• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    多尺度岩石力学层对断层和裂缝发育的控制作用

    曹东升 曾联波 黄诚 韩俊 巩磊 宋逸辰 姚迎涛 董少群

    曹东升, 曾联波, 黄诚, 韩俊, 巩磊, 宋逸辰, 姚迎涛, 董少群, 2023. 多尺度岩石力学层对断层和裂缝发育的控制作用. 地球科学, 48(7): 2535-2556. doi: 10.3799/dqkx.2022.498
    引用本文: 曹东升, 曾联波, 黄诚, 韩俊, 巩磊, 宋逸辰, 姚迎涛, 董少群, 2023. 多尺度岩石力学层对断层和裂缝发育的控制作用. 地球科学, 48(7): 2535-2556. doi: 10.3799/dqkx.2022.498
    Cao Dongsheng, Zeng Lianbo, Huang Cheng, Han Jun, Gong Lei, Song Yichen, Yao Yingtao, Dong Shaoqun, 2023. Control of Multi-Scale Mechanical Stratigraphy on Development of Faults and Fractures. Earth Science, 48(7): 2535-2556. doi: 10.3799/dqkx.2022.498
    Citation: Cao Dongsheng, Zeng Lianbo, Huang Cheng, Han Jun, Gong Lei, Song Yichen, Yao Yingtao, Dong Shaoqun, 2023. Control of Multi-Scale Mechanical Stratigraphy on Development of Faults and Fractures. Earth Science, 48(7): 2535-2556. doi: 10.3799/dqkx.2022.498

    多尺度岩石力学层对断层和裂缝发育的控制作用

    doi: 10.3799/dqkx.2022.498
    基金项目: 

    国家自然科学基金项目 U21B2062

    详细信息
      作者简介:

      曹东升(1990-),男,博士研究生,从事构造流体耦合作用、裂缝性储层评价预测及模拟研究.ORCID:0000-0002-5076-395X. E-mail:cds90@qq.com

      通讯作者:

      曾联波, ORCID: 0000-0002-6470-8206. E-mail: lbzeng@sina.com

    • 中图分类号: P55

    Control of Multi-Scale Mechanical Stratigraphy on Development of Faults and Fractures

    • 摘要: 岩石力学层是控制断层裂缝系统的重要因素,岩石力学层级次和分布特征影响油气富集和高产.岩石力学层界面类型、特征及其对裂缝限制能力的差异决定了界面之间的岩石力学层存在多尺度特征,并影响不同尺度裂缝的垂向延伸.多尺度岩石力学层划分方法包括裂缝层和构造层等构造变形方法、岩石学方法、层序地层学方法、测井数据反演力学参数法、实测岩石力学参数法、叠前地震数据反演等.岩性是岩石力学性质演化和裂缝发育的物质基础,岩性组合控制了多尺度岩石力学层的纵向分布规律.岩石力学层界面对裂缝的限制能力决定了对应岩石力学层的尺度.岩石力学层厚控制了层内裂缝密度,主要有裂缝间距指数线性模型和幂函数模型两种定量关系.大尺度岩石力学层控制了大尺度断层裂缝的倾角、密度及构造样式等特征,进一步控制了流体运移、富集和成藏,决定了含油层系的垂向分布以及有利储层的发育.中小尺度力学层及微尺度力学层控制了断溶体储层垂向非均质性.研究深化了对多尺度断层裂缝主控因素的理解,为油气渗流富集研究以及裂缝性储层建模提供了依据.

       

    • 图  1  塔里木盆地形成演化及盆地中部岩性柱状图(据李丕龙, 2010; 黄诚, 2019)

      Fig.  1.  The formation and evolution of the Tarim Basin and the lithologic histogram of the central basin (according to Li, 2010; Huang, 2019)

      图  2  塔里木盆地构造单元及台盆区塔河‒顺北地区主要断层构造(据徐豪等, 2021)

      Fig.  2.  Structural units of the Tarim Basin and main faults in the carbonate platform of the Tahe-Shunbei area (according to Xu et al., 2021)

      图  3  大湾沟野外露头柯坪塔格组层序地层与岩石力学层划分及对比

      a.野外剖面裂缝发育特征;b. 岩性;c.岩石力学层与裂缝发育模式

      Fig.  3.  The division and correlation of the sequence stratigraphy and the mechanical stratigraphy of the Kepingtage Formation in the Dawangou outcrop

      图  4  塔里木盆地中部一间房组岩石力学参数方法划分岩石力学层结果

      岩石力学层道中,红色的是一类岩石力学层,黄色的是二类岩石力学层,白色是三类岩石力学层

      Fig.  4.  The mechanical stratigraphic division by the rock mechanical parameter method of the Yijianfang Formation in the central Tarim Basin

      图  5  根据裂缝密度划分裂缝层和岩石力学层(据Bertotti et al., 2007修改)

      Fig.  5.  Fracture layers and mechanical stratigraphic layers divided according to the fracture density (modified from Bertotti et al., 2007)

      图  6  塔里木盆地中部区域构造剖面

      韩俊等,2021;图中黑色的层位为大尺度岩石力学层界面,黄色是其他主要地震反射层;剖面位置为图 2中的近南北向BB

      Fig.  6.  The seismic section interpretation and the mechanical stratigraphic division in the central Tarim Basin

      图  7  塔里木盆地中部大尺度岩石力学层划分结果及断裂解释

      图b中黑色的层位为大尺度岩石力学层界面,黄色是其他主要地震反射层;近东西向剖面的位置为图 2中的AA

      Fig.  7.  The large-scale fault-fracture interpretation and the mechanical stratigraphic division of the seismic section in the central Tarim Basin

      图  8  台盆区一间房组测井数据预测裂缝发育段占比

      Fig.  8.  Proportions of fracture development sections predicted by logging data of the Yijianfang Formation in the platform area

      图  9  裂缝密度与岩石力学层厚度关系

      Fig.  9.  Relationship between the fracture density and the mechanical stratigraphic thickness

