• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    下扬子地区上震旦统-下古生界白云岩地球化学特征及成因:以南京地区为例

    郭颖 杜晓峰 杨波 黄振 王军 李志强

    郭颖, 杜晓峰, 杨波, 黄振, 王军, 李志强, 2023. 下扬子地区上震旦统-下古生界白云岩地球化学特征及成因:以南京地区为例. 地球科学, 48(12): 4558-4574. doi: 10.3799/dqkx.2022.492
    引用本文: 郭颖, 杜晓峰, 杨波, 黄振, 王军, 李志强, 2023. 下扬子地区上震旦统-下古生界白云岩地球化学特征及成因:以南京地区为例. 地球科学, 48(12): 4558-4574. doi: 10.3799/dqkx.2022.492
    Guo Ying, Du Xiaofeng, Yang Bo, Huang Zhen, Wang Jun, Li Zhiqiang, 2023. Geochemical Characteristics and Genesis of Upper Sinian-Lower Paleozoic Dolomite in Lower Yangtze Region: A Case Study from Nanjing Area. Earth Science, 48(12): 4558-4574. doi: 10.3799/dqkx.2022.492
    Citation: Guo Ying, Du Xiaofeng, Yang Bo, Huang Zhen, Wang Jun, Li Zhiqiang, 2023. Geochemical Characteristics and Genesis of Upper Sinian-Lower Paleozoic Dolomite in Lower Yangtze Region: A Case Study from Nanjing Area. Earth Science, 48(12): 4558-4574. doi: 10.3799/dqkx.2022.492

    下扬子地区上震旦统-下古生界白云岩地球化学特征及成因:以南京地区为例

    doi: 10.3799/dqkx.2022.492
    基金项目: 

    国家科技重大专项 2016ZX05024-003

    详细信息
      作者简介:

      郭颖(1988-),男,高级工程师,主要从事沉积学、储层成岩作用及油气勘探综合研究工作.ORCID:0000-0001-8103-2431.E-mail:350426124@qq.com

    • 中图分类号: P58

    Geochemical Characteristics and Genesis of Upper Sinian-Lower Paleozoic Dolomite in Lower Yangtze Region: A Case Study from Nanjing Area

    • 摘要: 扬子地台上震旦统-下古生界白云岩广泛发育,是最重要的碳酸盐岩储集层.目前对下扬子地区白云岩的研究程度较低,严重制约了对该区白云岩储层性能的深化认识和油气勘探工作.研究以南京地区为例,通过对该区上震旦统-下古生界白云岩进行系统的岩石学、主量和微量元素、碳-氧同位素及稀土元素分析,确定了白云岩的类型及成因.结果表明:研究区发育泥晶白云岩、粉-细晶白云岩、细晶白云岩、中晶白云岩4种白云岩类型.上震旦统泥晶白云岩具有较高的Mg含量和较低的Fe、Mn、Sr元素含量,δ18O平均值高达0.2‰,形成温度近于地表温度,盐度指数明显高于海水,∑REE值约为28×10-6,δCe和δEu呈负异常,平均分别为0.867和0.917,稀土元素配分模式与海相灰岩类似,为近地表强蒸发浓缩海水流体环境下准同生白云石化成因;中寒武统粉-细晶白云岩晶体具有雾心亮边和环边状结构,Mg、Fe、Mn元素含量和稀土元素特征与泥晶白云岩类似,盐度指数较高,说明有相似的海水流体性质,δ18O值介于-2.5‰~-6.5‰,为浅埋藏环境下渗透回流白云石化成因;上寒武统细晶白云岩Fe元素含量和∑REE值高于前两类白云岩,δ18O值介于-6.5‰~-10‰,形成温度较高,但未越过热蚀变界限,为埋藏白云石化成因;下奥陶统中晶白云岩晶体粗大,孔隙中发育鞍状白云石,具有较高的Fe、Mn、Al、Si、Sr元素含量,δ18O值小于-10‰,形成温度高且呈热蚀变特征,盐度指数低于海水,∑REE值较高,δEu呈强正异常,为热液白云石化成因.

