612 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-5663.2017.03.027
      Feng, Z. Z., Peng, Y. M., Jin, Z. K., et al., 2001. Lithofacies Palaeogeography of the Middle and Late Ordovician in South China. Journal of Palaeogeography, 3(4): 10-24 (in Chinese with English abstract).
      Gromet, L. P., Haskin, L. A., Korotev, R. L., et al., 1984. The "North American Shale Composite": Its Compilation, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta, 48(12): 2469-2482. https://doi.org/10.1016/0016-7037(84)90298-9
      Guo, W., Feng, Q. L., Khan, M. Z., 2021. Organic Matter Enrichment Mechanism of Black Shale in Wufeng-Longmaxi Formations: A Case Study from Jiaoye 143-5 Well at Chongqing. Earth Science, 46(2): 572-582 (in Chinese with English abstract).
      Hart, B. S., Hofmann, M. H., 2022. Revisiting Paleoenvironmental Analyses and Interpretations of Organic-Rich Deposits: The Importance of TOC Corrections. Organic Geochemistry, 170: 104434. https://doi.org/10.1016/j.orggeochem.2022.104434
      Hatch, J. R., Leventhal, J. S., 1992. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A. Chemical Geology, 99(1-3): 65-82. https://doi.org/10.1016/0009-2541(92)90031-y
      He, L., Wang, Y. P., Chen, D. F., et al., 2019. Relationship between Sedimentary Environment and Organic Matter Accumulation in the Black Shale of Wufeng-Longmaxi Formations in Nanchuan Area, Chongqing. Natural Gas Geoscience, 30(2): 203-218 (in Chinese with English abstract).
      Jarvie, D. M., 2012. Shale Resource Systems for Oil and Gas: Part 1-Shale-Gas Resource Systems. In: Breyer, J. A., ed., Shale Reservoirs-Giant Resources for the 21st Century. AAPG Memoir, 97: 69-87. https://doi.org/10.1306/13321446m973489
      Jia, Z. B., Hou, D. J., Sun, D. Q., et al., 2016. Hydrothermal Sedimentary Discrimination Criteria and Its Coupling Relationship with the Source Rocks. Natural Gas Geoscience, 27(6): 1025-1034 (in Chinese with English abstract).
      Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1-4): 111-129. https://doi.org/10.1016/0009-2541(94)90085-x
      Krejci-Graf, K., 1975. Geochemical Facies of Sediments. Soil Science, 119(1): 20-23. https://doi.org/10.1097/00010694-197501000-00004
      Luan, X. C., Brett, C. E., Zhan, R. B., et al., 2017. Microfacies Analysis of the Lower-Middle Ordovician Succession at Xiangshuidong, Southwestern Hubei Province, and the Drowning and Shelf-Ramp Transition of a Carbonate Platform in the Yangtze Region. Palaeogeography, Palaeoclimatology, Palaeoecology, 485: 68-83. https://doi.org/10.1016/j.palaeo.2017.06.004
      Maslov, A. V., Podkovyrov, V. N., 2018. Ocean Redox State at 2 500‒500 Ma: Modern Concepts. Lithology and Mineral Resources, 53(3): 190-211. https://doi.org/10.1134/S0024490218030057
      Pan, R. F., Tang, X. L., Meng, J. H., et al., 2014. Shale Gas Preservation Conditions for the Upper Paleozoic in Guizhong Depression. Oil & Gas Geology, 35(4): 534-541 (in Chinese with English abstract).
      Rimmer, S. M., Thompson, J. A., Goodnight, S. A., et al., 2004. Multiple Controls on the Preservation of Organic Matter in Devonian-Mississippian Marine Black Shales: Geochemical and Petrographic Evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215(1-2): 125-154. https://doi.org/10.1016/s0031-0182(04)00466-3
      Rowe, H. D., Loucks, R. G., Ruppel, S. C., et al., 2008. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk Geochemical Inferences and Mo-TOC Constraints on the Severity of Hydrographic Restriction. Chemical Geology, 257(1-2): 16-25. https://doi.org/10.1016/j.chemgeo.2008.08.006
      Rudnick, R. L., Gao, S., 2004. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier-Pergamon, Oxford.
      Shi, Z. S., Qiu, Z., 2021. Main Bedding Types of Marine Fine-Grained Sediments and Their Significance for Oil and Gas Exploration and Development. Acta Sedimentologica Sinica, 39(1): 181-196 (in Chinese with English abstract).