      图  10  一间房组微裂缝被缝合线和岩性界面限制

      Fig.  10.  Microfractures of the Yijianfang Formation limited by stylolites and lithologic interfaces

      图  11  裂缝密度对数值与岩石力学层厚度对数值关系

      Fig.  11.  Relationship between fracture density and mechanical stratigraphy thickness in the logarithmic coordinate

      图  12  一间房组不同深度钻井液漏失量

      Fig.  12.  Drilling mud leakage at different depths of the Yijianfang Formation

      图  13  微裂缝发育特征对孔隙度和渗透率关系的影响

      Fig.  13.  The influence of microfracture development characteristics on the relationship between the porosity and the permeability

      图  14  多尺度岩石力学层的岩石力学层界面类型、研究方法及其对流体的控制作用

      Fig.  14.  Interface types and study methods of multi-scale mechanical stratigraphy and their controls on geofluids

      表  1  多尺度断层裂缝、裂缝层及力学层界面划分方案

      Table  1.   Multi-scale classification scheme of fractures, fracture layers, and mechanical stratigraphy interfaces

      参考文献 分类依据及方案
      Becker and Gross, 1996; Gross and Eyal, 2007 裂缝穿层性:穿层(Throughgoing)裂缝、层内(Bed-contained)裂缝
      Bourbiaux et al., 2002 裂缝尺度和发育特征综合分类:野外尺度疏导、大尺度稀疏分布、大‒中规模连通、小尺度连通、小尺度不连通裂缝
      Zahm and Hennings, 2009 不同级次岩石力学层界面与裂缝的关系:层控裂缝(Lamina-bound)、相控裂缝(Facies-bound)、层序限制裂缝(Sequence-bound)、穿层裂缝
      Strijker et al., 2012 裂缝尺度:一级裂缝(Fracture swarms,裂缝长度大于600 m)、二级裂缝(Non-stratabound fracture systems,裂缝长度大于600 m)、三级裂缝(Stratabound small-scale fractures)
      Rustichelli et al., 2013 力学层界面类型及其对裂缝的限制能力:地层单元边界、微相组合(Facies associations)边界、沉积相(Facies)边界
      Li et al., 2018 页岩层系中裂缝的尺度:米级、分米级、厘米级和毫米级
      董少群等, 2020 裂缝尺度:大尺度、中尺度、小尺度裂缝
      曾联波等, 2020;吕文雅等, 2021 油藏内天然裂缝规模及其控制界面:大尺度裂缝、中尺度裂缝、小尺度裂缝和微尺度裂缝
      Zeng et al., 2021 断层和裂缝的发育特征和规模:Ⅰ类断层、Ⅱ类断层、大尺度裂缝、中尺度裂缝、小尺度裂缝和微尺度裂缝
      下载: 导出CSV

      表  2  塔里木盆地中部构造层划分方案及其构造特征

      Table  2.   The division scheme and structural characteristics of structural layers in the central Tarim Basin

      参考文献 分层 岩性 构造特征
      韩俊等, 2021 下寒武统 南华系‒震旦系裂谷‒拗陷体系及下寒武统碳酸盐岩台地 正断层控制的半地堑、柯坪运动构造反转形成古隆起
      中寒武统 中寒武统膏盐岩层,非能干地层,具塑性流动特征 膏盐岩流动形成盐撤凹陷和盐拱背斜,走滑花状构造和局部膏盐岩滑脱断层
      上寒武统‒中奥陶统 上寒武统下秋里塔格组到中奥陶统一间房组的碳酸盐岩地层 直立主断裂与分支断裂形成的花状构造,溶蚀改造形成“串珠”状地震反射
      上奥陶统‒志留系 上奥陶统却尔却克组泥岩和志留系碎屑岩 雁列张扭式走滑断裂
      林波等, 2021 中‒下寒武统海相碳酸盐岩 海相碳酸盐岩沉积层,顶部和中部均发育一套膏盐岩层 走滑断裂为直立线性断层(倾角大于80°),在膏盐层垂向分段叠接,T81界面可见膏盐滑脱构造
      上寒武统‒中奥陶统海相碳酸盐岩 海相碳酸盐岩沉积,白云岩与灰岩的组合 走滑断裂在深部呈陡直状(倾角大于80°),向上逐渐发散,形成典型的花状构造变形
      上奥陶统泥岩 巨厚层状的海相泥岩沉积,为明显的构造软弱层 在线性走滑断裂上方发育大量撕裂型雁列正断层,雁列正断层的断层倾角变缓至40°~50°
      志留系‒中泥盆统海相碎屑岩 砂岩与泥岩互层,刚性地层 断裂构造样式与下伏构造层一致,呈地堑向下收敛,断层倾角多为40°~55°
      上泥盆统‒石炭系海陆交互相地层 砂岩与泥岩互层夹少量灰岩段,刚性地层 以正断层为主,断层倾角多为40°~55°
      二叠系海陆交互相叠加火山岩 碎屑岩地层夹火山熔岩、火山碎屑岩为主,刚性地层 顶部见少量正断层分布,在地震剖面上与下伏的走滑断裂并未连接
      邬光辉等, 2021 前南华系基岩
      南华系‒震旦系裂谷建造
      寒武系‒奥陶系克拉通海相碳酸盐岩
      志留系‒白垩系碎屑岩
      新生界前陆盆地碎屑岩
      黄诚, 2019 寒武系‒中奥陶统,以加里东中期Ⅰ幕不整合面为顶界
      上奥陶统,以加里东中期Ⅲ幕不整合面为顶界
      志留系‒中泥盆统,以海西早期不整合界面为顶界
      东河塘组‒二叠系,以海西晚期不整合界面为顶界
      中‒新生界
      下载: 导出CSV

      表  3  塔里木盆地中部大尺度岩石力学层划分结果及其特征

      Table  3.   The division and characteristics of the large-scale mechanical stratigraphy in the central Tarim Basin