       

    • 图  1  研究区地理位置及地层综合柱状图

      Fig.  1.  Geological sketch map of the study area and stratigraphic column

      图  2  南京地区上震旦统-下古生界白云岩露头和镜下特征

      a.样品S1,Z2dn,泥晶白云岩,局部见亮晶白云岩,铸体薄片,正交偏光,×25;b.样品S2,Z2dn,泥晶白云岩,发育多期次方解石脉体,铸体薄片,单偏光,×40;c.Z2dn,灰色泥晶白云岩露头特征;d.样品S3,2p,灰色粉-细晶白云岩露头特征;e.样品S4,2p,粉晶白云岩,岩石薄片,单偏光,×40;f.样品S4,2p,粉-细晶白云岩,可见雾心亮边结构(红色箭头所示),岩石薄片,单偏光,×40;g.样品S4,2p,粉-细晶白云岩,白云石颗粒具有环边结构(红色箭头所示),单偏光,×100;h.3g,浅灰色细晶白云岩露头特征;i.样品S5,3g,细晶白云岩,铸体薄片,正交偏光,×25;j.样品S6,3g,细晶白云岩,白云石颗粒沿瘤体边缘溶蚀成细小粒状(红色箭头所示),铸体薄片,单偏光,×40;k.样品S7,3g,中晶白云岩,铸体薄片,正交偏光,×25;l.3g,灰色中晶白云岩,局部发育硅质条带(红色箭头所示);m.O1l,浅灰色白云质灰岩、灰质白云岩露头特征,普遍发育硅质条带和硅质结核(红色箭头所示),沿硅质条带发育灰色白云岩;n.样品S8,O1l,中晶白云岩,铸体薄片,单偏光,×40;o.样品S9,O1l,晶间孔洞环边充填鞍状白云石(红色箭头所示),中晶结构,正交光下呈波状消光,岩石薄片,正交偏光,×100

      Fig.  2.  Outcrop and microscopic characteristics of Upper Sinian-Lower Paleozoic dolomite in Nanjing area

      图  3  南京地区上震旦统-下古生界白云岩碳、氧同位素交会图

      Fig.  3.  Cross plot of carbon and oxygen isotopes of Upper Sinian-Lower Paleozoic dolomites in Nanjing area

      图  4  南京地区上震旦统-下古生界碳酸盐岩稀土元素特征

      Fig.  4.  REE characteristics of Upper Sinian-Lower Paleozoic carbonate rocks in Nanjing area

      图  5  南京地区上震旦统-下古生界碳酸盐岩δCe和δEu相关性图解

      Fig.  5.  Correlation diagram of δCe and δEu of Upper Sinian-Lower Paleozoic carbonate rocks in Nanjing area

      图  6  南京地区上震旦统-下古生界碳酸盐岩稀土元素配分模式图

      Fig.  6.  Chondrite-normalized REE distribution patterns of Upper Sinian-Lower Paleozoic carbonate rocks in Nanjing area

      图  7  南京地区上震旦统-下古生界白云岩成因模式

      Fig.  7.  Genetic model of Upper Sinian-Lower Paleozoic dolomite in Nanjing area

      表  1  南京地区上震旦统-下古生界碳酸盐岩主量元素含量

      Table  1.   Contents of major elements of Upper Sinian-Lower Paleozoic carbonate rocks in Nanjing area

      样品编号 层位 岩性 主量元素组成(%)
      Al2O3 CaO Fe2O3 MgO MnO P2O5 K2O SiO2 Na2O TiO2 总计
      S1 Z2dn 泥晶白云岩 0.14 30.76 0.00 21.50 0.01 0.10 0.02 1.38 0.08 0.00 53.99
      S2 Z2dn 泥晶白云岩 0.14 30.83 0.00 21.93 0.02 0.15 0.02 1.79 0.09 0.00 54.97
      S3 2p 粉-细晶白云岩 0.47 31.96 0.11 21.04 0.02 0.04 0.24 2.49 0.14 0.03 56.54
      S4 2p 粉-细晶白云岩 0.37 30.88 0.00 20.21 0.01 0.06 0.05 2.36 0.04 0.01 53.99
      S5 3g 细晶白云岩 0.74 30.75 0.09 19.90 0.01 0.04 0.22 3.15 0.07 0.03 55.00
      S6 3g 细晶白云岩 0.23 30.35 0.01 20.11 0.02 0.03 0.05 4.27 0.07 0.01 55.14
      S7 3g 中晶白云岩 0.33 30.32 0.00 19.95 0.01 0.03 0.10 4.85 0.05 0.00 55.64
      S8 O1l 中晶白云岩 1.50 27.51 0.38 18.90 0.03 0.05 0.20 9.34 0.08 0.03 58.01
      S9 O1l 中晶白云岩 1.68 27.65 0.38 19.47 0.03 0.05 0.20 9.53 0.07 0.02 59.08
      S10 O1h 泥晶灰岩 0.15 53.14 0.00 0.43 0.03 0.03 0.03 2.69 0.01 0.00 56.50
      S11 O1d 亮晶砂屑灰岩 0.31 50.16 0.00 0.51 0.01 0.08 0.10 7.22 0.01 0.01 58.39
      S12 O1g 亮晶砂屑灰岩 0.92 42.77 0.34 0.33 0.03 0.06 0.32 7.92 0.03 0.02 52.74
      S13 O2t 亮晶砂屑灰岩 0.82 45.47 0.07 0.33 0.03 0.04 0.16 8.61 0.05 0.02 55.60
      下载: 导出CSV

