Triassic Compressional-Extensional Transition in Mengshan Area, NW Jiangxi Province, and Its Ore-Controlling Significance for Wollastonite Deposit
-
摘要: 蒙山位于萍乐坳陷带西段的中部,三叠纪经历了较为复杂的构造‒岩浆过程,发育石竹山超大型硅灰石矿床.为了揭示该地区硅灰石矿的构造控矿机理,本研究基于野外宏观构造变形与室内显微构造特征的构造解析结合方解石EBSD分析,对该地区不同期次岩石变形特征进行了详细梳理.研究结果表明,蒙山地区三叠纪经历了两期构造变形事件,指示由挤压到伸展的构造体制转换:第一期(D1)为向SE低角度韧性逆冲推覆,伴随强烈的糜棱岩化;第二期(D2)为与蒙山花岗岩侵入相关的向SSW的伸展滑脱变形,变形灰岩发生大理岩化并伴有硅灰石矿化.微观构造分析表明,两期构造变形的方解石的颗粒大小和形态优选方位呈现出截然不同的特点.电子背散射衍射(EBSD)结果显示:D1变形方解石晶的C轴极密发育在Z轴附近,呈单斜对称指示向SE的逆冲型剪切;D2变形方解石发育多个随机分布的C轴极密,其经历同构造变质重结晶,重置了D1的微观构造变形.晚三叠世蒙山岩体侵入D1变形带,指示D1变形时限早于蒙山岩体的侵位时间;D2韧性滑脱变形和硅灰石矿化均受蒙山岩体侵位的伸展构造‒热体制控制,伸展滑脱导致层带状富矿化.D1变形与赣西北地区普遍存在的NW-SE向强烈挤压作用有关,受控于中三叠世华南与华北板块碰撞;D2变形则是在先期挤压变形基础上,于晚三叠世发生岩石圈伸展调整的结果.Abstract: Mengshan, located in the middle of the western Pingxiang-Leping depression zone, have experienced complex tectono-magmatic processes during the Triassic, forming the Shizhushan giant wollastonite deposit. In order to reveal the structural ore-controlling mechanism of wollastonite deposit, in this study it probes into the rock deformation characteristics of different periods in detail based on the structural analysis of macroscopic and microscopic structural and the electron backscatter diffraction (EBSD) analysis of calcite. The results show that Mengshan experienced two tectonic deformation events during Triassic, indicating a tectonic regime transition from compression to extension. The D1 event is characterized by low angle ductile thrust with top-to-the-SE, accompanied by intense calci-mylonitization. The D2 event is a top-to-the-SSW extensional detachment related to the intrusion of the Mengshan granite. The deformed limestone is marmarosis and wollastonite mineralization. The microstructure analysis shows that the grain size and shape preferred orientation of calcite in the two deformed stages have different characteristics. EBSD results show that the D1 deformed calcite displays a wide c-axis maximum close to Z, indicating monoclinic symmetry and a top-to-the-SE thrust shearing. The calcite of D2 event developed randomly oriented c-axis poles, and underwent syn-tectonic recrystallization which resulted in resetting the microstructures of D1 event. The Late Triassic Mengshan granite intruded into the first deformation zone as a post-kinematic product in an extensional tectonic background that provides time constraints for the deformations. The D2 ductile detachment and wollastonite mineralization were both controlled by the extensional tectono-thermal system of the Mengshan granite. The extensional detachment leads to layered rich mineralization. The D1 deformation can be related to the strong NW-SE compression widely developed in the Northwest Jiangxi Province, which was controlled by the collision of the South China block and North China block during the Middle Triassic. The D2 deformation is the result of lithospheric extension adjustment in the Late Triassic on the basis of previous compressional deformation.
