• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于大样本不完整数据的岩爆致因特征及预测模型

    刘国锋 杜程浩 丰光亮 晏长根 李胜峰 徐鼎平

    刘国锋, 杜程浩, 丰光亮, 晏长根, 李胜峰, 徐鼎平, 2023. 基于大样本不完整数据的岩爆致因特征及预测模型. 地球科学, 48(5): 1755-1768. doi: 10.3799/dqkx.2022.491
    引用本文: 刘国锋, 杜程浩, 丰光亮, 晏长根, 李胜峰, 徐鼎平, 2023. 基于大样本不完整数据的岩爆致因特征及预测模型. 地球科学, 48(5): 1755-1768. doi: 10.3799/dqkx.2022.491
    Liu Guofeng, Du Chenghao, Feng Guangliang, Yan Changgen, Li Shengfeng, Xu Dingping, 2023. Causative Characteristics and Prediction Model of Rockburst Based on Large and Incomplete Data Set. Earth Science, 48(5): 1755-1768. doi: 10.3799/dqkx.2022.491
    Citation: Liu Guofeng, Du Chenghao, Feng Guangliang, Yan Changgen, Li Shengfeng, Xu Dingping, 2023. Causative Characteristics and Prediction Model of Rockburst Based on Large and Incomplete Data Set. Earth Science, 48(5): 1755-1768. doi: 10.3799/dqkx.2022.491

    基于大样本不完整数据的岩爆致因特征及预测模型

    doi: 10.3799/dqkx.2022.491
    基金项目: 

    国家自然科学基金资助项目 52209120

    国家自然科学基金资助项目 42077265

    陕西省自然科学基础研究计划项目 2022JM-191

    长安大学中央高校基本科研业务费专项资金项目 300102213203

    中国科学院青年创新促进会项目 2021326

    详细信息
      作者简介:

      刘国锋(1989-),男,讲师,博士,从事地下工程灾害机理、预测与防控相关研究. ORCID:0000-0002-0977-2010. E⁃mail:gfliu@chd.edu.cn

      通讯作者:

      丰光亮, E⁃mail:glfeng@whrsm.ac.cn

    • 中图分类号: P694

    Causative Characteristics and Prediction Model of Rockburst Based on Large and Incomplete Data Set

    • 摘要: 为判别影响岩爆的敏感性因素并构建不完整数据条件下的岩爆预测方法,在收集到429组国内外岩爆案例的基础上建立大样本数据库,归纳总结岩爆致因分布特征及规律,选取埋深、岩石单轴抗压强度、岩石单轴抗拉强度、围岩最大切向应力、弹性应变能量指数、岩体完整性系数6个评价指标,利用贝叶斯网络建立基于大样本不完整数据集的岩爆概率预测模型,并进行敏感性分析和工程应用.分析发现围岩最大切向应力与岩体完整性系数对岩爆的影响较大,所建模型对信息缺失率为20%的岩爆案例预测吻合率达83.3%,且预测效果优于常用岩爆经验判据.结果表明所选取的预测指标能够综合考虑岩爆的影响因素,所建立模型对于深部岩爆灾害的预测具有适用性和可靠性.

       

    • 图  1  岩爆案例来源分布

      Fig.  1.  Source distribution of rockburst cases collected

      图  2  所收集的岩爆案例各指标分布直方图

      Fig.  2.  Index distribution histograms of rockburst cases collected

      图  3  无岩爆情况下单轴抗压强度所对应的数据集剔除谱系

      Fig.  3.  Elimination spectrum of data set corresponding to uniaxial compressive strength in terms of none rockburst

      图  4  异常值剔除后不同岩爆等级样本所对应的各评价指标分布箱型

      Fig.  4.  Distribution box plots of each evaluation index corresponding to samples of different rockburst grades after outlier elimination

      图  5  基于BN的岩爆概率预测模型建立流程

      Fig.  5.  Establishment process of probabilistic prediction model of rockburst based on BN

      图  6  岩爆预测的初始BN结构模型

      Fig.  6.  Initial Bayesian network structural model of rockburst prediction

      图  7  参数学习后的岩爆概率预测模型

      Fig.  7.  Probabilistic prediction model of rockburst after parameter learning

      图  8  岩爆BN模型回判准确率与其他方法对比结果

      Fig.  8.  Comparison of return discriminant accuracy of rockburst BN model with other methods