      表  2  南京地区上震旦统-下古生界碳酸盐岩微量元素含量

      Table  2.   Contents of trace elements of Upper Sinian-Lower Paleozoic carbonate rocks in Nanjing area

      样品编号 层位 岩性 主要微量元素(10-6)
      Sc V Cr Co Ni Cu Rb Sr Nb Zr Ba
      S1 Z2dn 泥晶白云岩 4.011 8.698 15.016 41.189 9.865 8.911 7.484 37.853 2.251 136.444 45.739
      S2 Z2dn 泥晶白云岩 3.460 8.650 16.580 38.600 10.130 8.570 9.760 41.000 2.680 134.579 38.900
      S3 2p 粉-细晶白云岩 2.270 8.340 17.440 26.750 9.450 7.980 7.830 59.000 2.540 142.560 46.500
      S4 2p 粉-细晶白云岩 3.670 9.540 17.970 25.310 9.850 8.140 7.720 57.210 2.330 139.450 45.350
      S5 3g 细晶白云岩 5.020 13.126 19.911 23.149 10.731 7.720 9.326 92.846 2.705 135.242 51.247
      S6 3g 细晶白云岩 4.814 10.062 49.194 20.781 21.882 5.931 5.196 77.817 2.393 133.618 51.285
      S7 3g 中晶白云岩 5.336 10.152 15.656 19.565 12.784 4.362 5.732 105.918 2.287 132.765 1 359.137
      S8 O1l 中晶白云岩 6.545 15.423 30.611 19.036 14.981 78.090 13.434 101.387 3.694 141.903 106.829
      S9 O1l 中晶白云岩 6.290 14.960 26.850 20.870 16.380 69.540 12.730 118.000 3.250 138.500 98.800
      S10 O1h 泥晶灰岩 7.025 8.773 11.170 22.408 17.438 143.918 4.351 202.126 2.179 132.746 75.019
      S11 O1d 亮晶砂屑灰岩 5.280 15.470 13.462 21.356 19.841 23.116 5.721 290.706 2.236 131.871 167.312
      S12 O1g 亮晶砂屑灰岩 5.671 18.911 27.977 16.335 17.030 7.312 9.283 128.187 2.548 136.879 143.685
      S13 O2t 亮晶砂屑灰岩 5.627 18.610 27.130 19.153 18.630 11.775 7.984 218.045 3.344 137.784 138.366
      下载: 导出CSV

      表  3  南京地区上震旦统-下古生界碳酸盐岩碳、氧同位素含量及Z值、T

      Table  3.   Carbon and oxygen isotope content, Z value and T value of Upper Sinian-Lower Paleozoic carbonate rocks in Nanjing area

      样品编号 层位 岩性 13C(‰, PDB) 18O(‰, PDB) Z值(盐度指数) T(℃)
      S1 Z2dn 泥晶白云岩 4.3 1.0 136.6 12.0
      S2 Z2dn 泥晶白云岩 3.9 -0.6 135.0 18.5
      S3 2p 粉-细晶白云岩 0.1 -6.1 124.4 46.0
      S4 2p 粉-细晶白云岩 0.4 -5.5 125.3 42.9
      S5 3g 细晶白云岩 -0.2 -8.1 122.9 58.1
      S6 3g 细晶白云岩 -0.3 -9.6 121.9 67.7
      S7 3g 中晶白云岩 -0.8 -8.5 121.4 60.6
      S8 O1l 中晶白云岩 -1.0 -10.7 119.9 75.2
      S9 O1l 中晶白云岩 -1.2 -11.1 119.3 78.0
      S10 O1h 泥晶灰岩 -0.1 -12.4 120.9
      S11 O1d 亮晶砂屑灰岩 -0.8 -11.8 119.8
      S12 O1g 亮晶砂屑灰岩 0.8 -12.2 122.9
      S13 O2t 亮晶砂屑灰岩 -0.7 -11.6 120.1
      下载: 导出CSV