      Shu, L. S., Wang, B., Cawood, P. A., et al., 2015. Early Paleozoic and Early Mesozoic Intraplate Tectonic and Magmatic Events in the Cathaysia Block, South China. Tectonics, 34(8): 1600-1621. https://doi.org/10.1002/2015tc003835
      Su, W. B., Li, Z. M., Chen, J. Q., et al., 1999. A Reliable Example for Eustacy Ordovician Sequence Stratigraphy on the Southeastern Margin of the Upper Yangtze Platform. Acta Sedimentologica Sinica, 17(3): 345-353 (in Chinese with English abstract).
      Spry, P. G., 1990. Geochemistry and Origin of Coticules (Spessartine-Quartz Rocks) Associated with Metamorphose Massive Sulfide Deposits. VSP Publishers, Utrecht, 49-75.
      Tang, L., Chen, X., Yang, J., et al., 2013. A Restudy of the Ordovician to Earliest Silurian Graptolite Sequence from Xing'an, North Guangxi, China. Journal of Stratigraphy, 37(1): 1-7 (in Chinese with English abstract).
      Tian, J. C., Zhang, C. J., 1995. Discussion on Structural Properties of Southeast Margin of Yangtze Block in Early Sinian. Mineralogy and Petrology, 15(2): 55-59 (in Chinese).
      Tribovillard, N., Algeo, T. J., Baudin, F., et al., 2012. Analysis of Marine Environmental Conditions Based on Molybdenum-Uranium Covariation-Applications to Mesozoic Paleoceanography. Chemical Geology, 324-325: 46-58. https://doi.org/10.1016/j.chemgeo.2011.09.009
      Tuo, J. C., Wu, C. J., Zhang, M. F., 2016. Organic Matter Properties and Shale Gas Potential of Paleozoic Shales in Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 28(57): 434-446. https://doi.org/10.1016/j.jngse.2015.12.003
      Wang, B. Z., Ou, W. J., Wang, C. S., et al., 2018. Geochemical Characteristics of the Early Carboniferous Shale in Guizhong Depression and Their Contribution to Adjacent Gas Reservoirs. Earth Science, 43(7): 2222-2233 (in Chinese with English abstract).
      Wang, J. Z., Li, X. G., Xu, Z. J., et al., 2021. Shale Gas Accumulation Conditions and Favorable-Zone Prediction in Lower Carboniferous Luzhai Formation in Donglan Area of Nanpanjiang Depression, China. Earth Science, 46(5): 1814-1828 (in Chinese with English abstract).
      Wang, L. J., Li, X. L., Jiang, K., et al., 2020. Analysis of Mud Shale Geological Characteristics and Shale Gas Potential of Qingxi Formation of Cambrian System in North Guangxi. Mineral Resources and Geology, 34(2): 266-272 (in Chinese with English abstract).
      Wang, Y. M., Wang, S. F., Dong, D. Z., et al., 2016. Lithofacies Characterization of Longmaxi Formation of the Lower Silurian, Southern Sichuan. Earth Science Frontiers, 23(1): 119-133 (in Chinese with English abstract).
      Xia, P., Fu, Y., Yang, Z., et al., 2020. The Relationship between Sedimentary Environment and Organic Matter Accumulation in the Niutitang Black Shale in Zhenyuan, Northern Guizhou. Acta Geologica Sinica, 94(3): 947-956 (in Chinese with English abstract).
      Zhang, Y. B., Zhou, Z. Y., Zhang, J. M., 2002. Sedimentary Differentiation during the Latest Early Ordovician‒Earliest Darriwilian in the Yangtze Block. Journal of Stratigraphy, 26(4): 302-314 (in Chinese with English abstract).
      Zhang, Y. D., Zhan, R. B., Yuan, W. W., et al., 2021. Lithostratigraphic Subdivision and Correlation of the Ordovician in China. Journal of Stratigraphy, 45(3): 250-270 (in Chinese with English abstract).
      Zhang, Z. Y., Wu, C. W., Shi, D. S., et al., 2019. Potential Evaluation of the Lower Carboniferous Shale Gas in Northern Guangxi, China: A Case Study of Shimen Section at Daliang Village. Journal of Chengdu University of Technology (Science & Technology Edition), 46(2): 162-170 (in Chinese with English abstract).
      Zhou, W., Jiang, Z. X., Qiu, H. Y., et al., 2019. Shale Gas Accumulation Conditions and Prediction of Favorable Areas for the Lower Carboniferous Luzhai Formation in Guizhong Depression. Acta Petrolei Sinica, 40(7): 798-812 (in Chinese with English abstract).