      地层和岩性 力学层顶界面 构造特征
      前寒武基底 T90 正断层及其组合成的地堑,局部由于构造反转成为逆断层
      中下寒武统,海相碳酸盐岩含塑性的膏岩和泥页岩 T81 高角度的走滑断裂,膏岩滑动相关的中低角度正、逆断层
      上寒武统‒中奥陶统碳酸盐岩 T74 高角度走滑断裂带,以及断裂带之间独立的高角度断层和大尺度裂缝
      上奥陶统厚层泥岩、泥晶灰岩 T70 走滑断裂带上部雁列正断层,高角度断层和大尺度裂缝
      志留系‒石炭系砂泥岩互层,上部石炭系含灰岩地层 T54 中低角度断层和大尺度裂缝,走滑断裂带上部更加发育
      二叠系,砂泥岩和火山岩地层 T50 中高角度断层裂缝,在平面上表现出多边形裂缝特征
      三叠系,泥岩、粉砂岩为主 T46 中高角度断层裂缝为主
      侏罗系‒古近系,砂岩和泥岩互层 T22 下部为中低角度断层裂缝,上部以高角度为主
      新近系‒第四系,碎屑岩以砂岩和粉砂岩为主 地表 以中低角度断层裂缝为主
      下载: 导出CSV
    • Agosta, F., Wilson, C., Aydin, A., 2015. The Role of Mechanical Stratigraphy on Normal Fault Growth across a Cretaceous Carbonate Multi-Layer, Central Texas (USA). Italian Journal of Geosciences, 134(3): 423-441. https://doi.org/10.3301/IJG.2014.20
      Anders, M. H., Laubach, S. E., Scholz, C. H., 2014. Microfractures: A Review. Journal of Structural Geology, 69: 377-394. https://doi.org/10.1016/j.jsg.2014.05.011
      Azarafza, M., Ghazifard, A., Asasi, F., et al., 2021. An Empirical Classification Method for South Pars Marls by Schmidt Hammer Rebound Index. MethodsX, 8: 101366. https://doi.org/10.1016/j.mex.2021.101366
      Bai, T. X., Pollard, D. D., 2000a. Fracture Spacing in Layered Rocks: A New Explanation Based on the Stress Transition. Journal of Structural Geology, 22(1): 43-57. https://doi.org/10.1016/S0191-8141(99)00137-6
      Bai, T. X., Pollard, D. D., 2000b. Closely Spaced Fractures in Layered Rocks: Initiation Mechanism and Propagation Kinematics. Journal of Structural Geology, 22(10): 1409-1425. https://doi.org/10.1016/S0191-8141(00)00062-6
      Becker, A., Gross, M. R., 1996. Mechanism for Joint Saturation in Mechanically Layered Rocks: An Example from Southern Israel. Tectonophysics, 257(2-4): 223-237. https://doi.org/10.1016/0040-1951(95)00142-5
      Bertotti, G., Hardebol, N., Taal-van Koppen, J. K., et al., 2007. Toward a Quantitative Definition of Mechanical Units: New Techniques and Results from an Outcropping Deep-Water Turbidite Succession (Tanqua-Karoo Basin, South Africa). AAPG Bulletin, 91(8): 1085-1098. https://doi.org/10.1306/03060706074
      Bourbiaux, B., Basquet, R., Cacas, M. C., et al., 2002. An Integrated Workflow to Account for Multi-Scale Fractures in Reservoir Simulation Models: Implementation and Benefits. Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi. https://doi.org/10.2118/78489-MS
      Burberry, C. M., Peppers, M. H., 2017. Fracture Characterization in Tight Carbonates: An Example from the Ozark Plateau, Arkansas. AAPG Bulletin, 101(10): 1675-1696. https://doi.org/10.1306/01251715242
      Cao, D. S., Zeng, L. B., Lyu, W. Y., et al., 2021. Progress in Brittleness Evaluation and Prediction Methods in Unconventional Reservoirs. Petroleum Science Bulletin, 6(1): 31-45 (in Chinese with English abstract).
      Chen, J. J., He, D. F., Tian, F. L., et al., 2022. Control of Mechanical Stratigraphy on the Stratified Style of Strike-Slip Faults in the Central Tarim Craton, NW China. Tectonophysics, 830: 229307. https://doi.org/10.1016/j.tecto.2022.229307
      Chen, J. P., Zhao, T., Xiao, C. Y., et al., 2020. Differential Diagenesis of Lower-Middle Ordovician Strike Slip Faults in Shunbei Area of Tarim Basin. Journal of Northeast Petroleum University, 44(5): 23-34 (in Chinese with English abstract).
      Cooke, M. L., Simo, J. A., Underwood, C. A., et al., 2006. Mechanical Stratigraphic Controls on Fracture Patterns within Carbonates and Implications for Groundwater Flow. Sedimentary Geology, 184(3-4): 225-239. https://doi.org/10.1016/j.sedgeo.2005.11.004
      Corbett, K., Friedman, M., Spang, J., 1987. Fracture Development and Mechanical Stratigraphy of Austin Chalk, Texas. AAPG Bulletin, 71(1): 17-28. https://doi.org/10.1306/94886D35-1704-11D7-8645000102C1865D
      Corradetti, A., Tavani, S., Parente, M., et al., 2018. Distribution and Arrest of Vertical Through-Going Joints in a Seismic-Scale Carbonate Platform Exposure (Sorrento Peninsula, Italy): Insights from Integrating Field Survey and Digital Outcrop Model. Journal of Structural Geology, 108: 121-136. https://doi.org/10.1016/j.jsg.2017.09.009
      Dong, S. Q., Lyu, W. Y., Xia, D. L., et al., 2020. An Approach to 3D Geological Modeling of Multi-Scaled Fractures in Tight Sandstone Reservoirs. Oil & Gas Geology, 41(3): 627-637 (in Chinese with English abstract).
      Ferrill, D. A., McGinnis, R. N., Morris, A. P., et al., 2014. Control of Mechanical Stratigraphy on Bed-Restricted Jointing and Normal Faulting: Eagle Ford Formation, South-Central Texas. AAPG Bulletin, 98(11): 2477-2506. https://doi.org/10.1306/08191414053
      Ferrill, D. A., Morris, A. P., 2003. Dilational Normal Faults. Journal of Structural Geology, 25(2): 183-196. https://doi.org/10.1016/S0191-8141(02)00029-9