      表  4  南京地区上震旦统-下古生界碳酸盐岩样品稀土元素含量(10-6)

      Table  4.   REE contents (10-6) of Upper Sinian-Lower Paleozoic carbonate rocks in Nanjing area

      样品编号 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13
      层位 Z2dn Z2dn 2p 2p 3g 3g 3g O1l O1l O1h O1d O1g O2t
      岩性 泥晶白云岩 泥晶白云岩 粉-细白云岩 粉-细晶白云岩 细晶白云岩 细晶白云岩 中晶白云岩 中晶白云岩 中晶白云岩 泥晶灰岩 亮晶砂屑灰岩 亮晶砂屑灰岩 亮晶砂屑灰岩
      La 5.975 5.843 5.989 6.089 6.439 6.493 6.090 7.072 6.440 6.180 6.679 7.740 7.694
      Ce 10.692 10.487 11.493 11.384 11.810 11.858 11.208 12.589 14.100 11.873 12.516 14.741 13.492
      Pr 1.322 1.403 1.361 1.411 1.406 1.384 1.333 1.556 1.440 1.437 1.448 1.766 1.754
      Nd 6.055 6.224 6.073 6.169 6.170 6.151 5.917 6.752 5.480 6.514 6.360 7.654 7.224
      Sm 1.262 1.263 1.194 1.291 1.268 1.265 1.760 1.430 1.489 1.480 1.382 1.649 1.566
      Eu 0.321 0.319 0.313 0.320 0.323 0.321 0.695 0.571 0.642 0.381 0.379 0.422 0.452
      Gd 0.198 0.201 0.196 0.203 0.224 0.197 0.166 0.327 0.283 0.430 0.308 0.588 0.450
      Tb 0.188 0.189 0.184 0.187 0.186 0.184 0.184 0.217 0.240 0.238 0.200 0.237 0.213
      Dy 1.297 1.289 1.254 1.240 1.241 1.220 1.212 1.379 1.247 1.586 1.294 1.568 1.372
      Ho 0.025 0.027 0.021 0.019 0.016 0.008 0.010 0.047 0.046 0.091 0.030 0.076 0.039
      Er 0.127 0.124 0.098 0.081 0.072 0.065 0.062 0.162 0.187 0.328 0.109 0.258 0.147
      Tm 0.055 0.058 0.052 0.053 0.053 0.049 0.055 0.071 0.084 0.089 0.061 0.073 0.059
      Yb 0.407 0.398 0.400 0.392 0.384 0.358 0.363 0.498 0.500 0.661 0.410 0.557 0.433
      Lu 0.083 0.081 0.084 0.084 0.082 0.080 0.083 0.101 0.100 0.132 0.088 0.101 0.088
      ∑REE 28.008 27.906 27.906 28.712 29.674 29.632 29.138 32.570 32.278 31.420 31.264 37.429 34.983
      ∑LREE 25.627 25.539 25.539 26.423 27.416 27.470 27.003 29.769 29.591 27.865 28.765 33.972 32.182
      ∑HREE 2.381 2.367 2.289 2.259 2.258 2.161 2.135 2.801 2.687 3.555 2.499 3.458 2.801
      ∑LREE/∑HREE 10.762 10.788 11.157 11.697 12.143 12.709 12.646 10.628 10.628 7.838 11.510 9.825 11.491
      (La/Yb)N 9.886 9.898 10.094 10.472 11.315 12.233 11.298 9.581 8.684 6.300 10.986 9.361 15.079
      δCe 0.879 0.855 0.933 0.903 0.905 0.909 0.907 0.876 1.071 0.927 0.927 0.925 0.852
      δEu 0.920 0.914 0.946 0.898 0.912 0.921 1.478 1.394 1.535 0.872 0.962 0.840 0.980
      注:下标N代表稀土元素的标准化值.ΣREE、ΣLREE和ΣHREE分别代表总稀土、轻稀土和重稀土元素质量分数.δCe=2CeN/(LaN+ PrN),δEu=2EuN/(SmN+GdN).
      下载: 导出CSV
    • Allan, J. R., Wiggins, W. D., 1993. Dolomite Reservoirs: Geochemical Techniques for Evaluating Origin and Distribution. American Association of Petroleum Geologists, Tulsa. https://doi.org/10.1306/ce36576
      Bai, L. H., Shi, W. Z., Zhang, X. M., et al., 2021. Characteristics of Permian Marine Shale and Its Sedimentary Environment in Xuanjing Area, South Anhui Province, Lower Yangtze Area. Earth Science, 46(6): 2204-2217(in Chinese with English abstract).
      Brand, U., Veizer, J., 1980. Chemical Diagenesis of a Multicomponent Carbonate System-1: Trace Elements. SEPM Journal of Sedimentary Research, 50: 1219-1236. https://doi.org/10.1306/212f7bb7-2b24-11d7-8648000102c1865d
      Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008⁃3
      Budd, D. A., 1997. Cenozoic Dolomites of Carbonate Islands: Their Attributes and Origin. Earth⁃Science Reviews, 42(1-2): 1-47. https://doi.org/10.1016/s0012⁃8252(96)00051⁃7
      Derry, L. A., Keto, L. S., Jacobsen, S. B., et al., 1989. Sr Isotopic Variations in Upper Proterozoic Carbonates from Svalbard and East Greenland. Geochimica et Cosmochimica Acta, 53(9): 2331-2339. https://doi.org/10.1016/0016⁃7037(89)90355⁃4
      Fan, D. J., Luan, G. Z., Li, S. T., et al., 1996. The Origin of Dolostones Appear in Upper⁃Sinian and Paleozoic, Tangshan, Nanjing. Transaction of Oceanology and Limnology, (3): 26-32(in Chinese with English abstract).
      Feng, M. Y., Qiang, Z. T., Shen, P., et al., 2016. Evidences for Hydrothermal Dolomite of Sinian Dengying Formation in Gaoshiti⁃Moxi Area, Sichuan Basin. Acta Petrolei Sinica, 37(5): 587-598(in Chinese with English abstract).
      Folk, R. L., 1974. The Natural History of Crystalline Carbonate: Effect of Magnesium Content and Salinity. SEPM Journal of Sedimentary Research, 44(1): 40-53. https://doi.org/10.1306/74d72973⁃2b21⁃11d7⁃8648000102c1865d
      Gao, C. L., Ye, D. L., Fang, C. M., 2011. Characteristics and Significance of Carbonate Rocks REE during Early Palaeozoic in Lower Yangtze Region. Reservoir Evaluation and Development, 1(Suppl. 1): 1-6 (in Chinese with English abstract).
      Gromet, L. P., Haskin, L. A., Korotev, R. L., et al., 1984. The "North American Shale Composite": Its Compilation, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta, 48(12): 2469-2482. https://doi.org/10.1016/0016⁃7037(84)90298⁃9
      Guo, C. T., Song, H. Q., Liang, J., et al., 2020. Origin of Cambrian Dolomite from Well Milan 1 in Tadong Area and Its Significance to Dolomite Reservoirs. Oil & Gas Geology, 41(5): 953-964(in Chinese with English abstract).
      Hardie, L. A., 1987. Dolomitization: A Critical View of Some Current Views. Journal of Sedimentary Research, 57(1): 166-183. https://doi.org/10.1306/212f8ad5⁃2b24⁃11d7⁃8648000102c1865d
      Han, X. T., Bao, Z. Y., Xie, S. Y., 2016. Origin and Geochemical Characteristics of Dolomites in the Middle Permian Formation, SW Sichuan Basin, China. Earth Science, 41(1): 167-176(in Chinese with English abstract).
      He, X. Y., Shou, J. F., Shen, A. J., et al., 2014. Geochemical Characteristics and Origin of Dolomite: A Case Study from the Middle Assemblage of Majiagou Formation Member 5 of the West of Jingbian Gas Field, Ordos Basin, North China. Petroleum Exploration and Development, 41(3): 375-384(in Chinese with English abstract).
      Hu, W. X., Chen, Q., Wang, X. L., et al., 2010. REE Models for the Discrimination of Fluids in the Formation and Evolution of Dolomite Reservoirs. Oil & Gas Geology, 31(6): 810-818(in Chinese with English abstract).
      Hu, Z. G., Zheng, R. C., Hu, J. Z., et al., 2009. Geochemical Characteristics of Rare Earth Elements of Huanglong Formation Dolomites Reservoirs in Eastern Sichuan⁃Northern Chongqing Area. Acta Geologica Sinica, 83(6): 782-790(in Chinese with English abstract).