      图  9  相同强岩爆案例数下BN模型与其他方法准确率对比

      Fig.  9.  Accuracy comparison between BN model and other methods under the same number of strong rockburst cases

      图  10  BN模型与其他方法对强岩爆的误判率对比结果

      Fig.  10.  Comparison of misjudgement rate of BN model with other methods for strong rockburst cases

      图  11  岩爆概率预测模型十折交叉验证结果

      Fig.  11.  Tenfold cross validation results of probabilistic prediction model of rockburst

      图  12  围岩最大切向应力对岩爆各状态发生概率的影响

      Fig.  12.  Influence of tangential stress on the occurrence probability of rockburst grades

      图  13  岩体完整性系数对岩爆各状态发生概率的影响

      Fig.  13.  Influence of rock mass integrity coefficient on occurrence probability of rockburst grades

      图  14  岩爆BN模型预测准确率与其他方法对比结果

      Fig.  14.  Comparison results of prediction accuracy of rockburst BN model with other methods

      表  1  岩爆数据库部分案例信息

      Table  1.   The information of part cases from the constructed rockburst database

      序号 隧道名称 埋深H(m) 岩石单轴抗压强度σc(MPa) 岩石单轴抗拉强度σt(MPa) 围岩最大切向应力σθ(MPa) 弹性应变能量指数Wet 岩体完整性系数Kv 岩爆等级
      1 终南山隧道竖井工程 119 122.00 5.38 43.10 3.31 0.63 轻微岩爆
      2 283 121.00 8.73 87.50 9.05 0.91 强烈岩爆
      3 316 124.00 8.64 79.10 7.74 0.96 强烈岩爆
      4 467 119.00 7.21 56.20 5.52 0.84 中等岩爆
      5 659 120.00 6.45 62.80 4.16 0.87 中等岩爆
      6 程潮铁矿 428 81.20 10.60 18.70 1.50 N/A 无岩爆
      7 580 120.50 14.90 72.00 2.50 N/A 中等岩爆
      8 650 155.80 11.77 109.80 5.20 N/A 强烈岩爆
      9 560 126.80 6.56 55.90 8.10 N/A 轻微岩爆
      423 大相岭隧道 362 59.70 1.30 25.70 1.70 N/A 无岩爆
      424 981 80.60 2.50 57.20 5.50 N/A 强烈岩爆
      425 金伯利岩石矿山 768 132.00 2.40 62.10 5.00 N/A 中等岩爆
      426 N/A 60.00 3.17 21.00 1.70 N/A 中等岩爆
      427 N/A 82.00 3.87 31.16 2.30 N/A 中等岩爆
      428 N/A 74.80 2.98 46.38 3.20 N/A 中等岩爆
      429 N/A 76.00 4.09 48.64 2.50 N/A 中等岩爆
      注:岩爆数据来源于许梦国等(2008);Zhang et al. (2011);张乐文等(2012);Zhou et al.(2012);Pu et al.(2019);Wu et al.(2019);Li et al.(2020);田睿等(2020);吴枋胤等(2020);谢学斌等(2020);周航等(2020)等.
      下载: 导出CSV

      表  2  各指标中各岩爆等级异常值剔除情况

      Table  2.   The elimination of abnormal values of each rockburst grade in each index

      剔除比(%) σc σt σθ Wet Kv
      无岩爆 3.13 1.56 1.56 4.68 0.00
      轻微岩爆 1.39 1.08 1.74 0.68 3.64
      中等岩爆 3.95 1.16 2.82 2.82 0.00
      强烈岩爆 3.90 1.30 2.60 2.70 0.00
      下载: 导出CSV

      表  3  岩爆评价指标双变量相关性分析

      Table  3.   Analysis on the bivariate correlation of rockburst evaluation indexes

      H σc σt σθ Wet Kv 岩爆等级
      H 1 0.204** -0.089 0.463** -0.065 0.132 0.324**
      σc 0.204** 1 0.420** 0.355** 0.347** 0.155 0.232**
      σt -0.089 0.402** 1 0.243** 0.282** 0.406** 0.241**
      σθ 0.463** 0.355** 0.243** 1 0.239** 0.481** 0.593**
      Wet -0.065 0.347** 0.282** 0.239** 1 0.256** 0.458**
      Kv 0.132 0.155 0.406** 0.481** 0.256** 1 0.751**
      岩爆等级 0.324** 0.232** 0.241** 0.593** 0.458** 0.751** 1
      注:0.6~0.8为强相关性,0.4~0.6为中等程度相关,0.2~0.4为弱相关性,0.0~0.2为极弱相关性或无相关性,**相关性在0.01水平(双尾)上显著相关.
      下载: 导出CSV

