• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    白鹤滩库首区砂岩结构多尺度演变机制

    李长冬 孟杰 项林语 黄德崴 崔宇寒

    李长冬, 孟杰, 项林语, 黄德崴, 崔宇寒, 2023. 白鹤滩库首区砂岩结构多尺度演变机制. 地球科学, 48(12): 4658-4667. doi: 10.3799/dqkx.2022.486
    引用本文: 李长冬, 孟杰, 项林语, 黄德崴, 崔宇寒, 2023. 白鹤滩库首区砂岩结构多尺度演变机制. 地球科学, 48(12): 4658-4667. doi: 10.3799/dqkx.2022.486
    Li Changdong, Meng Jie, Xiang Linyu, Huang Dewei, Cui Yuhan, 2023. Multi-Scale Evolution Mechanism of Sandstone Structure in Baihetan Reservoir Head Region. Earth Science, 48(12): 4658-4667. doi: 10.3799/dqkx.2022.486
    Citation: Li Changdong, Meng Jie, Xiang Linyu, Huang Dewei, Cui Yuhan, 2023. Multi-Scale Evolution Mechanism of Sandstone Structure in Baihetan Reservoir Head Region. Earth Science, 48(12): 4658-4667. doi: 10.3799/dqkx.2022.486

    白鹤滩库首区砂岩结构多尺度演变机制

    doi: 10.3799/dqkx.2022.486
    基金项目: 

    国家自然科学基金重大项目课题 42090054

    湖北省自然科学基金创新群体 2022CFA002

    白鹤滩库区红层工程特性研究项目 KY2019HDJS07

    详细信息
      作者简介:

      李长冬(1981-),男,教授,博士生导师,从事地质灾害演化机理与防治研究. ORCID:0000-0001-7902-7828. E-mail:lichangdong@cug.edu.cn

    • 中图分类号: P642

    Multi-Scale Evolution Mechanism of Sandstone Structure in Baihetan Reservoir Head Region

    • 摘要: 干湿循环作用下岩石结构多尺度演变机制是工程地质领域热点问题之一,而由于其复杂的结构体系具有随机性和无序性,导致阐述岩石样品同一区域微观结构与宏观力学结构性质之间的关系极具挑战.以白鹤滩水电站近坝址区砂岩为研究对象,采用低场核磁共振(nuclear magnetic resonance,NMR)、亚微米级CT扫描(μCT)、扫描电子显微镜(scanning electron microscope,SEM)等多种精细测试技术探究干湿循环作用下砂岩同一结构位置不同阶段力学性质、孔隙裂隙和矿物结构的演变特征.结果表明:粘土团聚结构中强亲水性矿物吸附水分子后,表面水化膜增厚,溶胀压力导致团聚体破坏;随着干湿循环次数增加,小孔隙数量、孔径增加,而大孔径孔隙并未呈现单调增加趋势;孔-裂隙连通性明显改善,导致砂岩单轴抗压强度呈现指数下降趋势,破裂面裂隙趋于复杂化.最后基于详细的微结构演变证据并结合矿物-水分子模拟揭示了砂岩结构多尺度演变机制.研究成果对由岩石结构劣化诱发的地质灾害研究具有重要意义.

       

    • 图  1  研究区域位置及白鹤滩水电站近坝址区岩体软岩分布区

      a.研究区位置;b.白鹤滩水电站近坝址区岩体软岩分布区

      Fig.  1.  The location of study area and the distribution area of soft rocks in the near dam site area of Baihetan Hydropower Station

      图  2  岩石多尺度试验方法示意

      Fig.  2.  Schematic diagram of the multiscale test method for rock

      图  3  干湿循环作用下砂岩的单轴抗压强度变化

      Fig.  3.  Change of uniaxial compressive strength of sandstones under cycles of wetting and drying

      图  4  不同干湿循环次数砂岩的破坏图

      Fig.  4.  The failure images of sandstones with different cycles of wetting and drying

      图  5  干湿循环作用下砂岩破裂面三维重构

      Fig.  5.  Three-dimensional reconstruction of the fracture surface of sandstones under cycles of wetting and drying