      Huang, Q. Y., Liu, W., Zhang, Y. Q., et al., 2015. Progress of Research on Dolomitization and Dolomite Reservoir. Advances in Earth Science, 30(5): 539-551(in Chinese with English abstract).
      Jin, M. D., Tan, X. C., Li, B. S., et al., 2019. Genesis of Dolomite in the Sinian Dengying Formation in the Sichuan Basin. Acta Sedimentologica Sinica, 37(3): 443-454(in Chinese with English abstract).
      Kaufman, A. J., Jacobsen, S. B., Knoll, A. H., 1993. The Vendian Record of Sr and C Isotopic Variations in Seawater: Implications for Tectonics and Paleoclimate. Earth and Planetary Science Letters, 120(3-4): 409-430. https://doi.org/10.1016/0012⁃821x(93)90254⁃7
      Keith, M. L., Weber, J. N., 1964. Carbon and Oxygen Isotopic Composition of Selected Limestones and Fossils. Geochimica et Cosmochimica Acta, 28(10-11): 1787-1816. https://doi.org/10.1016/0016⁃7037(64)90022⁃5
      Kinsman, D. J. J., 1969. Interpretation of Sr2+ Concentrations in Carbonate Minerals and Rocks. SEPM Journal of Sedimentary Research, 39: 486-50. https://doi.org/10.1306/74d71cb7⁃2b21⁃11d7⁃8648000102c1865d
      Li, J. T., Liu, J. B., Sun, Y. C., et al., 2016. On the Lower Ordovician Lunshan Formation in Lower Yangtze Region, South China: Its Petrology, Stratigraphy and Palaeogeography. Journal of Palaeogeography, 18(3): 411-423(in Chinese with English abstract).
      Li, S. Y., Jin, F. Q., Wang, D. X., 1995. Geochemical Characteristics of Carbonate Rock Diagenesis. Experimental Petroleum Geology, 17(1): 55-62(in Chinese with English abstract).
      Li, Z. H., Yang, Y. H., 2005. Present Situation and Progress of Research on Dolomite Genesis. Oil & Gas Recovery Technology, 12(2): 5-8, 81(in Chinese with English abstract).
      Liu, A., Chen, L., Chen, X. H., et al., 2021. Carbon and Oxygen Isotopes Characteristics of Devonian in Central Hunan Depression and Its Paleoenvironmental Significance. Earth Science, 46(4): 1269-1281(in Chinese with English abstract).
      Liu, L. H., Du, X. D., Xu, S. L., et al., 2017. Characteristics and Formation of the Cambrian Dolomite in Middle⁃South Sichuan Basin, China. Journal of Jilin University (Earth Science Edition), 47(3): 775-784(in Chinese with English abstract).
      Liu, Z. B., Xing, F. C., Hu, H. R., et al., 2021. Multi⁃Origin of Dolomite in Lower Ordovician Tongzi Formation of Sichuan Basin, Western China. Earth Science, 46(2): 583-599(in Chinese with English abstract).
      Ma, X. H., Yang, Y., Wen, L., et al., 2019. Distribution and Exploration Direction of Medium⁃and Large⁃Sized Marine Carbonate Gas Fields in Sichuan Basin, SW China. Petroleum Exploration and Development, 46(1): 1-13(in Chinese with English abstract). doi: 10.1016/S1876-3804(19)30001-1
      Meng, W. B., Wu, H. Z., Li, G. R., et al., 2014. Dolomitization Mechanisms and Influence on Reservoir Development in the Upper Permian Changxing Formation in Yuanba Area, Northern Sichuan Basin. Acta Petrologica Sinica, 30(3): 699-708(in Chinese with English abstract).