      陈旭, 杨万容, 何自强, 等, 1981. 广西兴安奥陶纪含笔石地层. 地层学杂志, 5(1): 36-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ198101005.htm
      陈粤, 黄文芳, 梁裕平, 等, 2017. 广西鹿寨地区鹿寨组一段黑色页岩特征及沉积环境分析. 矿产与地质, 31(3): 605-612. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201703027.htm
      冯增昭, 彭勇民, 金振奎, 等, 2001. 中国南方中及晚奥陶世岩相古地理. 古地理学报, 3(4): 10-24. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200104001.htm
      郭伟, 冯庆来, Khan, M. Z., 2021. 重庆焦页143‒5井五峰组‒龙马溪组黑色页岩有机质富集机理. 地球科学, 46(2): 572-582. doi: 10.3799/dqkx.2020.049
      何龙, 王云鹏, 陈多福, 等, 2019. 重庆南川地区五峰组‒龙马溪组黑色页岩沉积环境与有机质富集关系. 天然气地球科学, 30(2): 203-218. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201902005.htm
      贾智彬, 侯读杰, 孙德强, 等, 2016. 热水沉积判别标志及与烃源岩的耦合关系. 天然气地球科学, 27(6): 1025-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201606008.htm
      潘仁芳, 唐小玲, 孟江辉, 等, 2014. 桂中坳陷上古生界页岩气保存条件. 石油与天然气地质, 35(4): 534-541. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201404013.htm
      施振生, 邱振, 2021. 海相细粒沉积层理类型及其油气勘探开发意义. 沉积学报, 39(1): 181-196. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202101013.htm
      苏文博, 李志明, 陈建强, 等, 1999. 海平面变化全球可比性的可靠例证——上扬子地台东南缘奥陶纪层序地层及海平面变化研究. 沉积学报, 17(3): 345-353. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199903002.htm
      唐兰, 陈旭, 杨杰, 等, 2013. 桂北兴安奥陶纪至志留纪初笔石序列的再研究. 地层学杂志, 37(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201301002.htm
      田景春, 张长俊, 1995. 早震旦世扬子陆块东南缘构造性质探讨. 矿物岩石, 15(2): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS502.009.htm
      王保忠, 欧文佳, 王传尚, 等, 2018. 桂中坳陷早石炭世泥页岩地球化学特征及近源气成藏模式. 地球科学, 43(7): 2222-2233. doi: 10.3799/dqkx.2018.226
      王劲铸, 李小刚, 徐正建, 等, 2021. 南盘江坳陷东兰地区下石炭统鹿寨组页岩气成藏条件及有利区预测. 地球科学, 46(5): 1814-1828. doi: 10.3799/dqkx.2020.310
      王来军, 李小林, 蒋魁, 等, 2020. 桂北寒武系清溪组泥页岩地质特征及页岩气潜力分析. 矿产与地质, 34(2): 266-272. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD202002012.htm
      王玉满, 王淑芳, 董大忠, 等, 2016. 川南下志留统龙马溪组页岩岩相表征. 地学前缘, 23(1): 119-133. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601013.htm
      夏鹏, 付勇, 杨镇, 等, 2020. 黔北镇远牛蹄塘组黑色页岩沉积环境与有机质富集关系. 地质学报, 94(3): 947-956. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202003019.htm
      张允白, 周志毅, 张俊明, 2002. 扬子陆块早奥陶世末期‒中奥陶世Darriwilian初期沉积分异. 地层学杂志, 26(4): 302-314. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200204014.htm
      张元动, 詹仁斌, 袁文伟, 等, 2021. 中国奥陶纪岩石地层划分和对比. 地层学杂志, 45(3): 250-270. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ202103003.htm
      张子亚, 吴超伟, 石砥石, 等, 2019. 以石门剖面为例分析桂北地区下石炭统页岩气勘探潜力. 成都理工大学学报(自然科学版), 46(2): 162-170. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201902004.htm
      周雯, 姜振学, 仇恒远, 等, 2019. 桂中坳陷下石炭统鹿寨组页岩气成藏条件和有利区预测. 石油学报, 40(7): 798-812. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201907005.htm
    • 加载中
    图(7) / 表(4)
    计量
    • 文章访问数:  527
    • HTML全文浏览量:  241
    • PDF下载量:  127
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-07-08
    • 网络出版日期:  2024-08-03
    • 刊出日期:  2024-07-25

    目录

      /

      返回文章
      返回