      表  4  岩爆样本各指标离散等级分类区间划分

      Table  4.   Division of discrete classification intervals for each index of rockburst samples

      指标 离散等级区间
      极低水平 低水平 中等水平 高水平 极高水平
      H(m) ≤370 (370, 600] (600, 775] (775, 1 000] > 1 000
      低水平 中等水平 高水平 极高水平
      σc(MPa) ≤94 (94, 124] (124, 156.73] > 156.73
      σt(MPa) ≤3.85 (3.85, 5.38] (5.38, 8.30] > 8.30
      σθ(MPa) ≤32.8 (32.8, 53] (53, 75] > 75
      Wet ≤2.96 (2.96, 4.6] (4.6, 6.11] > 6.11
      Kv ≤0.64 (0.64, 0.72] (0.72, 0.8] > 0.8
      下载: 导出CSV

      表  5  前人提出的4种判据方法

      Table  5.   Four criterion methods proposed by predecessors

      预测方法与指标 岩爆等级划分
      无岩爆 弱岩爆 强岩爆
      Russense(σθ/σc < 0.2 [0.20, 0.55) ≥0.55
      强度脆性系数(σc/σt > 40 [14.5, 40] < 14.5
      Kidybinski(Wet < 2 [2, 5) ≥5
      王元汉(σθ/σc < 0.3 [0.3, 0.7) ≥0.7
      下载: 导出CSV

      表  6  BN模型中岩爆等级节点敏感性分析结果

      Table  6.   Sensitivity results of rockburst grade nodes in BN model

      节点 互信息 百分比
      岩爆等级 1.325 51 100
      围岩最大切向应力 0.291 95 25
      岩体完整性系数 0.100 99 6.03
      岩石单轴抗压强度 0.015 31 1.35
      埋深 0.011 22 0.583
      岩石单轴抗拉强度 0.006 21 0.334
      弹性应变能量指数 0.001 50 0.14
      下载: 导出CSV

      表  7  工程应用预测案例工程概况

      Table  7.   Project overview of engineering application prediction cases

      工程名称 巴玉隧道 桑珠岭隧道 秦岭隧道 锦屏二级水电站 江边水电站 双江口水电站
      地理位置 西藏自治区山南市 西藏自治区山南市 陕西省长安县与柞水县交界 四川省凉山彝族自治州 四川省甘孜州九龙县 四川省境内
      最大埋深 2 080 m 1 347 m 1 600 m 2 525 m 1 678 m /
      岩性 以花岗岩为主 闪长岩、花岗岩 混合岩类 以大理岩为主 黑云母石英、片岩 花岗岩杂岩体
      现场岩爆照片
      注:巴玉隧道、桑珠岭隧道、秦岭隧道据宫凤强等(2010); 江边水电站据张德永等(2015); 锦屏二级水电站据邱士利等(2014)严健等(2019).
      下载: 导出CSV

      表  8  开展岩爆BN模型应用的工程案例信息

      Table  8.   Information of rockburst cases for engineering application of BN model