      Pang, Y. M., Zhang, X. H., Xiao, G. L., et al., 2016. Structural and Geological Characteristics of the South Yellow Sea Basin in Lower Yangtze Block. Geological Review, 62(3): 604-616(in Chinese with English abstract).
      Ren, Y., Zhong, D. K., Gao, C. L., et al., 2016. Geochemical Characteristics, Genesis and Hydrocarbon Significance of Dolomite in the Cambrian Longwangmiao Formation, Eastern Sichuan Basin. Acta Petrolei Sinica, 37(9): 1102-1115(in Chinese with English abstract).
      Su, Z. T., Chen, H. D., Xu, F. Y., et al., 2012. REE Characters of the Majiagou Dolomites in Ordos Basin. Journal of Jilin University (Earth Science Edition), 42(Suppl. 2): 53-61(in Chinese with English abstract).
      Sun, H. T., Zhang, Y. Y., Liu, H. L., et al., 2018. Typological Analysis and Genetic Mechanism of Dolomite in the Lower Cambrian Longwangmiao Formation, Eastern Sichuan Basin. Oil & Gas Geology, 39(2): 318-329 (in Chinese with English abstract).
      Wang, H. Y., Liu, S. W., Lei, X., 2013. Present Geothermal Regime of the Lower Yangtze Area, South China. Journal of China Coal Society, 38(5): 896-900(in Chinese with English abstract).
      Wang, Y. H., 1991. Study on Diagenesis of Marine Carbonate Rocks in Middle and Lower Yangtze Region. Scientific and Technological Literature Press, Beijing(in Chinese).
      Warren, J., 2000. Dolomite: Occurrence, Evolution and Economically Important Associations. Earth⁃Science Reviews, 52(1-3): 1-81. https://doi.org/10.1016/s0012⁃8252(00)00022⁃2
      Yuan, Y. S., Ma, Y. S., Hu, S. B., et al., 2006. Present⁃Day Geothermal Characteristics in South China. Chinese Journal of Geophysics, 49(4): 1118-1126(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.2006.04.025
      Zhang, Y. X., Zhou, J. Y., Chen, J. W., et al., 2021. Sedimentology and Porosity Structures of the Epicontinental Sea⁃Platform Fine⁃Grained Deposits of Mufushan Formation in Lower Yangtze Area. Earth Science, 46(1): 186-199(in Chinese with English abstract).
      Zhao, W. Z., Shen, A. J., Qiao, Z. F., et al., 2018. Genetic Types and Distinguished Characteristics of Dolomite and the Origin of Dolomite Reservoirs. Petroleum Exploration and Development, 45(6): 923-935(in Chinese with English abstract).
      Zhou, J. Y., Chen, J. W., Zhang, Y. X., et al., 2021. Paleoenvironment and Tectonic Background of Mufushan Formation in Lower Yangtze Area: Evidence from Geochemistry of Fine⁃Grained Mixed⁃Siliciclastic⁃Calcareous Deposits. Acta Geologica Sinica, 95(6): 1693-1711(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.06.003
      白卢恒, 石万忠, 张晓明, 等, 2021. 下扬子皖南宣泾地区二叠系海相页岩特征及其沉积环境. 地球科学, 46(6): 2204-2217. doi: 10.3799/dqkx.2020.372
      范德江, 栾光忠, 李师汤, 等, 1996. 南京汤山上震旦统及古生界白云岩成因初探. 海洋湖沼通报, (3): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFB199603004.htm
      冯明友, 强子同, 沈平, 等, 2016. 四川盆地高石梯—磨溪地区震旦系灯影组热液白云岩证据. 石油学报, 37(5): 587-598. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201605003.htm