-
图 1 华南板块构造示意(a)(据Qiu et al., 2014改)和萍乐坳陷带西段地质构造简图(b)
1.第四系卵石、泥沙质沉积,河湖‒沼泽碎屑泥炭建造;2.上白垩统河湖红色碎屑岩建造;3.上三叠统‒下侏罗统海陆交互含煤建造;4.上二叠统‒中三叠统海相沙泥岩‒碳酸盐建造;5.上石炭统‒中二叠统碳酸盐岩建造;6.上泥盆统‒下石炭统滨浅海碎屑岩建造;7.新元古界泥沙质浊积建造;8.侏罗纪花岗岩;9.三叠纪花岗岩;10.志留纪花岗岩;11.新元古代花岗岩;12.角度不整合界线及构造层界线;13.韧性剪切带;14.推覆断层;15.滑(脱)覆断层;16.印支期向斜构造;17.印支期背斜构造
Fig. 1. Tectonic sketch map of the South China block (a) (modified from Qiu et al., 2014) and geological map of the western Pingxiang-Leping depression (b)
图 2 蒙山地区地质图(a)和石竹山矿区地质剖面(b) (据Yang et al., 2021改)
Fig. 2. Geological map of the Mengshan district (a) and geological section of the Shizhushan mining area (b) (modified from Yang et al., 2021)
图 4 伸展构造宏观变形特征
a. 蒙山岩体南侧茅口组中韧性滑脱变形导致的硅质条带的不连续流动构造;b.层带状硅灰石矿化带,面理倾向南;c.蒙山岩体与南侧茅口组低角度正断层边界;d.韧性滑脱变形塑性流动构造;e.硅灰石大理岩矿体卷入滑脱型塑性流变;f.蒙山岩体断层边界处断层角砾岩;g.方解石重结晶形成粒度变粗的条带,反映同构造的重结晶;h.韧性改造的硅灰石团块;i.晚期断层角砾岩,断层角砾主要为大理岩;j.构造剖面图C-C’;k.伸展滑脱面理与线理赤平投影
Fig. 4. Macroscopic deformation characteristics of the D2 extensional structures
-
Austin, N., Evans, B., Rybacki, E., et al., 2014. Strength Evolution and the Development of Crystallographic Preferred Orientation during Deformation of Two-Phase Marbles. Tectonophysics, 631(14-28): 14-28. https://doi.org/10.1016/j.tecto.2014.04.018 Barnhoorn, A., Bystricky, M., Burlini, L., et al., 2004. The Role of Recrystallisation on the Deformation Behaviour of Calcite Rocks: Large Strain Torsion Experiments on Carrara Marble. Journal of Structural Geology, 26(5): 885-903. https://doi.org/10.1016/j.jsg.2003.11.024 Barnhoorn, A., Bystricky, M., Burlini, L., et al., 2005. Post-Deformational Annealing of Calcite Rocks. Tectonophysics, 403(1-4): 167-191. https://doi.org/10.1016/j.tecto.2005.04.008 Bestmann, M., Kunze, K., Matthews, A., 2000. Evolution of a Calcite Marble Shear Zone Complex on Thassos Island, Greece: Microstructural and Textural Fabrics and Their Kinematic Significance. Journal of Structural Geology, 22(11-12): 1789-1807. https://doi.org/10.1016/S0191-8141(0)00112-7 Bestmann, M., Prior, D. J., Grasemann, B., 2006. Characterisation of Deformation and Flow Mechanics around Porphyroclasts in a Calcite Marble Ultramylonite by Means of EBSD Analysis. Tectonophysics, 413(3-4): 185-200. https://doi.org/10.1016/j.tecto.2005.10.044 Cao, S. Y., Liu, J. L., Hu, L., 2007. Micro- and Submicrostructural Evidence for High Temperature Brittle Ductile Transition Deformation of Hornblende: Case Study of High-Grade Mylonites from Diancangshan, Western Yunnan. Science in China (Series D: Earth Sciences), 37(8): 1004-1013 (in Chinese). Chen, S. B., Chen Y., 2018. Geological Characteristics of Wollastonite Mineralization and Prospecting Direction in Mengshan Area. Jiangxi Coal Science & Technology, 4: 8-13 (in Chinese with English abstract). Chu, Y., Lin, W., 2014. Phanerozoic Polyorogenic Deformation in Southern Jiuling Massif, Northern South China Block: Constraints from Structural Analysis and Geochronology. Journal of Asian Earth Sciences, 86: 117-130. https://doi.org/10.1016/j.jseaes.2013.05.019 Dietrich, D., Song, H. L., Hancock, P. L., et al., 1984. Calcite Fabrics in a Natural Shear Environment, the Helvetic Nappes of Western Switzerland. Journal of Structural Geology, 6(1-2): 19-32. https://doi.org/10.1016/0191-8141(84)90080-4 Dong, Y. P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1-40. https://doi.org/10.1016/j.gr.2015.06.009 Faure, M., Lepvrier, C., Nguyen, V. V., et