      序号 工程名称 H(m) σc(MPa) σt(MPa) σθ(MPa) Wet Kv BN模型预测结果 实际岩爆等级
      1 巴玉隧道 1 533 160.00 7.60 128.00 N/A 0.82 弱岩爆 弱岩爆
      2 1 872 160.00 7.60 155.20 N/A 0.69 弱岩爆 弱岩爆
      3 2 080 160.00 7.60 176.00 N/A 0.50 弱岩爆 强岩爆
      4 2 080 190.00 8.90 74.20 N/A N/A 强岩爆 强岩爆
      5 桑珠岭隧道 240 141.00 7.22 47.80 4.30 0.71 弱岩爆 弱岩爆
      6 300 141.00 6.59 48.90 4.30 0.71 弱岩爆 弱岩爆
      7 680 N/A N/A 41.90 4.00 0.62 弱岩爆 弱岩爆
      8 800 147.00 6.87 58.40 4.60 0.71 弱岩爆 弱岩爆
      9 1 050 N/A N/A 61.10 4.60 0.62 弱岩爆 弱岩爆
      10 江边水电站 N/A 96.41 2.01 18.32 1.87 N/A 无岩爆 无岩爆
      11 N/A 107.52 2.98 21.50 2.29 N/A 无岩爆 无岩爆
      12 N/A 126.88 N/A 40.60 4.15 0.59 弱岩爆 无岩爆
      13 174 114.07 N/A 15.97 2.40 0.61 无岩爆 无岩爆
      14 275 106.31 N/A 19.14 2.07 0.54 无岩爆 无岩爆
      15 186 117.81 N/A 12.96 2.49 0.60 无岩爆 无岩爆
      16 214 138.50 N/A 29.09 2.77 0.69 无岩爆 无岩爆
      17 289 106.32 2.92 23.39 1.75 0.46 无岩爆 无岩爆
      18 N/A 164.05 N/A 104.99 8.41 0.88 强岩爆 强岩爆
      19 锦屏二级水电站 970 160.83 11.06 30.56 3.63 N/A 强岩爆 强岩爆
      20 N/A 85.00 4.80 91.80 3.20 0.70 弱岩爆 弱岩爆
      21 N/A 62.00 3.88 38.44 3.00 0.37 弱岩爆 弱岩爆
      22 N/A 70.00 4.70 21.70 2.50 0.40 无岩爆 无岩爆
      23 秦岭隧道 1 600 133.99 9.09 54.20 7.08 N/A 弱岩爆 弱岩爆
      24 1 600 128.52 8.73 70.30 6.43 N/A 弱岩爆 弱岩爆
      25 双江口水电站 115 71.96 7.14 44.80 N/A 0.65 弱岩爆 弱岩爆
      26 400 86.80 8.23 105.25 N/A 0.65 强岩爆 弱岩爆
      27 其他工程 N/A 140.00 8.00 108.00 N/A N/A 强岩爆 强岩爆
      28 N/A 225.60 17.20 91.30 N/A N/A 弱岩爆 强岩爆
      29 N/A 78.70 2.65 32.27 3.30 0.64 弱岩爆 无岩爆
      30 N/A 167.20 12.67 110.35 6.80 0.82 强岩爆 强岩爆
      注:岩爆数据来源于宫凤强和李夕兵(2007); 李航(2020); Xue et al. (2020); 杨小彬等(2021); 张翔宇(2021); 周航等(2022).
      下载: 导出CSV
    • Bao, H., Liu, C., Liang, N., et al., 2022. Analysis of Large Deformation of Deep-Buried Brittle Rock Tunnel in Strong Tectonic Active Area Based on Macro and Microcrack Evolution. Engineering Failure Analysis, 138: 106351. doi: 10.1016/j.engfailanal.2022.106351
      Bao, H., Zhang, K. K., Yan, C. G., et al., 2020. Excavation Damaged Zone Division and Time-Dependency Deformation Prediction: A Case Study of Excavated Rock Mass at Xiaowan Hydropower Station. Engineering Geology, 272: 105668. doi: 10.1016/j.enggeo.2020.105668
      Feng, X. T., Xiao, Y. X., Feng, G. L., et al., 2019. Study on the Development Process of Rockbursts. Chinese Journal of Rock Mechanics and Engineering, 38(4): 649-673 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX201904002.htm
      Feng, X. T., Zhao, H., 2002. Prediction of Rockburst Using Support Vector Machine. Journal of Northeastern University (Natural Science), 23(1): 57-59 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-3026.2002.01.016
      Gong, F. Q., Li, X. B., 2007. A Distance Discriminant Analysis Method for Prediction of Possibility and Classification of Rockburst and Its Application. Chinese Journal of Rock Mechanics and Engineering, 26(5): 1012-1018 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.05.021
      Gong, F. Q., Li, X. B., Zhang, W., 2010. Rockburst Prediction of Underground Engineering Based on Bayes Discriminant Analysis Method. Rock and Soil Mechanics, 31(S1): 370-377, 387 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX2010S1060.htm
      He, M. C., 2021. Research Progress of Deep Shaft Construction Mechanics. Journal of China Coal Society, 46(3): 726-746 (in Chinese with English abstract).
      Hu, J. H., Shang, J. L., Zhou, K. P., 2013. Improved Matter-Element Extension Model and Its Application to Prediction of Rockburst Intensity. The Chinese Journal of Nonferrous Metals, 23(2): 495-502 (in Chinese with English abstract). http://www.cqvip.com/QK/97361X/201302/45247691.html