      高长林, 叶德燎, 方成名, 2011. 下扬子早古生代碳酸盐岩的稀土元素特征及其意义. 油气藏评价与开发, 1(增刊1): 1-6.
      郭春涛, 宋海强, 梁洁, 等, 2020. 塔东地区米兰1井寒武系白云岩成因及其对储层的影响. 石油与天然气地质, 41(5): 953-964. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005007.htm
      韩晓涛, 鲍征宇, 谢淑云, 2016. 四川盆地西南中二叠统白云岩的地球化学特征及其成因. 地球科学, 41(1): 167-176. doi: 10.3799/dqkx.2016.013
      贺训云, 寿建峰, 沈安江, 等, 2014. 白云岩地球化学特征及成因: 以鄂尔多斯盆地靖西马五段中组合为例. 石油勘探与开发, 41(3): 375-384. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403018.htm
      胡文瑄, 陈琪, 王小林, 等, 2010. 白云岩储层形成演化过程中不同流体作用的稀土元素判别模式. 石油与天然气地质, 31(6): 810-818.
      胡忠贵, 郑荣才, 胡九珍, 等, 2009. 川东-渝北地区黄龙组白云岩储层稀土元素地球化学特征. 地质学报, 83(6): 782-790.
      黄擎宇, 刘伟, 张艳秋, 等, 2015. 白云石化作用及白云岩储层研究进展. 地球科学进展, 30(5): 539-551. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201505004.htm
      金民东, 谭秀成, 李毕松, 等, 2019. 四川盆地震旦系灯影组白云岩成因. 沉积学报, 37(3): 443-454.
      李家腾, 刘建波, 孙永超, 等, 2016. 华南下扬子区下奥陶统仑山组: 岩石学、地层学和古地理学. 古地理学报, 18(3): 411-423. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201603009.htm
      李双应, 金福全, 王道轩, 1995. 碳酸盐岩成岩作用的微量元素地球化学特征. 石油实验地质, 17(1): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD501.007.htm
      李振宏, 杨永恒, 2005. 白云岩成因研究现状及进展. 油气地质与采收率, 12(2): 5-8, 81. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200502002.htm
      刘安, 陈林, 陈孝红, 等, 2021. 湘中坳陷泥盆系碳氧同位素特征及其古环境意义. 地球科学, 46(4): 1269-1281. doi: 10.3799/dqkx.2020.362
      刘丽红, 杜小弟, 徐守礼, 等, 2017. 四川盆地中南部寒武系白云岩特征及形成机制. 吉林大学学报(地球科学版), 47(3): 775-784. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201703011.htm
      刘志波, 邢凤存, 胡华蕊, 等, 2021. 四川盆地下奥陶统桐梓组白云岩多元成因. 地球科学, 46(2): 583-599. doi: 10.3799/dqkx.2020.026
      马新华, 杨雨, 文龙, 等, 2019. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向. 石油勘探与开发, 46(1): 1-13.
      孟万斌, 武恒志, 李国蓉, 等, 2014. 川北元坝地区长兴组白云石化作用机制及其对储层形成的影响. 岩石学报, 30(3): 699-708.
      庞玉茂, 张训华, 肖国林, 等, 2016. 下扬子南黄海沉积盆地构造地质特征. 地质论评, 62(3): 604-616. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201603006.htm
      任影, 钟大康, 高崇龙, 等, 2016. 川东寒武系龙王庙组白云岩地球化学特征、成因及油气意义. 石油学报, 37(9): 1102-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201609004.htm
      苏中堂, 陈洪德, 徐粉燕, 等, 2012. 鄂尔多斯盆地马家沟组白云岩稀土元素地球化学特征. 吉林大学学报(地球科学版), 42(增刊S2): 53-61.
      孙海涛, 张玉银, 柳慧林, 等, 2018. 四川盆地东部下寒武统龙王庙组白云岩类型及其成因. 石油与天然气地质, 39(2): 318-329.
      王华玉, 刘绍文, 雷晓, 2013. 华南下扬子区现今地温场特征. 煤炭学报, 38(5): 896-900. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305033.htm
      王英华, 1991. 中、下扬子区海相碳酸盐岩成岩作用研究. 北京: 科学技术文献出版社.
      袁玉松, 马永生, 胡圣标, 等, 2006. 中国南方现今地热特征. 地球物理学报, 49(4): 1118-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200604024.htm
      张玉玺, 周江羽, 陈建文, 等, 2021. 下扬子地区幕府山组陆缘海-台地黑色细粒沉积岩系沉积学和孔隙结构特征. 地球科学, 46(1): 186-199. doi: 10.3799/dqkx.2019.283
      赵文智, 沈安江, 乔占峰, 等, 2018. 白云岩成因类型、识别特征及储集空间成因. 石油勘探与开发, 45(6): 909-921.
      周江羽, 陈建文, 张玉玺, 等, 2021. 下扬子地区幕府山组古环境和构造背景: 来自细粒混积沉积岩系元素地球化学的证据. 地质学报, 95(6): 1693-1711.
    • 加载中
    图(7) / 表(4)
    计量
    • 文章访问数:  582
    • HTML全文浏览量:  771
    • PDF下载量:  61
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-01
    • 网络出版日期:  2024-01-03
    • 刊出日期:  2023-12-25

    目录

      /

      返回文章
      返回