      Ferrill, D. A., Morris, A. P., McGinnis, R. N., et al., 2011. Fault Zone Deformation and Displacement Partitioning in Mechanically Layered Carbonates: The Hidden Valley Fault, Central Texas. AAPG Bulletin, 95(8): 1383-1397. https://doi.org/10.1306/12031010065
      Ferrill, D. A., Morris, A. P., McGinnis, R. N., et al., 2017. Mechanical Stratigraphy and Normal Faulting. Journal of Structural Geology, 94: 275-302. https://doi.org/10.1016/j.jsg.2016.11.010
      Gao, H. H., He, D. F., Tong, X. G., et al., 2018. Tectonic-Depositional Environment and Petroleum Exploration of Yingshan Formation in the Tarim Basin. Earth Science, 43(2): 551-565 (in Chinese with English abstract).
      Gong, L., Gao, M. Z., Zeng, L. B., et al., 2017. Controlling Factors on Fracture Development in the Tight Sandstone Reservoirs: A Case Study of Jurassic-Neogene in the Kuqa Foreland Basin. Natural Gas Geoscience, 28(2): 199-208 (in Chinese with English abstract).
      Gong, L., Yao, J. Q., Gao, S., et al., 2018. Controls of Rock Mechanical Stratigraphy on Tectonic Fracture Spacing. Geotectonica et Metallogenia, 42(6): 965-973 (in Chinese with English abstract).
      Gross, M. R., 1993. The Origin and Spacing of Cross Joints: Examples from the Monterey Formation, Santa Barbara Coastline, California. Journal of Structural Geology, 15(6): 737-751. https://doi.org/10.1016/0191-8141(93)90059-J
      Gross, M. R., Eyal, Y., 2007. Throughgoing Fractures in Layered Carbonate Rocks. Geological Society of America Bulletin, 119(11-12): 1387-1404. https://doi.org/10.1130/0016-7606(2007)119[1387:TFILCR]2.0.CO;2
      Gross, M. R., Fischer, M. P., Engelder, T., et al., 1995. Factors Controlling Joint Spacing in Interbedded Sedimentary Rocks: Integrating Numerical Models with Field Observations from the Monterey Formation, USA. Geological Society, London, Special Publications, 92(1): 215-233. https://doi.org/10.1144/GSL.SP.1995.092.01.12.
      Gudmundsson, A., 2011. Rock Fractures in Geological Processes. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511975684
      Han, J., Kuang, A. P., Neng, Y., et al., 2021. Vertical Layered Structure of Shunbei No. 5 Strike-Slip Fault Zone and Its Significance on Hydrocarbon Accumulation. Xinjiang Petroleum Geology, 42(2): 152-160 (in Chinese with English abstract).
      Hao, J. M., Wang, X. Y., Sun, J. F., et al., 2019. Characteristics and Main Controlling Factors of Natural Fractures in the Lower-to-Middle Ordovician Carbonate Reservoirs in Tahe Area, Northern Tarim Basin. Oil & Gas Geology, 40(5): 1022-1030 (in Chinese with English abstract).
      Hobbs, D. W., 1967. The Formation of Tension Joints in Sedimentary Rocks: An Explanation. Geological Magazine, 104(6): 550-556. https://doi.org/10.1017/s0016756800050226
      Huang, C., 2019. Multi-Stage Activity Characteristics of Small-Scale Strike-Slip Faults in Superimposed Basin and Its Identification Method: A Case Study of Shunbei Area, Tarim Basin. Petroleum Geology & Experiment, 41(3): 379-389 (in Chinese with English abstract).
      Ji, S. C., Li, L., Marcotte, D., 2021. Power-Law Relationship between Joint Spacing and Bed Thickness in Sedimentary Rocks and Implications for Layered Rock Mechanics. Journal of Structural Geology, 150: 104413. https://doi.org/10.1016/j.jsg.2021.104413
      Jiao, C. L., He, B. Z., Wang, T. Y., et al., 2018. Types and Quantitative Characterization of Reservoir Spaces of the Ultra-Deep Limestone Reservoirs in the Yijianfang Formation during the Middle Ordovician, Shuntuoguole Area, Tarim Basin. Acta Petrologica Sinica, 34(6): 1835-1846 (in Chinese with English abstract).
      Jiao, F. Z., 2017. Significance of Oil and Gas Exploration in NE Strike-Slip Fault Belts in Shuntuoguole Area of Tarim Basin. Oil & Gas Geology, 38(5): 831-839 (in Chinese with English abstract).
      Jiao, F. Z., 2018. Significance and Prospect of Ultra-Deep Carbonate Fault-Karst Reservoirs in Shunbei Area, Tarim Basin. Oil & Gas Geology, 39(2): 207-216 (in Chinese with English abstract).
      Jr Mitchum, R. M., Van Wagoner, J. C., 1991. High- Frequency Sequences and Their Stacking Patterns: Sequence-Stratigraphic Evidence of High-Frequency Eustatic Cycles. Sedimentary Geology, 70(2-4): 131-160. https://doi.org/10.1016/0037-0738(91)90139-5
      Kadkhodaie, A., 2021. The Impact of Geomechanical Units (GMUs) Classification on Reducing the Uncertainty of Wellbore Stability Analysis and Safe Mud Window Design. Journal of Natural Gas Science and Engineering, 91: 103964. https://doi.org/10.1016/j.jngse.2021.103964