      图  6  砂岩NMR T2图谱

      Fig.  6.  NMR T2 spectrum of sandstone

      图  7  不同干湿循环次数下岩石三维裂隙演变特征

      Fig.  7.  Three-dimensional fracture evolution characteristics of rock under different cycles of wetting and drying

      图  8  不同干湿循环次数下岩石孔-裂隙连通性演变特征

      Fig.  8.  Evolution characteristics of pore-fracture connectivity in rock under different cycles of wetting and drying

      图  9  干湿循环作用下粘土团聚体微结构演变特征

      Fig.  9.  Microstructural evolution characteristics of clay agglomerates under the action of cycles of wetting and drying

      图  10  干湿循环作用下岩石裂隙演变特征

      Fig.  10.  Evolution characteristics of rock fracture under cycles of wetting and drying

      图  11  水作用下砂岩结构多尺度演变机制

      Fig.  11.  Multi-scale evolution mechanism of sandstone structure under water action

      表  1  砂岩试样矿物成分及含量

      Table  1.   Mineral composition and content of sandstone samples

      矿物成分 石英 长石 方解石 粘土矿物
      伊/蒙混层 伊利石 高岭石 绿泥石
      含量(%) 40.8 10.9 9.1 18.9 17.1 1.3 0.9
      下载: 导出CSV
    • Cai, X., Zhou, Z. L., Tan, L. H., et al., 2020. Fracture Behavior and Damage Mechanisms of Sandstone Subjected to Wetting-Drying Cycles. Engineering Fracture Mechanics, 234: 107109. https://doi.org/10.1016/j.engfracmech.2020.107109
      Chen, Z., Lan, H. X., Liu, S. J., et al., 2022. Mechanism of Tensile Strength Degradation and Damage Mode of the Shigatse Sandstone under the Action of Dry and Wet Cycles. Earth Science (in Chinese with English abstract)(in press).
      Cygan, R. T., Liang, J. J., Kalinichev, A. G., 2004. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field. The Journal of Physical Chemistry B, 108(4): 1255-1266. https://doi.org/10.1021/jp0363287
      Gautam, T. P., Shakoor, A., 2013. Slaking Behavior of Clay-Bearing Rocks during a One-Year Exposure to Natural Climatic Conditions. Engineering Geology, 166: 17-25. https://doi.org/10.1016/j.enggeo.2013.08.003
      GB/T 50266-2013. Standard for Test Methods of Engineering Rock Masses. China Planning Press, Beijing (in Chinese).
      Guo, P. Y., Gu, J., Su, Y., et al., 2021. Effect of Cyclic Wetting-Drying on Tensile Mechanical Behavior and Microstructure of Clay-Bearing Sandstone. International Journal of Coal Science & Technology, 8(5): 956-968. https://doi.org/10.1007/s30789-020-00403-3
      Han, G., Zhou, H., Chen, J. L., et al., 2019. Engineering Geological Properties of Interlayer Staggered Zones at Baihetan Hydropower Station. Rock and Soil Mechanics, 40(9): 3559-3568, 3575(in Chinese with English abstract).
      Huang, H. W., Che, P., 2007. Research on Micro-Mechanism of Softening and Argillitization of Mudstone. Journal of Tongji University (Natural Science), 35(7): 866-870(in Chinese with English abstract).
      Jia, C. J., Xu, W. Y., Wang, R. B., et al., 2018. Experimental Investigation on Shear Creep Properties of Undisturbed Rock Discontinuity in Baihetan Hydropower Station. International Journal of Rock Mechanics and Mining Sciences, 104: 27-33. https://doi.org/10.1016/j.ijrmms.2018.02.011
      Khanlari, G., Abdilor, Y., 2015. Influence of Wet-Dry, Freeze-Thaw, and Heat-Cool Cycles on the Physical and Mechanical Properties of Upper Red Sandstones in Central Iran. Bulletin of Engineering Geology and the Environment, 74(4): 1287-1300. https://doi.org/10.1007/s10064-014-0691-8
