• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    川东北黄龙场-七里北地区飞仙关组碳酸盐岩储层裂缝发育规律

    姚迎涛 曾联波 张航 张洁伟 管聪 梁栋

    姚迎涛, 曾联波, 张航, 张洁伟, 管聪, 梁栋, 2023. 川东北黄龙场-七里北地区飞仙关组碳酸盐岩储层裂缝发育规律. 地球科学, 48(7): 2643-2651. doi: 10.3799/dqkx.2022.496
    引用本文: 姚迎涛, 曾联波, 张航, 张洁伟, 管聪, 梁栋, 2023. 川东北黄龙场-七里北地区飞仙关组碳酸盐岩储层裂缝发育规律. 地球科学, 48(7): 2643-2651. doi: 10.3799/dqkx.2022.496
    Yao Yingtao, Zeng Lianbo, Zhang Hang, Zhang Jiewei, Guan Cong, Liang Dong, 2023. Fracture Development Laws of Feixianguan Formation Carbonate Reservoirs in Huanglongchang-Qilibei Area, Northeast Sichuan. Earth Science, 48(7): 2643-2651. doi: 10.3799/dqkx.2022.496
    Citation: Yao Yingtao, Zeng Lianbo, Zhang Hang, Zhang Jiewei, Guan Cong, Liang Dong, 2023. Fracture Development Laws of Feixianguan Formation Carbonate Reservoirs in Huanglongchang-Qilibei Area, Northeast Sichuan. Earth Science, 48(7): 2643-2651. doi: 10.3799/dqkx.2022.496

    川东北黄龙场-七里北地区飞仙关组碳酸盐岩储层裂缝发育规律

    doi: 10.3799/dqkx.2022.496
    基金项目: 

    国家自然科学基金企业创新发展联合基金项目 U21B2062

    详细信息
      作者简介:

      姚迎涛(1996-),男,博士研究生,主要从事储层裂缝形成、分布及预测研究.ORCID:0000-0003-1231-6160.E-mail:13016462489@163.com

      通讯作者:

      曾联波, ORCID: 0000-0002-6470-8206.E-mail: lbzeng@sina.com

    • 中图分类号: P618.13

    Fracture Development Laws of Feixianguan Formation Carbonate Reservoirs in Huanglongchang-Qilibei Area, Northeast Sichuan

    • 摘要: 四川盆地东北部下三叠统飞仙关组碳酸盐岩储层非均质性强,天然裂缝发育,天然裂缝分布对油气运聚和开发具有重要作用.利用三维地震属性与成像测井、岩心相结合的分析方法,对川东北黄龙场-七里北地区飞仙关组碳酸盐岩储层天然裂缝发育规律进行了预测.飞仙关组碳酸盐岩储层主要发育NEE-SWW向、NE-SW向、NW-SE向及NWW-SEE向四组裂缝.其中NEE-SWW向裂缝最为发育,其次发育NE-SW向和NW-SE向裂缝,NWW-SEE向裂缝发育较差,研究区以大于70°的高角度裂缝为主.裂缝的发育程度受沉积相和断层两个主要因素控制,其中沉积相是裂缝发育的基础,不同沉积相的裂缝发育程度有明显的差异,其中台缘滩亚相和台内滩亚相的裂缝最发育,其次为滩间海亚相和台内洼地亚相,而缓斜坡亚相的裂缝发育程度相对较差.断层是影响裂缝发育程度及其展布规律的关键,根据裂缝发育指数(FDI)方法分析,该区断控裂缝发育带的宽度主要分布在250~1 000 m之间,与断层规模密切相关,随着断层规模的增加,断控裂缝发育带的宽度变大.

       

    • 图  1  研究区位置(a)及黄龙场‒七里北地区断层分布(b)

      Fig.  1.  The location of study area (a) and fault distribution of Huanglongchang-Qilibei area (b)

      图  2  线性噪音滤波示意图

      Fig.  2.  Linear noise filtering schematic diagram

      图  3  定向滤波示意图

      Fig.  3.  Directional filtering schematic diagram

      图  4  沿测线裂缝发育带宽度分布

      C1~C6为测线位置,具体位置见图 1b

      Fig.  4.  The width distribution map of the fracture development zone along the measuring line

      图  5  黄龙场‒七里北地区飞仙关组裂缝玫瑰花图

      a. 成像测井附近地震预测裂缝走向分布(N=4 088);b.成像测井解释裂缝走向分布(N=99)