al., 2014. The South China Block-Indochina Collision: Where, When, and How?. Journal of Asian Earth Sciences, 79: 260-274. https://doi.org/10.1016/j.jseaes.2013.09.022 Faure, M., Sun, Y., Shu, L. S., et al., 1996. Extensional Tectonics within a Subduction-Type Orogen; The Case Study of the Wugongshan Dome (Jiangxi Province, Southeastern China). Tectonophysics, 263(1-4): 77-106. https://doi.org/10.1016/S0040-1951(97)81487-4 Ferrill, D. A., Morris, A. P., Evans, M. A., et al., 2004. Calcite Twin Morphology: A Low-Temperature Deformation Geothermometer. Journal of Structural Geology, 26(8): 1521-1529. https://doi.org/10.1016/j.jsg.2003.11.028 Gao, P., Zheng, Y. F., Zhao, Z. F., 2017. Triassic Granites in South China: A Geochemical Perspective on Their Characteristics, Petrogenesis, and Tectonic Significance. Earth-Science Reviews, 173: 266-294. https://doi.org/10.1016/j.earscirev.2017.07.016 Gerogiannis, N., Aravadinou, E., Chatzaras, V., et al., 2021. Calcite Pseudomorphs after Aragonite: A Tool to Unravel the Structural History of High-Pressure Marbles (Evia Island, Greece). Journal of Structural Geology, 148: 104373. https://doi.org/10.1016/j.jsg.2021.104373 Ghosh, B., Das, P., Sarkar, D. P., et al., 2018. Coalescing Microstructure and Fabric Transitions with AMS Data in Deformed Limestone: Implications on Deformation Kinematics. Journal of Structural Geology, 114: 294-309. https://doi.org/10.1016/j.jsg.2017.12.016 Herwegh, M., Kunze, K., 2002. The Influence of Nano-Scale Second-Phase Particles on Deformation of Fine Grained Calcite Mylonites. Journal of Structural Geology, 24(9): 1463-1478. https://doi.org/10.1016/S0191-8141(1)00144-4 Hu, R. Z., Mao, J. W., Fan, W. M., et al., 2010. Some Scientific Questions on the Intra-Continental Metallogeny in the South China Continent. Earth Science Frontiers, 17(2): 13-26 (in Chinese with English abstract). Huo, H. L., Zhang, D., Chen, Z. L., et al., 2016. Deformation Characteristics and Geochronological Constraints of Mesozoic Nappe Structure in Jingdezhen Area, Northeastern Jiangxi. Journal of Geomechanics, 24(1): 9-24 (in Chinese with English abstract). Jiang, Y. H., Liu, Y. C., Han, B. N., et al., 2022. Contrasting Origins of A-Type Granites in the Late Triassic Early Jurassic Pitou Complex, Southern Jiangxi Province: Implications for Mesozoic Tectonic Evolution in South China. Lithos, 426-427: 106794. https://doi.org/10.1016/j.lithos.2022.106794 Li, C. L., Wang, Z. X., Lü, Q. T., et al., 2021. Mesozoic Tectonic Evolution of the Eastern South China Block: A Review on the Synthesis of the Regional Deformation and Magmatism. Ore Geology Reviews, 131: 104028. https://doi.org/10.1016/j.oregeorev.2021.104028 Li, J. H., Dong, S. W., Zhang, Y. Q., et al., 2016. New Insights into Phanerozoic Tectonics of South China: Part 1, Polyphase Deformation in the Jiuling and Lianyunshan Domains of the Central Jiangnan Orogen. Journal of Geophysical Research: Solid Earth, 121(4): 3048-3080. https://doi.org/10.1002/2015JB012778 Li, W. D., Qu, Z. B., Cui, J. C., et al., 2019. Analysis of Metallogenic Geological Conditions and Metallogenic Regularity of Wollastonite Deposits in Jilin Province. Jilin Geology, 38(3): 46-48 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-2427.2019.03.011 Liang, X. Q., Li, X. H., Qiu, Y. X., et al., 2005. Indosinian Collisional Orogeny: Evidence from Structural and Sedimentary Geology in Shiwandashan Basin, South China. Geotectonica et Metallogenia, 29(1): 99-112 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2005.01.014 Lin, W., Faure, M., Sun, Y., et al., 2001. Compression to Extension Switch during the Middle Triassic Orogeny of Eastern China; The Case Study of the Jiulingshan Massif in the Southern Foreland of the Dabieshan. Journal of Asian Earth Sciences, 20(1): 31-43. https://doi.org/10.1016/S1367-9120(01)00020-7 Liu, B., Wu, Q. H., Kong, H., et al., 2022. Spatiotemporal Distribution of Granites in Xitian Ore Field in Hunan and Its Tungsten-Tin Mineralization: Constraints from Zircon U-Pb Dating and Geochemical Characteristics. Earth Science, 47(1): 240-258 (in Chinese with English abstract). Liu, X. Y., 2003. Mesozoic-Cenozoic Tectonic Character and Its Geologieal Meaning in Pingxiang, Jiangxi Province. Geological Survey and Research, 4: 233-240 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-4135.2003.04.007 Liu, X. Y., Yang, X. H., Nie, L. M., et al., 2016. Basic Characteristics of the Magma Core Complex at Wugongshan, Jiangxi. Acta Geologica Sinica, 90(3): 468-474 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.03.004 Lou, F. S., Shen, W. Z., Wang, D. Z., et al., 2005. Zircon U-Pb Isotopic Chronology of the Wugongshan Dome Compound Granite in Jiangxi Province. Acta Geologica Sinica, 79(5): 636-644 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2005.05.008 Ma, Q. L., Yang, J. H., Du, Y. S., et al., 2021. Early Triassic Initial Collision between the North China and South China Blocks in the Eastern Qinling Orogenic Belt. Tectonophysics, 814: 228965. https://doi.org/10.1016/j.tecto.2021.228965 Mao, J. W., Cheng, Y. B., Chen, M. H., et al., 2013. Major Types and Time-Space Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Mineralium Deposita, 48(3): 267-294. https://doi.org/10.1007/s00126-012-0446-z Mao, J. W., Xie, G. Q., Guo, C. L., et al., 2008. Spatial Temporal Distribution of Mesozoic Ore Deposits in South China and Their Metallogenic Settings. Geological Journal of China Universities, 14(4): 510-526 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2008.04.005 Marcoux, É., Breillat, N., Guerrot, C., et al., 2019. Multi-isotopic Tracing (Mo, S, Pb, Re-Os) and Genesis of the Mo-W Azegour Skarn Deposit (High-Atlas, Morocco). Journal of African Earth Sciences, 155: 109-117. https://doi.org/10.1016/j.jafrearsci.2019.04.007 Marques, F. O., Machek, M., Roxerová, Z., et al., 2015. Mechanics, Microstructure and AMS Evolution of a Synthetic Porphyritic Calcite Aggregate Deformed in Torsion. Tectonophysics, 655: 41-57. https://doi.org/10.1016/j.tecto.2015.05.010 Molli, G., Conti, P., Giorgetti, G., et al., 2000. Microfabric Study on the Deformational and Thermal History of the Alpi Apuane Marbles (Carrara Marbles), Italy. Journal of Structural Geology, 22(11-12): 1809-1825. https://doi.org/10.1016/S0191-8141(00)00086-9 Negrini, M., Smith, S. A. F., Scott, J. M., et al., 2018. Microstructural and Rheological Evolution of Calcite Mylonites during Shear Zone Thinning: Constraints from the Mount Irene Shear Zone, Fiordland, New Zealand. Journal of Structural Geology, 106: 86-102. https://doi.org/10.1016/j.jsg.2017.11.013 Oesterling, N., Heilbronner, R., Stünitz, H., et al., 2007. Strain Dependent Variation of