      Lan, H. X., Lü, H. T., Bao, H., et al., 2023. Advances in Degradation and Instability Mechanism of Grotto Temple Rock Mass. Earth Science, 48(4): 1603-1633(in Chinese with English abstract).
      Li, C. D., Long, J. J., Jiang, X. H., et al., 2020. Advance and Prospect of Formation Mechanism for Reservoir Landslides. Bulletin of Geological Science and Technology, 39(1): 67-77(in Chinese with English abstract).
      Li, X. S., Peng, K., Peng, J., et al., 2021. Experimental Investigation of Cyclic Wetting-Drying Effect on Mechanical Behavior of a Medium-Grained Sandstone. Engineering Geology, 293: 106335. https://doi.org/10.1016/j.enggeo.2021.106335
      Li, Z. G., Ye, H. L., Dai, Y. Y., et al., 2022. Deterioration Pattern and Mechanism of Shear Resistance of Mica-Quartz Schist under the Action of Dry and Wet Cycles. Earth Science(in Chinese with English abstract)(in press).
      Ma, C., Zhan, H. B., Zhang, T., et al., 2019. Investigation on Shear Behavior of Soft Interlayers by Ring Shear Tests. Engineering Geology, 254: 34-42. https://doi.org/10.1016/j.enggeo.2019.04.002
      Massat, L., Cuisinier, O., Bihannic, I., et al., 2016. Swelling Pressure Development and Inter-Aggregate Porosity Evolution upon Hydration of a Compacted Swelling Clay. Applied Clay Science, 124-125: 197-210. https://doi.org/10.1016/j.clay.2016.01.002
      Meng, J., Li, C. D., Yan, S. Y., et al., 2023.3D Imaging Characteristics of Pore and Fracture of Tight Sandstone in Baihetan Reservoir Area Based on μCT Technology. Bulletin of Geological Science and Technology, 42(1): 20-28(in Chinese with English abstract).
      Müller-Huber, E., Schön, J., Börner, F., 2016. Pore Space Characterization in Carbonate Rocks: Approach to Combine Nuclear Magnetic Resonance and Elastic Wave Velocity Measurements. Journal of Applied Geophysics, 127: 68-81. https://doi.org/10.1016/j.jappgeo.2016.02.011
      Rahromostaqim, M., Sahimi, M., 2018. Molecular Dynamics Simulation of Hydration and Swelling of Mixed-Layer Clays. The Journal of Physical Chemistry C, 122(26): 14631-14639. https://doi.org/10.1021/acs.jpcc.8b03693
      Sun, L. L., Hirvi, J. T., Schatz, T., et al., 2015. Estimation of Montmorillonite Swelling Pressure: A Molecular Dynamics Approach. The Journal of Physical Chemistry C, 119(34): 19863-19868. https://doi.org/10.1021/acs.jpcc.5b04972
      Tang, H. M., Li, C. D., Gong, W. P., et al., 2022. Fundamental Attribute and Research Approach of Landslide Evolution. Earth Science, 47(12): 4596-4608(in Chinese with English abstratct).
      Tang, H. M., Wasowski, J., Juang, C. H., 2019. Geohazards in the Three Gorges Reservoir Area, China—Lessons Learned from Decades of Research. Engineering Geology, 261: 105267. https://doi.org/10.1016/j.enggeo.2019.105267
      Tang, L. S., Zhang, P. C., Wang, S. J., 2002. Testing Study on Macroscopic Mechanics Effect of Chemical Action of Water on Rocks. Chinese Journal of Rock Mechanics and Engineering, 21(4): 526-531 (in Chinese with English abstract).
      Vogel, H. J., Roth, K., 2001. Quantitative Morphology and Network Representation of Soil Pore Structure. Advances in Water Resources, 24(3/4): 233-242. https://doi.org/10.1016/s0309-1708(00)00055-5