      Li, H., 2020. Research on Tunnel Rockburst Prediction Method Based on Combination Weight Ideal Point Method-Database(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Li, N., Jimenez, R., Feng, X. D., 2017. The Influence of Bayesian Networks Structure on Rock Burst Hazard Prediction with Incomplete Data. Procedia Engineering, 191: 206-214. https://doi.org/10.1016/j.proeng.2017.05.173
      Li, Z. Q., Xue, Y. G., Li, S. C., et al., 2020. Rock Burst Risk Assessment in Deep-Buried Underground Caverns: A Novel Analysis Method. Arabian Journal of Geosciences, 13(11): 388. https://doi.org/10.1007/s12517-020-05328-4
      Liu, G. F., Feng, X. T., Feng, G. L., et al., 2016. A Method for Dynamic Risk Assessment and Management of Rockbursts in Drill and Blast Tunnels. Rock Mechanics and Rock Engineering, 49(8): 3257-3279. https://doi.org/10.1007/s00603-016-0949-5
      Maxutov, K., Adoko, A. C., 2021. Establishing a Bayesian Network Model for Predicting Rockburst Damage Potential. IOP Conference Series: Earth and Environmental Science, 861(6): 062094. https://doi.org/10.1088/1755-1315/861/6/062094
      Pearl, J., 1986. A Constraint-Propagation Approach to Probabilistic Reasoning. Machine Intelligence and Pattern Recognition, 4(C): 357-369.
      Pu, Y., Apel, D. B., Xu, H., 2019. Rockburst Prediction in Kimberlite with Unsupervised Learning Method and Support Vector Classifier. Tunnelling and Underground Space Technology, 90: 12-18. https://doi.org/10.1016/j.tust.2019.04.019
      Qiu, S. L., Feng, X. T., Jiang, Q., et al., 2014. A Novel Numerical Index for Estimating Strainburst Vulnerability in Deep Tunnels. Chinese Journal of Rock Mechanics and Engineering, 33(10): 2007-2017 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/yslxygcxb201410007
      Sousa, L., Miranda, T., Sousa, R., et al., 2017. The Use of Data Mining Techniques in Rockburst Risk Assessment. Engineering, 3(4): 552-558. https://doi.org/10.1016/J.ENG.2017.04.002
      Tian, R., Meng, H. D., Chen, S. J., et al., 2020. Comparative Study on Three Rockburst Prediction Models of Intensity Classification Based on Machine Learning. Gold Science and Technology, 28(6): 920-929 (in Chinese with English abstract).
      Wang, C. L., Wu, A. X., Lu, H., et al., 2015. Predicting Rockburst Tendency Based on Fuzzy Matter-Element Model. International Journal of Rock Mechanics and Mining Sciences, 75: 224-232. https://doi.org/10.1016/j.ijrmms.2015.02.004
      Wu, F. Y., He, C., Wang, B., et al., 2020. Application Research of FA-PP Rockburst Prediction Modelf or Tunnel Walls. China Journal of Highway and Transport, 33(11): 215-225 (in Chinese with English abstract).
      Wu, S., Wu, Z., Zhang, C., 2019. Rock Burst Prediction Probability Model Based on Case Analysis. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 93(C): 103069. https://doi.org/10.1016/j.tust.2019.103069
      Xie, X. B., Li, D. X., Kong, L. Y., et al., 2020. Rockburst Propensity Prediction Model Based on CRITIC-XGB Algorithm. Chinese Journal of Rock Mechanics and Engineering, 39(10): 1975-1982 (in Chinese with English abstract).
      Xu, L. S., Wang, L. S., Li, Y. L., 2002. Study on Mechanism and Judgement of Rockbursts. Rock and Soil Mechanics, 23(3): 300-303 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2002.03.010
      Xu, M. G., Du, Z. J., Yao, G. H., et al., 2008. Rockburst Prediction of Chengchao Iron Mine during Deep Mining. Chinese Journal of Rock Mechanics and Engineering, 27(S1): 2921-2928 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX2008S1052.htm