Microstructure and Texture in Naturally Deformed Carrara Marble. Journal of Structural Geology, 29(4): 681-696. https://doi.org/10.1016/j.jsg.2006.10.007 Piane, C. D., Burlini, L., Kunze, K., 2009. The Influence of Dolomite on the Plastic Flow of Calcite. Tectonophysics, 467(1-4): 145-166. https://doi.org/10.1016/j.tecto.2008.12.022 Pieri, M., Burlini, L., Kunze, K., et al., 2001. Rheological and Microstructural Evolution of Carrara Marble with High Shear Strain: Results from High Temperature Torsion Experiments. Journal of Structural Geology, 23(9): 1393-1413. https://doi.org/10.1016/S0191-8141(01)00006-2 Qiu, L., Yan, D. P., Zhou, M. F., et al., 2014. Geochronology and Geochemistry of the Late Triassic Longtan Pluton in South China: Termination of the Crustal Melting and Indosinian Orogenesis. International Journal of Earth Sciences, 103(3): 649-666. https://doi.org/10.1007/s00531-013-0996-z Romeo, I., Capote, R., Lunar, R., 2007. Crystallographic Preferred Orientations and Microstructure of a Variscan Marble Mylonite in the Ossa-Morena Zone (SW Iberia). Journal of Structural Geology, 29(8): 1353-1368. https://doi.org/10.1016/j.jsg.2007.05.004 Schmid, S. M., Panozzo, R., Bauer, S., 1987. Simple Shear Experiments on Calcite Rocks: Rheology and Microfabric. Journal of Structural Geology, 9(5): 747-778. https://doi.org/10.1016/0191-8141(87)90157-X Seaton, N. C. A., Whitney, D. L., Teyssier, C., et al., 2009. Recrystallization of High-Pressure Marble (Sivrihisar, Turkey). Tectonophysics, 479(3-4): 241-253. https://doi.org/10.1016/j.tecto.2009.08.015 Shi, W., Dong, S. W., Zhang, Y. Q., et al., 2015. The Typical Large-Scale Superposed Folds in the Central South China: Implications for Mesozoic Intracontinental Deformation of the South China Block. Tectonophysics, 664: 50-66. https://doi.org/10.1016/j.tecto.2015.08.039 Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2012.07.003 Shu, L. S., Guo, Z. L., Shi, Y. S., 1994. Kinematic Study on the Southern Marginal Fault Zone of the Jiuling Mountains, Jiangxi Province. Scientia Geologica Sinica, 3: 209-219 (in Chinese with English abstract). Shu, L. S., Sun, Y., Wang, D. Z., et al., 1998. Mesozoic Doming Extensional Tectonics of Wugongshan, South China. Science China Earth Sciences, 41(6): 601-608. https://doi.org/10.1007/BF02878742 Shu, L. S., Wang, D. Z., Shen W. Z, . 2000. Nd-Sr Isotopic Compositions of Granitic Rocks of the Mesozoic Metamorphic Core Complex in the Wugongshan Area, Jiangxi Province. Journal of Nanjing University (Natural Sciences), 36(3): 306-311 (in Chinese with English abstract). Shu, L. S., Yao, J. L., Wang, B., et al., 2021. Neoproterozoic Plate Tectonic Process and Phanerozoic Geodynamic Evolution of the South China Block. Earth-Science Reviews, 216: 103596. https://doi.org/10.1016/j.earscirev.2021.103596 Shu, L. S., Zhou, X. M., Deng, P., et al., 2009. Mesozoic Tectonic Evolution of the Southeast China Block: New Insights from Basin Analysis. Journal of Asian Earth Sciences, 34(3): 376-391. https://doi.org/10.1016/j.jseaes.2008.06.004 Singleton, J. S., Wong, M. S., Johnston, S. M., 2018. The Role of Calcite-Rich Metasedimentary Mylonites in Localizing Detachment Fault Strain and Influencing the Structural Evolution of the Buckskin-Rawhide Metamorphic Core Complex, West-Central Arizona. Lithosphere, 10(2): 172-193. https://doi.org/10.1130/L699.1 