      Katz, O., Reches, Z., Roegiers, J. C., 2000. Evaluation of Mechanical Rock Properties Using a Schmidt Hammer. International Journal of Rock Mechanics and Mining Sciences, 37(4): 723-728. https://doi.org/10.1016/S1365-1609(00)00004-6
      Larsen, B., Gudmundsson, A., Grunnaleite, I., et al., 2010. Effects of Sedimentary Interfaces on Fracture Pattern, Linkage, and Cluster Formation in Peritidal Carbonate Rocks. Marine and Petroleum Geology, 27(7): 1531-1550. https://doi.org/10.1016/j.marpetgeo.2010.03.011
      Laubach, S. E., Olson, J. E., Gross, M. R., 2009. Mechanical and Fracture Stratigraphy. AAPG Bulletin, 93(11): 1413-1426. https://doi.org/10.1306/07270909094
      Lézin, C., Odonne, F., Massonnat, G. J., et al., 2009. Dependence of Joint Spacing on Rock Properties in Carbonate Strata. AAPG Bulletin, 93(2): 271-290. https://doi.org/10.1306/09150808023
      Li, H. Y., Liu, J., Gong, W., et al., 2020. Identification and Characterization of Strike-Slip Faults and Traps of Fault-Karst Reservoir in Shunbei Area. China Petroleum Exploration, 25(3): 107-120 (in Chinese with English abstract).
      Li, L. H., Huang, B. X., Li, Y. Y., et al., 2018. Multi-Scale Modeling of Shale Laminas and Fracture Networks in the Yanchang Formation, Southern Ordos Basin, China. Engineering Geology, 243: 231-240. https://doi.org/10.1016/j.enggeo.2018.07.010
      Li, P. L., 2010. Tectonic Sedimentation and Reservoir Formation in Tarim Basin. Geological Publishing House, Beijing, 1-7 (in Chinese).
      Lin, B., Zhang, X., Kuang, A. P., et al., 2021. Structural Deformation Characteristics of Strike-Slip Faults in Tarim Basin and Their Hydrocarbon Significance: A Case Study of No. 1 Fault and No. 5 Fault in Shunbei Area. Acta Petrolei Sinica, 42(7): 906-923 (in Chinese with English abstract).
      Liu, B. Z., 2020. Analysis of Main Controlling Factors of Oil and Gas Differential Accumulation in Shunbei Area, Tarim Basin-Taking Shunbei No. 1 and No. 5 Strike Slip Fault Zones as Examples. China Petroleum Exploration, 25(3): 83-95 (in Chinese with English abstract).
      Lü, W. Y., Zeng, L. B., Chen, S. Q., et al., 2021. Characterization Methods of Multi-Scale Natural Fractures in Tight and Low-Permeability Sandstone Reservoirs. Geological Review, 67(2): 543-556 (in Chinese with English abstract).
      Lyu, W. Y., Zeng, L. B., Liu, Z. Q., et al., 2016. Fracture Responses of Conventional Logs in Tight-Oil Sandstones: A Case Study of the Upper Triassic Yanchang Formation in Southwest Ordos Basin, China. AAPG Bulletin, 100(9): 1399-1417. https://doi.org/10.1306/04041615129
      Ma, Q. Y., Cao, Z. C., Jiang, H. S., et al., 2020. Source-Connectivity of Strike Slip Fault Zone and Its Relationship with Oil and Gas Accumulation in Tahe-Shunbei Area, Tarim Basin. Marine Origin Petroleum Geology, 25(4): 327-334 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2020.04.005
      McGinnis, R. N., Ferrill, D. A., Morris, A. P., et al., 2017. Mechanical Stratigraphic Controls on Natural Fracture Spacing and Penetration. Journal of Structural Geology, 95: 160-170. https://doi.org/10.1016/j.jsg.2017.01.001
      Moore, C. H., Wade, W. J., 2013. Carbonate Reservoirs: Porosity and Diagenesis in a Sequence Stratigraphic Framework. Elsevier, Amsterdam, 285-288.
      Morris, A. P., Ferrill, D. A., McGinnis, R. N., 2009. Mechanical Stratigraphy and Faulting in Cretaceous Carbonates. AAPG Bulletin, 93(11): 1459-1470. https://doi.org/10.1306/04080909011
      Narr, W., 1991. Fracture Density in the Deep Subsurface: Techniques with Application to Point Arguello Oil Field. AAPG Bulletin, 75(8): 1300-1323. https://doi.org/10.1306/0C9B2939-1710-11D7-8645000102C1865D
      Narr, W., Suppe, J., 1991. Joint Spacing in Sedimentary Rocks. Journal of Structural Geology, 13(9): 1037-1048. https://doi.org/10.1016/0191-8141(91)90055-N
      Nelson, R., 2001. Geologic Analysis of Naturally Fractured Reservoirs. Gulf Professional Company, Houston.
      Nur, A., 1982. The Origin of Tensile Fracture Lineaments. Journal of Structural Geology, 4(1): 31-40. https://doi.org/10.1016/0191-8141(82)90004-9
      Ogata, K., Storti, F., Balsamo, F., et al., 2017. Sedimentary Facies Control on Mechanical and Fracture Stratigraphy in Turbidites. Geological Society of America Bulletin, 129(1-2): 76-92. https://doi.org/10.1130/B31517.1
      Olson, J. E., 2004. Predicting Fracture Swarms—The Influence of Subcritical Crack Growth and the Crack-Tip Process Zone on Joint Spacing in Rock. Geological Society, London, Special Publications, 231(1): 73-88. https://doi.org/10.1144/GSL.SP.2004.231.01.05
      Panza, E., Agosta, F., Rustichelli, A., et al., 2016. Fracture Stratigraphy and Fluid Flow Properties of Shallow-Water, Tight Carbonates: The Case Study of the Murge Plateau (Southern Italy). Marine and Petroleum Geology, 73: 350-370. https://doi.org/10.1016/j.marpetgeo.2016.03.022