      Fig.  5.  Fracture rose diagrams of Feixianguan Formation in Huanglongchang-Qilibei area

      图  6  黄龙场‒七里北地区飞仙关组裂缝倾角分布

      a. 成像测井附近地震预测裂缝倾角分布(N= 4 088);b.成像测井解释裂缝倾角分布(N=99)

      Fig.  6.  Fracture dip angle distribution of Feixianguan Formation in Huanglongchang-Qilibei area

      图  7  黄龙场‒七里北地区飞仙关组断层和裂缝分布预测

      Fig.  7.  Fracture distribution prediction of Feixianguan Formation in Huanglongchang-Qilibei area

      图  8  黄龙场‒七里北地区飞仙关组裂缝密度与沉积亚相(a)、白云石含量(b)的关系

      Fig.  8.  Relationship between fracture density and sedimentary subfacies (a) and dolomite contents (b) of Feixianguan Formation in Huanglongchang⁃Qilibei area

      图  9  裂缝带宽度与断层长度关系

      Fig.  9.  Relationship between fracture zone width and fault length

      表  1  地震资料预测裂缝的相关参数

      Table  1.   Relevant parameter settings for predicting fractures from seismic data

      参数名称 参数设置
      噪声滤波器方位 双向滤波
      沿地震道滤波器大小 15道
      走向滤波大小 25道
      倾角滤波大小 31道
      最小切片向量长度 17道
      限制方位角范围 A: -75°, B: -15°, C: 15°, D: 75°
      方位角容限 15°
      倾角容限 15°
      最小断层高度 16个样本
      最小断层长度 14道
      下载: 导出CSV
    • Bahorich, M., Farmer, S., 1995.3-D Seismic Discontinuity for Faults and Stratigraphic Features: The Coherence Cube. The Leading Edge, 14(10): 1053-1058. https://doi.org/10.1190/1.1437077
      Cui, Z.W., Cheng, B.J., Xu, T.J., et al., 2021. Reservoir Fracture Prediction Method and Application Based on Structure-Oriented Filtering and Coherent Attributes of Gradient Structure Tensor. Oil Geophysical Prospecting, 56(3): 555-563 (in Chinese with English abstract).
      Dong, S. Q., Zeng, L. B., Lyu, W. Y., et al., 2020. Fracture Identification by Semi-Supervised Learning Using Conventional Logs in Tight Sandstones of Ordos Basin, China. Journal of Natural Gas Science and Engineering, 76: 103131. https://doi.org/10.1016/j.jngse.2019.103131
      Feng, Y.W., Chen, Y., Zhao, Z.Y., et al., 2021. Migration of Natural Gas Controlled by Faults of Majiagou Formation in Central Ordos Basin: Evidence from Fluid Inclusions. Earth Science, 46(10): 3601-3614 (in Chinese with English abstract). doi: 10.1007/s12182-020-00522-1?utm_source=TrendMD
      Gao, S., Zeng, L.B., Ma, S.Z., et al., 2015. Quantitative Prediction of Fractures with Different Directions in Tight Sandstone Reservoirs. Natural Gas Geoscience, 26(3): 427-434 (in Chinese with English abstract).
      Gersztenkorn, A., Marfurt, K. J., 1999. Eigenstructure-Based Coherence Computations as an Aid to 3-D Structural and Stratigraphic Mapping. Geophysics, 64(5): 1468-1479. https://doi.org/10.1190/1.1444651
      Ghosh, A., 2019. Understanding Basement Fracture Architecture in Padra Field, South Cambay Basin, India, through Full-Azimuth Imaging. The Leading Edge, 38(4): 262-267. https://doi.org/10.1190/tle38040262.1
      Hao, J. M., Wang, X.Y., Sun, J.F., et al., 2019. Characteristics and Main Controlling Factors of Natural Fractures in the Lower-to-Middle Ordovician Carbonate Reservoirs in Tahe Area, Northern Tarim Basin. Oil & Gas Geology, 40(5): 1022-1030 (in Chinese with English abstract).
      He, Y. L., Fu, X. Y., Liu, B., et al., 2012. Control of Oolitic Beaches Sedimentation and Diagenesis on the Reservoirs in Feixianguan Formation, Northeastern Sichuan Basin. Petroleum Exploration and Development, 39(4): 466-475. https://doi.org/10.1016/S1876-3804(12)60063-9