Song, H. L., Zhu, Z., Yang, D. P., 2003. Is the Pingle Depression a Ramp Faults Zone or a Huge Tectonic Window? Geological Bulletin of China, 22(2): 124-129 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2003.02.007 Song, M. J., Shu, L. S., Santosh, M., 2017. Early Mesozoic Intracontinental Orogeny and Stress Transmission in South China: Evidence from Triassic Peraluminous Granites. Journal of the Geological Society, 174(3): 591-607. https://doi.org/10.1144/jgs2016-098 Spanos, D., Xypolias, P., Koukouvelas, I., 2015. Vorticity Analysis in Calcite Tectonites: An Example from the Attico-Cycladic Massif (Attica, Greece). Journal of Structural Geology, 80: 120-132. https://doi.org/10.1016/j.jsg.2015.08.014 Sun, J. D., Li, H. L., Lu, F., et al., 2022. Geochemistry, Zircon U-Pb Ages, and Hf Isotopes of the Mengshan Rock Mass in Western Jiangxi Province and Their Geologic Implications. Geology and Exploration, 58(1): 96-106 (in Chinese with English abstract). Trullenque, G., Kunze, K., Heilbronner, R., et al., 2006. Microfabrics of Calcite Ultramylonites as Records of Coaxial and Non-Coaxial Deformation Kinematics: Examples from the Rocher De 1'yret Shear Zone (Western Alps). Tectonophysics, 424(1-2): 69-97. https://doi.org/10.1016/j.tecto.2006.06.004 Wang, D. Z., Shu, L. S., 2012. Late Mesozoic Basin and Range Tectonics and Related Magmatism in Southeast China. Geoscience Frontiers, 3(2): 109-124. https://doi.org/10.1016/j.gsf.2011.11.007 Wang, X. G., Hu, Z. H., Yu, X., et al., 2019. Geological Characteristics and Prospecting Significance of the Shizhushan Superlarge Wollastonite Deposit in Mengshan, West Jiangxi Province. Acta Geoscientica Sinica, 40(2): 259-264 (in Chinese with English abstract). Wang, X. Y., Zeng, C., Wang, X. L., et al., 2013. Metamorphism-Magmatism and Evolution of the Wugong Mt Thermal Dome, Jiangxi. Geology of Anhui, 23(4): 244-249 (in Chinese with English abstract). Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019 Wang, Y. J., Wang, Y., Zhang, Y. Z., et al., 2021. Triassic Two-Stage Intra-Continental Orogensis of the South China Block, Driven by Paleotethyan Closure and Interactions with Adjoining Blocks. Journal of Asian Earth Sciences, 206: 104648. https://doi.org/10.1016/j.jseaes.2020.104648 Wang, Y. J., Wang, Y., Zhang, Y. Z., et al., 2022. Indosinian Deformation in the South China Block and Interaction with the Adjoining Blocks. Geotectonica et Metallogenia, 46(3): 399-415 (in Chinese with English abstract). Xia, Y., Xu, X. H., 2020. The Epilogue of Paleo-Tethyan Tectonics in the South China Block: Insights from the Triassic Aluminous A-Type Granitic and Bimodal Magmatism. Journal of Asian Earth Sciences, 190: 104129. https://doi.org/10.1016/j.jseaes.2019.104129 Xu, H. J., Wang G. Q., Shu, T., et al., 2021. Tectonic Pattern and Genetic Mechanism at Nanguan Area, West Hill of Beijing. Earth Science, 46(5): 1657-1676 (in Chinese with English abstract). Xu, X. B., Zhani, Y. Q., Jia, D., et al., 2009. Early Mesozoic Geotectonic Processes in South China. Geology in China, 36(3): 573-593 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2009.03.007 Yang, Y. S., Pan, X. F., Hou, Z. Q., et al., 2021. Petrogenesis, Redox State, and Mineralization Potential of Triassic Granitoids in the Mengshan District, South China. Frontiers in Earth Science, 9: 657618. https://doi.org/10.3389/feart.2021.657618 