      Xue, Y. G., Bai, C. H., Qiu, D. H., et al., 2020. Predicting Rockburst with Database Using Particle Swarm Optimization and Extreme Learning Machine. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 98(C): 103287. https://doi.org/10.1016/j.tust.2020.103287
      Yan, J., He, C., Hong, B., et al., 2019. Inoculation and Characters of Rockbursts in Extra-Long and Deep-Lying Tunnels Located on Yarlung Zangbo Suture. Chinese Journal of Rock Mechanics and Engineering, 38(4): 769-781 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX201904011.htm
      Yan, X. H., Guo, C. B., Liu, Z. B., et al., 2022. Physical Simulation Experiment of Granite Rockburst in a Deep-Buried Tunnel in Kangding County, Sichuan Province, China. Earth Science, 47(6): 2081-2093 (in Chinese with English abstract).
      Yang, L., Wei, J., 2023. Prediction of Rockburst Intensity Grade Based on SVM and Adaptive Boosting Algorithm. Earth Science, 48(5): 2011-2023 (in Chinese with English abstract).
      Yang, T., Li, G. W., 2000. Study on Rockburst Prediction Method Based on the Prior Knowledge. Chinese Journal of Rock Mechanics and Engineering, 19(4): 429-431 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2000.04.007
      Yang, X. B., Pei, Y. Y., Cheng, H. M., et al., 2021. Prediction Method of Rockburst Intensity Grade Based on SOFM Neural Network Model. Chinese Journal of Rock Mechanics and Engineering, 40(S01): 2708-2715 (in Chinese with English abstract).
      Zhao, H. B., Chen, B. R., Zhu, C. X., 2021. Decision Tree Model for Rockburst Prediction Based on Microseismic Monitoring. Advances in Civil Engineering, (3): 1-14. https://doi.org/10.1155/2021/8818052
      Zhao, P. D., Chen, Y. Q., 2021. Digital Geosciences and Quantitative Mineral Exploration. Journal of Earth Science, 32(2): 269. doi: 10.1007/s12583-021-1440-0
      Zhang, C. Q., Zhou, H., Feng, X. T., 2011. An Index for Estimating the Stability of Brittle Surrounding Rock Mass: FAI and Its Engineering Application. Rock Mechanics & Rock Engineering, 44(4): 401-414. https://doi.org/10.1007/s00603-011-0150-9
      Zhang, D. Y., Wang, Y. Z., Fang, H. L., et al., 2015. Numerical Analysis of the Surrounding Rock Stability of the Underground Cavern Group at Jiangbian Hydropower Station. Chinese Journal of Underground Space and Engineering, 11(3): 673-679 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BASE201503024.htm
      Zhang, G. H., Chen, W., Jiao, Y. Y., et al., 2020. A Failure Probability Evaluation Method for Collapse of Drill-and-Blast Tunnels Based on Multistate Fuzzy Bayesian Network. Engineering Geology, 276(9): 105752. https://doi.org/10.1016/j.enggeo.2020.105752
      Zhang, L. W., Zhang, D. Y., Li, S. C., et al., 2012. Application of RBF Neural Network to Rockburst Prediction Based on Rough Set Theory. Rock and Soil Mechanics, 33(S1): 270-276 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX2012S1044.htm
      Zhang, X. Y., 2021. Study on Rockburst Mechanism in Rock Mass with Structural Planes and Comprehensive Prediction Method (Dissertation). Shandong University, Jinan (in Chinese with English abstract).
      Zhou, H., Chen, S. K., Zhang, G. Z., et al., 2020. Efficiency Coefficient Method and Ground Stress Field Inversion for Rockburst Predicition in Deep and Long Tunnel. Journal of Engineering Geology, 28(6): 1386-1396 (in Chinese with English abstract).
      Zhou, H., Liao, X., Chen, S. K., et al., 2022. Rockburst Risk Assessment of Deep Lying Tunnels Based on the Combination Weight and Unascertained Measure Theory: A Case Study of Sangzhuling Tunnel on the Sichuan-Tibet Railway. Earth Science, 47(6): 2130-2148 (in Chinese with English abstract).