      Jiu, K., Ding, W. L., Huang, W. H., et al., 2013. Simulation of Paleotectonic Stress Fields within Paleogene Shale Reservoirs and Prediction of Favorable Zones for Fracture Development within the Zhanhua Depression, Bohai Bay Basin, East China. Journal of Petroleum Science and Engineering, 110: 119-131. https://doi.org/10.1016/j.petrol.2013.09.002
      Li, C.H., Zhao, L., Liu, B., et al., 2021. Research Status and Development Trend of Fractures in Carbonate Reservoir. Bulletin of Geological Science and Technology, 40(4): 31-48 (in Chinese with English abstract).
      Liang, Z.Q., 2019. Poststack Seismic Prediction Techniques for Fractures of Different Scales. Geophysical Prospecting for Petroleum, 58(5): 766-772 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2019.05.016
      Liu, B.Z., Qi, L.X., Li, Z.J., et al., 2020. Spatial Characterization and Quantitative Description Technology for Ultra-Deep Fault-Karst Reservoirs in the Shunbei Area. Acta Petrolei Sinica, 41(4): 412-420 (in Chinese with English abstract).
      Liu, G. P., Zeng, L. B., Han, C. Y., et al., 2020. Natural Fractures in Carbonate Basement Reservoirs of the Jizhong Sub-Basin, Bohai Bay Basin, China: Key Aspects Favoring Oil Production. Energies, 13(18): 1-23. https://doi.org/10.3390/en13184635
      Liu, Z.F., Qu, S.L., Sun, J.G., et al., 2012. Progress of Seismic Fracture Characterization Technology. Geophysical Prospecting for Petroleum, 51(2): 191-198 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2012.02.013
      Lyu, W. Y., Zeng, L. B., Liu, Z. Q., et al., 2016. Fracture Responses of Conventional Logs in Tight-Oil Sandstones: A Case Study of the Upper Triassic Yanchang Formation in Southwest Ordos Basin, China. AAPG Bulletin, 100(9): 1399-1417. https://doi.org/10.1306/04041615129
      Ma, Y.S., Cai, X.Y., 2006. Exploration Achievements and Prospects of the Permian Triassic Natural Gas in Northeastern Sichuan Basin. Oil & Gas Geology, 27(6): 741-750 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.2006.06.004
      Ma, Y. S., Mu, C. L., Guo, T. L., et al., 2005. Sequence Stratigraphy and Reservoir Distribution of Feixianguan Formation in Northeastern Sichuan. Journal of Mineralogy and Petrology, 25(4): 73-79. https://doi.org/10.2991/icseee-15.2016.213
      Ma, Y. S., Zhang, S. C., Guo, T. L., et al., 2008. Petroleum Geology of the Puguang Sour Gas Field in the Sichuan Basin, SW China. Marine and Petroleum Geology, 25(4-5): 357-370. https://doi.org/10.1016/j.marpetgeo.2008.01.010
      Maerten, L., Gillespie, P., Daniel, J. M., 2006. Three- Dimensional Geomechanical Modeling for Constraint of Subseismic Fault Simulation. AAPG Bulletin, 90(9): 1337-1358. https://doi.org/10.1306/03130605148
      Marfurt, K. J., Kirlin, R. L., Farmer, S. L., et al., 1998.3-D Seismic Attributes Using a Semblance-Based Coherency Algorithm. Geophysics, 63(4): 1150-1165. https://doi.org/10.1190/1.1444415
      Shao, X.Z., Qin, Q.R., Fan, X.L., et al., 2011. Fracture Prediction of the Bottom of T1f 4 in Huanglongchang Structure, Northeastern Sichuan Basin. Lithologic Reservoirs, 23(5): 96-100 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-8926.2011.05.020
      Sun, W., Li, Y.F., Fu, J.W., et al., 2014. Review of Fracture Identification with Well Logs and Seismic Data. Progress in Geophysics, 29(3): 1231-1242 (in Chinese with English abstract).