      Pollard, D. D., Aydin, A., 1988. Progress in Understanding Jointing over the Past Century. Geological Society of America Bulletin, 100(8): 1181-1204. https://doi.org/10.1130/0016-7606(1988)100<1181:PIUJOT>2.3.CO;2 doi: 10.1130/0016-7606(1988)100<1181:PIUJOT>2.3.CO;2
      Pollard, D. D., Segall, P., 1987. Theoretical Displacements and Stresses near Fractures in Rock: With Applications to Faults, Joints, Veins, Dikes, and Solution Surfaces. Fracture Mechanics of Rock, 277-347. https://doi.org/10.1016/B978-0-12-066266-1.50013-2
      Qi, L. X., 2016. Oil and Gas Breakthrough in Ultra-Deep Ordovician Carbonate Formations in Shuntuoguole Uplift, Tarim Basin. China Petroleum Exploration, 21(3): 38-51 (in Chinese with English abstract).
      Qi, L. X., 2020. Characteristics and Inspiration of Ultra-Deep Fault-Karst Reservoir in the Shunbei Area of the Tarim Basin. China Petroleum Exploration, 25(1): 102-111 (in Chinese with English abstract).
      Renshaw, C. E., Pollard, D. D., 1995. An Experimentally Verified Criterion for Propagation across Unbounded Frictional Interfaces in Brittle, Linear Elastic Materials. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(3): 237-249. https://doi.org/10.1016/0148-9062(94)00037-4
      Rijken, P., Cooke, M. L., 2001. Role of Shale Thickness on Vertical Connectivity of Fractures: Application of Crack-Bridging Theory to the Austin Chalk, Texas. Tectonophysics, 337(1-2): 117-133. https://doi.org/10.1016/S0040-1951(01)00107-X
      Rustichelli, A., Agosta, F., Tondi, E., et al., 2013. Spacing and Distribution of Bed-Perpendicular Joints throughout Layered, Shallow-Marine Carbonates (Granada Basin, Southern Spain). Tectonophysics, 582: 188-204. https://doi.org/10.1016/j.tecto.2012.10.007
      Rustichelli, A., Torrieri, S., Tondi, E., et al., 2016. Fracture Characteristics in Cretaceous Platform and Overlying Ramp Carbonates: An Outcrop Study from Maiella Mountain (Central Italy). Marine and Petroleum Geology, 76: 68-87. https://doi.org/10.1016/j.marpetgeo.2016.05.020
      Schmidt, E., 1951. A Non-Destructive Concrete Tester. Concrete, 59(8): 34-35.
      Shackleton, J. R., Cooke, M. L., Sussman, A. J., 2005. Evidence for Temporally Changing Mechanical Stratigraphy and Effects on Joint-Network Architecture. Geology, 33(2): 101-104. https://doi.org/10.1130/G20930.1
      Strijker, G., Bertotti, G., Luthi, S. M., 2012. Multi-Scale Fracture Network Analysis from an Outcrop Analogue: A Case Study from the Cambro-Ordovician Clastic Succession in Petra, Jordan. Marine and Petroleum Geology, 38(1): 104-116. https://doi.org/10.1016/j.marpetgeo.2012.07.003
      Teufel, L. W., Clark, J. A., 1984. Hydraulic Fracture Propagation in Layered Rock: Experimental Studies of Fracture Containment. Society of Petroleum Engineers Journal, 24(01): 19-32. https://doi.org/10.2118/9878-PA
      Todaro, S., Agosta, F., Parrino, N., et al., 2022. Fracture Stratigraphy and Oil First Migration in Triassic Shales, Favignana Island, Western Sicily, Italy. Marine and Petroleum Geology, 135: 105400. https://doi.org/10.1016/j.marpetgeo.2021.105400
      Underwood, C. A., Cooke, M. L., Simo, J. A., et al., 2003. Stratigraphic Controls on Vertical Fracture Patterns in Silurian Dolomite, Northeastern Wisconsin. AAPG Bulletin, 87(1): 121-142. https://doi.org/10.1306/072902870121
      Wang, B., Yang, Y., Cao, Z. C., et al., 2021. U-Pb Dating of Calcite Veins Developed in the Middle-Lower Ordovician Reservoirs in Tahe Oilfield and Its Petroleum Geologic Significance in Tahe Oilfield. Earth Science, 46(9): 3203-3216 (in Chinese with English abstract).
      Wang, W., Fu, H., Xing, L. X., et al., 2021. Crack Propagation Behavior of Carbonatite Geothermal Reservoir Rock Mass Based on Extended Finite Element Method. Earth Science, 46(10): 3509-3519 (in Chinese with English abstract).
      Wang, W. B., Fu, H., Lü, L. R., et al., 2021. Sequence Model of Ordovician Carbonate Strata in Shunbei Area, Tarim Basin, and Its Significance. Acta Sedimentologica Sinica, 39(6): 1451-1465 (in Chinese with English abstract).
      Wang, Y. W., Chen, H. H., Cao, Z. C., et al., 2019. Forming Mechanism of Ordovician Microbial Carbonate Reservoir in Northern Slope of Tazhong Uplift, Tarim Basin. Earth Science, 44(2): 559-571 (in Chinese with English abstract).
      Willis, B., 1894. The Mechanics of Appalachian Structure. US Government Printing Office, Washington, 222-224.
      Wu, G. H., Ma, B. S., Han, J. F., et al., 2021. Origin and Growth Mechanisms of Strike-Slip Faults in the Central Tarim Cratonic Basin, NW China. Petroleum Exploration and Development, 48(3): 510-520 (in Chinese with English abstract).