      Zhou, J., Li, X. B., Shi, X. Z., 2012. Long-Term Prediction Model of Rockburst in Underground Openings Using Heuristic Algorithms and Support Vector Machines. Safety Science, 50(4): 629-644. https://doi.org/10.1016/j.ssci.2011.08.065
      冯夏庭, 肖亚勋, 丰光亮, 等, 2019. 岩爆孕育过程研究. 岩石力学与工程学报, 38(4): 649-673. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904002.htm
      冯夏庭, 赵洪波, 2002. 岩爆预测的支持向量机. 东北大学学报(自然科学版), 23(1): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC202302002.htm
      宫凤强, 李夕兵, 2007. 岩爆发生和烈度分级预测的距离判别方法及应用. 岩石力学与工程学报, 26(5): 1012-1018. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200705021.htm
      宫凤强, 李夕兵, 张伟, 2010. 基于Bayes判别分析方法的地下工程岩爆发生及烈度分级预测. 岩土力学, 31(S1): 370-377, 387. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S1060.htm
      何满潮, 2021. 深部建井力学研究进展. 煤炭学报, 46(3): 726-746. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202103004.htm
      胡建华, 尚俊龙, 周科平, 2013. 岩爆烈度预测的改进物元可拓模型与实例分析. 中国有色金属学报, 23(2): 495-502. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201302029.htm
      李航, 2020. 基于组合权重理想点法‒数据库的隧洞岩爆预测方法研究(硕士学位论文). 北京: 中国地质大学.
      邱士利, 冯夏庭, 江权, 等, 2014. 深埋隧洞应变型岩爆倾向性评估的新数值指标研究. 岩石力学与工程学报, 33(10): 2007-2017. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201410007.htm
      田睿, 孟海东, 陈世江, 等, 2020. 基于机器学习的3种岩爆烈度分级预测模型对比研究. 黄金科学技术, 28(6): 920-929. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ202006023.htm
      吴枋胤, 何川, 汪波, 等, 2020. 基于洞壁实测信息的FA-PP岩爆预测模型应用研究. 中国公路学报, 33(11): 215-225. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202011020.htm
      谢学斌, 李德玄, 孔令燕, 等, 2020. 基于CRITIC-XGB算法的岩爆倾向等级预测模型. 岩石力学与工程学报, 39(10): 1975-1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202010003.htm
      徐林生, 王兰生, 李永林, 2002. 岩爆形成机制与判据研究. 岩土力学, 23(3): 300-303. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200203009.htm
      许梦国, 杜子建, 姚高辉, 等, 2008. 程潮铁矿深部开采岩爆预测. 岩石力学与工程学报, 27(S1): 2921-2928. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S1052.htm
      严健, 何川, 汪波, 等, 2019. 雅鲁藏布江缝合带深埋长大隧道群岩爆孕育及特征. 岩石力学与工程学报, 38(4): 769-781. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904011.htm
      严孝海, 郭长宝, 刘造保, 等, 2022. 四川康定某深埋隧道花岗岩岩爆物理模拟实验研究. 地球科学, 47(6): 2081-2093. doi: 10.3799/dqkx.2021.153
      杨玲, 魏静, 2023. 基于支持向量机和增强学习算法的岩爆烈度等级预测. 地球科学, 48(5): 2011-2023. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305024.htm
      杨涛, 李国维, 2000. 基于先验知识的岩爆预测研究. 岩石力学与工程学报, 19(4): 429-431. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200004011.htm
      杨小彬, 裴艳宇, 程虹铭, 等, 2021. 基于SOFM神经网络模型的岩爆烈度等级预测方法. 岩石力学与工程学报, 40(S01): 2708-2715. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1013.htm
      张德永, 王玉洲, 方浩亮, 等, 2015. 江边水电站地下洞室群围岩稳定性数值分析. 地下空间与工程学报, 11(3): 673-679. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201503024.htm
      张乐文, 张德永, 李术才, 等, 2012. 基于粗糙集理论的遗传-RBF神经网络在岩爆预测中的应用. 岩土力学, 33(S1): 270-276. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S1044.htm
      张翔宇, 2021. 含结构面岩体岩爆发生机理及综合预测方法研究(硕士学位论文). 济南: 山东大学.
      周航, 陈仕阔, 张广泽, 等, 2020. 基于功效系数法和地应力场反演的深埋长大隧道岩爆预测研究. 工程地质学报, 28(6): 1386-1396. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202006025.htm
      周航, 廖昕, 陈仕阔, 等, 2022. 基于组合赋权和未确知测度的深埋隧道岩爆危险性评价——以川藏交通廊道铁路桑珠岭隧道为例. 地球科学, 47(6): 2130-2148. doi: 10.3799/dqkx.2021.170
    • 加载中
    图(14) / 表(8)
    计量
    • 文章访问数:  744
    • HTML全文浏览量:  599
    • PDF下载量:  51
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-10-08
    • 网络出版日期:  2023-06-06
    • 刊出日期:  2023-05-25

    目录

      /

      返回文章
      返回