      Wang, S.L., Qin, Q.R., Dong, H.Y., et al., 2011. Fracture Prediction of Changxing Formation in Huanglongchang Structure. Journal of Southwest Petroleum University (Science & Technology Edition), 33(4): 39-43 (in Chinese with English abstract).
      Wang, S.L., Qin, Q.R., Su, P.D., et al., 2009. Analysis of Fracture Response Characteristics of Feixianguan Formation in Well Huanglong 8. Journal of Yangtze University (Natural Science Edition), 6(2): 180-182 (in Chinese with English abstract).
      Wang, W., Fu, H., Xing, L.X., et al., 2021. Crack Propagation Behavior of Carbonatite Geothermal Reservoir Rock Mass Based on Extended Finite Element Method. Earth Science, 46(10): 3509-3519 (in Chinese with English abstract).
      Wang, X.Z., Zhang, F., Ma, Q., et al., 2002. The Characteristics of Reef and Bank and the Fluctuation of Sea-Level in Feixianguan Period of Late Permian-Early Triassic, East Sichuan Basin. Acta Sedimentologica Sinica, 20(2): 249-254. https://doi.org/10.2523/iptc-16892-ms
      Wei, G.Q., Chen, G.S., Yang, W., et al., 2004. Sedimentary System of Platformal Trough of Feixianguan Formation of Lower Triassic in Northern Sichuan Basin and Its Evolution. Acta Sedimentologica Sinica, 22(2): 254-260. https://doi.org/10.1306/10171312220
      Xiao, Y., Liu, G.P., Han, C.Y., et al., 2018. Development Characteristics and Main Controlling Factors of Natural Fractures in Deep Carbonate Reservoirs in the Jizhong Depression. Natural Gas Industry, 38(11): 33-42 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2018.11.004
      Xiong, X.J., Zhang, X., Tong, H., et al., 2021. Prediction of Fracture Development Zones Based on Improved Coherence Analysis. Computing Techniques for Geophysical and Geochemical Exploration, 43(3): 269-274 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1749.2021.03.01
      Xu, H., Guo, X.W., Cao, Z.C., et al., 2021. Application of Minimum Homogenization Temperatures of Aqueous Inclusions in Calcite Veins to Determine Time of Hydrocarbon Accumulation in Ordovician of Tahe Oilfield: Evidence from In-Situ Calcite U-Pb Dating by Laser Ablation. Earth Science, 46(10): 3535-3548 (in Chinese with English abstract).
      Xu, J.L., Wang, Y.J., Cao, G.W., et al., 2012. Well-Logging Evaluation Methods on Carbonate Reservoirs. Geoscience, 26(6): 1265-1274 (in Chinese with English abstract).
      Yan, R. T., Zeng, L. B., Zhao, X. Y., et al., 2016. Fracture Development Characteristics and Its Formation Mechanism in Lower Member 1 Shahejie Biolithite Reservoir, Z Oilfield, Bohai Bay. Chinese Journal of Geology (Scientia Geologica Sinica), 51(2): 484-493 (in Chinese with English abstract).
      Zhao, J.L., Gong, Z.W., Li, G., et al., 2012. A Review and Perspective of Identifying and Evaluating the Logging Technology of Fractured Carbonate Reservoir. Progress in Geophysics, 27(2): 537-547 (in Chinese with English abstract).
      Zhao, X.Y., Hu, X.Y., Xiao, K.H., et al., 2018. Characteristics and Major Control Factors of Natural Fractures in Carbonate Reservoirs of Leikoupo Formation in Pengzhou Area, Western Sichuan Basin. Oil & Gas Geology, 39(1): 30-39 (in Chinese with English abstract).
      Zhao, X.Y., Hu, X.Y., Zeng, L.B., et al., 2017. Evaluation on the Effectiveness of Natural Fractures in Reef-Flat Facies Reservoirs of Changxing Fm in Yuanba Area, Sichuan Basin. Natural Gas Industry, 37(2): 52-61 (in Chinese with English abstract).