      Wu, H. Q., Pollard, D. D., 1995. An Experimental Study of the Relationship between Joint Spacing and Layer Thickness. Journal of Structural Geology, 17(6): 887-905. https://doi.org/10.1016/0191-8141(94)00099-L
      Xu, H., Guo, X. W., Cao, Z. C., et al., 2021. Application of Minimum Homogenization Temperatures of Aqueous Inclusions in Calcite Veins to Determine Time of Hydrocarbon Accumulation in Ordovician of Tahe Oilfield: Evidence from In-Situ Calcite U-Pb Dating by Laser Ablation. Earth Science, 46(10): 3535-3548 (in Chinese with English abstract).
      Yang, P. X., Tian, J. C., Zhang, X., 2019. Study of Characteristics of Triassic Sedimentary Facies and Depositional Model in the Northern Shunbei Region, Tarim Basin. Journal of Mineralogy and Petrology, 39(4): 86-96 (in Chinese with English abstract).
      Yang, X., Shen, W. J., 2021. Characteristics and Evolution of the Structural Formations in Hongqi Sag, Hailar Basin. Petroleum Geology & Oilfield Development in Daqing, 40(6): 20-27 (in Chinese with English abstract).
      Yang, Y., Wang, B., Cao, Z. C., et al., 2021. Genesis and Formation Time of Calcite Veins of Middle-Lower Ordovician Reservoirs in Northern Shuntuoguole Low- Uplift, Tarim Basin. Earth Science, 46(6): 2246-2257 (in Chinese with English abstract).
      Yun, L., 2021a. Hydrocarbon Accumulation of Ultra-Deep Ordovician Fault-Karst Reservoirs in Shunbei Area. Xinjiang Petroleum Geology, 42(2): 136-142 (in Chinese with English abstract).
      Yun, L., 2021b. Controlling Effect of NE Strike-Slip Fault System on Reservoir Development and Hydrocarbon Accumulation in the Eastern Shunbei Area and Its Geological Significance, Tarim Basin. China Petroleum Exploration, 26(3): 41-52 (in Chinese with English abstract).
      Zahm, C. K., Hennings, P. H., 2009. Complex Fracture Development Related to Stratigraphic Architecture: Challenges for Structural Deformation Prediction, Tensleep Sandstone at the Alcova Anticline, Wyoming. AAPG Bulletin, 93(11): 1427-1446. https://doi.org/10.1306/08040909110
      Zahm, C. K., Zahm, L. C., Bellian, J. A., 2010. Integrated Fracture Prediction Using Sequence Stratigraphy within a Carbonate Fault Damage Zone, Texas, USA. Journal of Structural Geology, 32(9): 1363-1374. https://doi.org/10.1016/j.jsg.2009.05.012
      Zeng, L. B., 2008. Formation and Distribution of Fractures in Low Permeability Sandstone Reservoir. Science Press, Beijing, 101-105 (in Chinese).
      Zeng, L. B., Lyu, P., Qu, X. F., et al., 2020. Multi-Scale Fractures in Tight Sandstone Reservoirs with Low Permeability and Geological Conditions of Their Development. Oil & Gas Geology, 41(3): 449-454 (in Chinese with English abstract).
      Zeng, L. B., Lyu, W. Y., Zhang, Y. Z., et al., 2021. The Effect of Multi-Scale Faults and Fractures on Oil Enrichment and Production in Tight Sandstone Reservoirs: A Case Study in the Southwestern Ordos Basin, China. Frontiers in Earth Science, 9: 664629. https://doi.org/10.3389/feart.2021.664629
      Zhang, P., Hou, G. T., Pan, W. Q., et al., 2013. Research on the Carbonate Rocks Fractures in the Northern Margin of Tarim Basin. Geological Journal of China Universities, 19(4): 580-587 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2013.04.003
      Zhang, X. X., Yu, J. J., Li, N. Y., et al., 2021. Multi-Scale Fracture Prediction and Characterization Method of a Fractured Carbonate Reservoir. Journal of Petroleum Exploration and Production, 11(1): 191-202. https://doi.org/10.1007/s13202-020-01033-w
      Zhao, L. Q., Feng, J. W., 2018. Interrelationship Study between Rock Mechanical Stratigraphy and Structural Fracture Development. Journal of Shandong University of Science and Technology (Natural Science), 37(1): 35-46 (in Chinese with English abstract).
      Zhao, R., Zhao, T., Li, H. L., et al., 2019. Sedimentary Facies and Cyclic Stratigraphy of Yingshan and Yijianfang Formations of Lower-Middle Ordovician in Shuntuoguole Area, Tarim Basin. Journal of Northeast Petroleum University, 43(4): 1-16 (in Chinese with English abstract).
      Zhou, D. W., Li, W. H., Zhang, Y. X., et al., 2002. Method and Practice of Comprehensive Study of Regional Geology: Guidance for Geological Field Practice in Qinling Orogenic Belt, Ordos Basin. Science Press, Beijing, 180-182 (in Chinese).
      曹东升, 曾联波, 吕文雅, 等, 2021. 非常规油气储层脆性评价与预测方法研究进展. 石油科学通报, 6(1): 31-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE202101003.htm
      陈菁萍, 赵腾, 肖重阳, 等, 2020. 塔里木盆地顺北地区中下奥陶统走滑断裂差异成岩作用. 东北石油大学学报, 44(5): 23-34. doi: 10.3969/j.issn.2095-4107.2020.05.003