      Wang, C., Pei, W. S., Zhang, M. Y., et al., 2021. Multi-Scale Experimental Investigations on the Deterioration Mechanism of Sandstone under Wetting-Drying Cycles. Rock Mechanics and Rock Engineering, 54(1): 429-441. https://doi.org/10.1007/s00603-020-02257-2
      Wei, T. T., Fan, W., Yuan, W. N., et al., 2019. Three-Dimensional Pore Network Characterization of Loess and Paleosol Stratigraphy from South Jingyang Plateau, China. Environmental Earth Sciences, 78(11): 333. https://doi.org/10.1007/s12665-019-8331-z
      Xie, H. P., Gao, F., Ju, Y., 2015. Research and Development of Rock Mechanics in Deep Ground Engineering. Chinese Journal of Rock Mechanics and Engineering, 34(11): 2161-2178(in Chinese with English abstract).
      Yao, W. M., Li, C. D., Zhan, H. B., et al., 2020. Multiscale Study of Physical and Mechanical Properties of Sandstone in Three Gorges Reservoir Region Subjected to Cyclic Wetting-Drying of Yangtze River Water. Rock Mechanics and Rock Engineering, 53(5): 2215-2231. https://doi.org/10.1007/s00603-019-02037-7
      Yu, Y., Li, C. D., Hong, W. B., et al., 2022. Strength Characteristics and Structural Damage of Red Sandstone in Baihetan Xiaoba Formation under Wetting-Drying Cycles. Safety and Environmental Engineering, 29(4): 24-32, 54(in Chinese with English abstract).
      Zeng, Z. X., Kong, L. W., Wang, M., et al., 2020. Effects of Remoulding and Wetting-Drying-Freezing-Thawing Cycles on the Pore Structures of Yanji Mudstones. Cold Regions Science and Technology, 174: 103037. https://doi.org/10.1016/j.coldregions.2020.103037
      Zhao, Y. F., Ren, S., Jiang, D. Y., et al., 2018. Influence of Wetting-Drying Cycles on the Pore Structure and Mechanical Properties of Mudstone from Simian Mountain. Construction and Building Materials, 191: 923-931. https://doi.org/10.1016/j.conbuildmat.2018.10.069
      Zhou, Z. L., Cai, X., Chen, L., et al., 2017. Influence of Cyclic Wetting and Drying on Physical and Dynamic Compressive Properties of Sandstone. Engineering Geology, 220: 1-12. https://doi.org/10.1016/j.enggeo.2017.01.017
      陈钊, 兰恒星, 刘世杰, 等, 2022. 干湿循环作用下石窟寺砂岩的抗拉强度劣化机理及破坏模式. 地球科学(待刊).
      GB/T 50266-2013, 工程岩体试验方法标准, 北京: 中国计划出版社.
      韩钢, 周辉, 陈建林, 等, 2019. 白鹤滩水电站层间错动带工程地质特性. 岩土力学, 40(9): 3559-3568, 3575.
      黄宏伟, 车平, 2007. 泥岩遇水软化微观机理研究. 同济大学学报(自然科学版), 35(7): 866-870.
      兰恒星, 吕洪涛, 包含, 等, 2023. 石窟寺岩体劣化机制与失稳机理研究进展. 地球科学, 48(4): 1603-1633. doi: 10.3799/dqkx.2022.307
      李长冬, 龙晶晶, 姜茜慧, 等, 2020. 水库滑坡成因机制研究进展与展望. 地质科技通报, 39(1): 67-77.
      李志刚, 叶宏林, 代云云, 等, 2022. 干湿循环作用下云母石英片岩抗剪性能劣化规律及机理. 地球科学(待刊).
      孟杰, 李长冬, 闫盛熠, 等, 2023. 基于μCT技术的白鹤滩库区致密砂岩孔-裂隙三维成像特征研究. 地质科技通报, 42(1): 20-28.
      唐辉明, 李长冬, 龚文平, 等, 2022. 滑坡演化的基本属性与研究途径. 地球科学, 47(12): 4596-4608. doi: 10.3799/dqkx.2022.461
      汤连生, 张鹏程, 王思敬, 2002. 水-岩化学作用的岩石宏观力学效应的试验研究. 岩石力学与工程学报, 21(4): 526-531.
      谢和平, 高峰, 鞠杨, 2015. 深部岩体力学研究与探索. 岩石力学与工程学报, 34(11): 2161-2178.
      于越, 李长冬, 洪望兵, 等, 2022. 干湿循环作用下白鹤滩小坝组红层砂岩强度特性与结构损伤研究. 安全与环境工程, 29(4): 24-32, 54.
    • 加载中
    图(11) / 表(1)
    计量
    • 文章访问数:  341
    • HTML全文浏览量:  498
    • PDF下载量:  58
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-10-18
    • 网络出版日期:  2024-01-03
    • 刊出日期:  2023-12-25

    目录

      /

      返回文章
      返回