      Zeng, L. B., Gong, L., Guan, C., et al., 2022. Natural Fractures and Their Contribution to Tight Gas Conglomerate Reservoirs: A Case Study in the Northwestern Sichuan Basin, China. Journal of Petroleum Science and Engineering, 210: 110028. https://doi.org/10.1016/j.petrol.2021.110028
      崔正伟, 程冰洁, 徐天吉, 等, 2021. 基于构造导向滤波与梯度结构张量相干属性的储层裂缝预测方法及应用. 石油地球物理勘探, 56(3): 555-563. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202103014.htm
      冯艳伟, 陈勇, 赵振宇, 等, 2021. 鄂尔多斯盆地中部地区马家沟组断裂控制天然气运移方向的流体包裹体证据. 地球科学, 46(10): 3601-3614. doi: 10.3799/dqkx.2020.384
      高帅, 曾联波, 马世忠, 等, 2015. 致密砂岩储层不同方向构造裂缝定量预测. 天然气地球科学, 26(3): 427-434. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503005.htm
      赫俊民, 王小垚, 孙建芳, 等, 2019. 塔里木盆地塔河地区中‒下奥陶统碳酸盐岩储层天然裂缝发育特征及主控因素. 石油与天然气地质, 40(5): 1022-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905007.htm
      李长海, 赵伦, 刘波, 等, 2021. 碳酸盐岩裂缝研究进展及发展趋势. 地质科技通报, 40(4): 31-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104004.htm
      梁志强, 2019. 不同尺度裂缝的叠后地震预测技术研究. 石油物探, 58(5): 766-772. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201905017.htm
      刘宝增, 漆立新, 李宗杰, 等, 2020. 顺北地区超深层断溶体储层空间雕刻及量化描述技术. 石油学报, 41(4): 412-420. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004006.htm
      刘振峰, 曲寿利, 孙建国, 等, 2012. 地震裂缝预测技术研究进展. 石油物探, 51(2): 191-198. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201202014.htm
      马永生, 蔡勋育, 2006. 四川盆地川东北区二叠系‒三叠系天然气勘探成果与前景展望. 石油与天然气地质, 27(6): 741-750. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200606005.htm
      邵晓州, 秦启荣, 范晓丽, 等, 2011. 川东北黄龙场构造飞仙关组四段底部裂缝预测研究. 岩性油气藏, 23(5): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201105022.htm
      孙炜, 李玉凤, 付建伟, 等, 2014. 测井及地震裂缝识别研究进展. 地球物理学进展, 29(3): 1231-1242. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201403032.htm
      王时林, 秦启荣, 董海英, 等, 2011. 黄龙场构造长兴组裂缝预测. 西南石油大学学报(自然科学版), 33(4): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201104009.htm
      王时林, 秦启荣, 苏培东, 等, 2009. 黄龙8井飞仙关组裂缝响应特征分析. 长江大学学报(自然科学版), 6(2): 180-182. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL200902059.htm
      王伟, 付豪, 邢林啸, 等, 2021. 基于扩展有限元法的碳酸盐岩地热储层岩体裂缝扩展行为. 地球科学, 46(10): 3509-3519. doi: 10.3799/dqkx.2021.005
      肖阳, 刘国平, 韩春元, 等, 2018. 冀中坳陷深层碳酸盐岩储层天然裂缝发育特征与主控因素. 天然气工业, 38(11): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201811004.htm
      熊晓军, 张鑫, 童浩, 等, 2021. 基于改进的相干体分析技术的裂缝发育带预测研究. 物探化探计算技术, 43(3): 269-274. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT202103001.htm
      徐豪, 郭小文, 曹自成, 等, 2021. 运用方解石中流体包裹体最小均一温度确定塔河油田奥陶系油气成藏时间: 来自激光原位方解石U-Pb年龄的证据. 地球科学, 46(10): 3535-3548. doi: 10.3799/dqkx.2020.376
      徐敬领, 王亚静, 曹光伟, 等, 2012. 碳酸盐岩储层测井评价方法. 现代地质, 26(6): 1265-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201206023.htm
      严锐涛, 曾联波, 赵向原, 等, 2016. 渤海湾地区Z油田沙一下生物灰岩油藏裂缝特征及其形成机理. 地质科学, 51(2): 484-493.
      赵军龙, 巩泽文, 李甘, 等, 2012. 碳酸盐岩裂缝性储层测井识别及评价技术综述与展望. 地球物理学进展, 27(2): 537-547. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201202018.htm
      赵向原, 胡向阳, 肖开华, 等, 2018. 川西彭州地区雷口坡组碳酸盐岩储层裂缝特征及主控因素. 石油与天然气地质, 39(1): 30-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801005.htm
      赵向原, 胡向阳, 曾联波, 等, 2017. 四川盆地元坝地区长兴组礁滩相储层天然裂缝有效性评价. 天然气工业, 37(2): 52-61. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201702011.htm
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  356
    • HTML全文浏览量:  742
    • PDF下载量:  65
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-05-07
    • 刊出日期:  2023-07-25

    目录

      /

      返回文章
      返回