      董少群, 吕文雅, 夏东领, 等, 2020. 致密砂岩储层多尺度裂缝三维地质建模方法. 石油与天然气地质, 41(3): 627-637. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003019.htm
      高华华, 何登发, 童晓光, 等, 2018. 塔里木盆地鹰山组沉积期构造‒沉积环境与原型盆地特征. 地球科学, 43(2): 551-565. doi: 10.3799/dqkx.2017.509
      巩磊, 高铭泽, 曾联波, 等, 2017. 影响致密砂岩储层裂缝分布的主控因素分析——以库车前陆盆地侏罗系‒新近系为例. 天然气地球科学, 28(2): 199-208. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702003.htm
      巩磊, 姚嘉琪, 高帅, 等, 2018. 岩石力学层对构造裂缝间距的控制作用. 大地构造与成矿学, 42(6): 965-973. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201806002.htm
      韩俊, 况安鹏, 能源, 等, 2021. 顺北5号走滑断裂带纵向分层结构及其油气地质意义. 新疆石油地质, 42(2): 152-160. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102004.htm
      赫俊民, 王小垚, 孙建芳, 等, 2019. 塔里木盆地塔河地区中‒下奥陶统碳酸盐岩储层天然裂缝发育特征及主控因素. 石油与天然气地质, 40(5): 1022-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905007.htm
      黄诚, 2019. 叠合盆地内部小尺度走滑断裂幕式活动特征及期次判别: 以塔里木盆地顺北地区为例. 石油实验地质, 41(3): 379-389. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201903012.htm
      焦存礼, 何碧竹, 王天宇, 等, 2018. 顺托果勒奥陶系一间房组超深层灰岩储层类型及储集空间定量表征. 岩石学报, 34(6): 1835-1846. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201806019.htm
      焦方正, 2017. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义. 石油与天然气地质, 38(5): 831-839. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705001.htm
      焦方正, 2018. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景. 石油与天然气地质, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm
      李海英, 刘军, 龚伟, 等, 2020. 顺北地区走滑断裂与断溶体圈闭识别描述技术. 中国石油勘探, 25(3): 107-120. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003010.htm
      李丕龙, 2010. 塔里木盆地构造沉积与成藏. 北京: 地质出版社, 1-7.
      林波, 张旭, 况安鹏, 等, 2021. 塔里木盆地走滑断裂构造变形特征及油气意义: 以顺北地区1号和5号断裂为例. 石油学报, 42(7): 906-923. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107007.htm
      刘宝增, 2020. 塔里木盆地顺北地区油气差异聚集主控因素分析——以顺北1号、顺北5号走滑断裂带为例. 中国石油勘探, 25(3): 83-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003008.htm
      吕文雅, 曾联波, 陈双全, 等, 2021. 致密低渗透砂岩储层多尺度天然裂缝表征方法. 地质论评, 67(2): 543-556. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202102024.htm
      马庆佑, 曹自成, 蒋华山, 等, 2020. 塔河‒顺北地区走滑断裂带的通源性及其与油气富集的关系. 海相油气地质, 25(4): 327-334. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202004005.htm
      漆立新, 2016. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义. 中国石油勘探, 21(3): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603004.htm
      漆立新, 2020. 塔里木盆地顺北超深断溶体油藏特征与启示. 中国石油勘探, 25(1): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001010.htm
      王斌, 杨毅, 曹自成, 等, 2021. 塔河油田中下奥陶统储层裂缝方解石脉U-Pb同位素年龄及油气地质意义. 地球科学, 46(9): 3203-3216. doi: 10.3799/dqkx.2020.352
      王伟, 付豪, 邢林啸, 等, 2021. 基于扩展有限元法的碳酸盐岩地热储层岩体裂缝扩展行为. 地球科学, 46(10): 3509-3519. doi: 10.3799/dqkx.2021.005
      王文博, 傅恒, 闾廖然, 等, 2021. 塔里木盆地顺北地区奥陶系碳酸盐岩层序模式及其意义. 沉积学报, 39(6): 1451-1465. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202106010.htm
      王玉伟, 陈红汉, 曹自成, 等, 2019. 塔里木盆地塔中北坡奥陶系微生物碳酸盐岩储层形成机制与评价. 地球科学, 44(2): 559-571. doi: 10.3799/dqkx.2018.121
      邬光辉, 马兵山, 韩剑发, 等, 2021. 塔里木克拉通盆地中部走滑断裂形成与发育机制. 石油勘探与开发, 48(3): 510-520. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103008.htm
      徐豪, 郭小文, 曹自成, 等, 2021. 运用方解石中流体包裹体最小均一温度确定塔河油田奥陶系油气成藏时间: 来自激光原位方解石U-Pb年龄的证据. 地球科学, 46(10): 3535-3548. doi: 10.3799/dqkx.2020.376
      杨培星, 田景春, 张翔, 2019. 塔里木盆地顺北地区三叠系沉积相及沉积模式研究. 矿物岩石, 39(4): 86-96. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201904011.htm
      杨旭, 申文静, 2021. 海拉尔盆地红旗凹陷构造层特征及构造演化. 大庆石油地质与开发, 40(6): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202106003.htm
      杨毅, 王斌, 曹自成, 等, 2021. 塔里木盆地顺托果勒低隆起北部中下奥陶统储层方解石脉成因及形成时间. 地球科学, 46(6): 2246-2257. doi: 10.3799/dqkx.2020.200
      云露, 2021a. 顺北地区奥陶系超深断溶体油气成藏条件. 新疆石油地质, 42(2): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102002.htm
      云露, 2021b. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义. 中国石油勘探, 26(3): 41-52. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202103004.htm
      曾联波, 2008. 低渗透砂岩储层裂缝的形成与分布. 北京: 科学出版社, 101-105.
      曾联波, 吕鹏, 屈雪峰, 等, 2020. 致密低渗透储层多尺度裂缝及其形成地质条件. 石油与天然气地质, 41(3): 449-454. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003002.htm
      张鹏, 侯贵廷, 潘文庆, 等, 2013. 塔里木盆地北缘碳酸盐岩野外构造裂缝发育规律研究. 高校地质学报, 19(4): 580-587. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201304003.htm
      赵乐强, 冯建伟, 2018. 岩石力学层与构造裂缝发育关系研究. 山东科技大学学报(自然科学版), 37(1): 35-46. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201801004.htm
      赵锐, 赵腾, 李慧莉, 等, 2019. 塔里木盆地顺托果勒地区中下奥陶统鹰山组与一间房组沉积相与旋回地层. 东北石油大学学报, 43(4): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201904001.htm
      周鼎武, 李文厚, 张云翔, 等, 2002. 区域地质综合研究的方法与实践: 鄂尔多斯盆地-秦岭造山带地质野外实习指导书. 北京: 科学出版社, 180-182.
    • 加载中
    图(14) / 表(3)
    计量
    • 文章访问数:  890
    • HTML全文浏览量:  749
    • PDF下载量:  149
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-01-19
    • 刊出日期:  2023-07-25

    目录

      /

      返回文章
      返回