Ye, Y. F., Zhang, H. H., 2022. Study on Rock Petrogenesis and Tectomic Background of Mengshan Rock Mass in Western Jiangxi Province. Jiangxi Coal Science & Technology, 1: 125-129 (in Chinese with English abstract). You, Z. Y., Zeng, S. M., Liu, J. Y., 2009. Analysis on Extensional Tectonics System in the West of Pingle down Warping Region. Journal of East China Institute of Technology (Natural Science Edition), 32(2): 123-129 (in Chinese with English abstract). Yu, Y. S., Dai, P. Y., Zhou, Y., et al., 2020. Petrogenesis and Geodynamic Implications of the Late Triassic Bojites in Yajiangqiao Area, Hunan Province, South China. Island Arc, 29(1): e12370. https://doi.org/10.1111/iar.12370 Zhang, X. C., Wang, Y. J., Harris, R., et al., 2019. Discovery of Middle-Late Devonian and Early Permian Magmatic Events in East Asia and Their Implication for the Indosinian Orogeny in South China: Insights from the Sedimentary Record. GSA Bulletin, 131(9-10): 1519-1536. https://doi.org/10.1130/B35032.1 Zhang, Y. Q., Dong, S. W., Li, J. H., et al., 2012. The New Progress in the Study of Mesozoic Tectonics of South China. Acta Geoscientica Sinica, 33(3): 257-279 (in Chinese with English abstract). Zhang, Y. Q., Xu, X. B., Jia, D., et al., 2009. Deformation Record of the Change from Indosinian Collision Related Tectonic System to Yanshanian Subduction-Related Tectonic System in South China during the Early Mesozoic. Earth Science Frontiers, 16(1): 234-247 (in Chinese with English abstract). Zhao, K. D., Li, J. R., Ling, H. F., et al., 2013. Geochronology, Geochemistry and Petrogenesis of Two Stage Indosinian Granites from the Xiajiang Uranium Ore Deposit, Jiangxi Province: Implication for Indosinian Tectonics and Genesis of Uranium-Bearing Granites in South China. Acta Petrologica Sinica, 29(12): 4349-4361 (in Chinese with English abstract). Zhong, N. C., 1992. Nappe Structure in the Pingxiang-Leping Area, Jiangxi. Regional Geology of China, 19 (1): 1-13 (in Chinese with English abstract). Zhong, Y. F., Ma, C. Q., She, Z. B., et al., 2011. U-Pb-Hf Isotopes of Zircons, Geochemistry and Genesis of Mengshan Granitoids in Northwestern Jiangxi Province. Earth Science, 36(4): 703-720 (in Chinese with English abstract). Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004 曹淑云, 刘俊来, 胡玲, 2007. 角闪石高温脆‒韧性转变变形的显微与亚微构造证据‒以滇西点苍山深变质剪切糜棱岩为例. 中国科学(D辑: 地球科学), 37(8): 1004-1013. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200708002.htm 陈四宝, 陈铖, 2018. 蒙山地区硅灰石成矿地质特征及找矿方向. 江西煤炭科技, 4: 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JXMT201804004.htm 胡瑞忠, 毛景文, 范蔚茗, 等, 2010. 华南陆块陆内成矿作用的一些科学问题. 地学前缘, 17(2): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201002006.htm 霍海龙, 张达, 陈正乐, 等, 2018. 江西景德镇地区中生代推覆构造变形特征与年代学约束. 地质力学学报, 24(1): 9-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201801003.htm 李望东, 曲召波, 崔景臣, 等, 2019. 吉林省硅灰石矿床成矿地质条件及成矿规律分析. 吉林地质, 38(3): 46-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ201903011.htm 梁新权, 李献华, 丘元禧, 等, 2005. 华南印支期碰撞造山‒十万大山盆地构造和沉积学证据. 大地构造与成矿学, 29(1): 99-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK20050100D.htm 刘飚, 吴堑虹, 孔华, 等, 2022. 湖南锡田矿田花岗岩时空分布与钨锡成矿关系: 来自锆石U-Pb年代学与岩石地球化学的约束. 地球科学, 47(1): 240-258. doi: 10.3799/dqkx.2021.200 刘细元, 2003. 江西萍乡一带中‒新生代构造特征及其意义. 地质调查与研究, 4: 233-240. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200304007.htm 刘细元, 杨细浩, 聂龙敏, 等, 2016. 江西武功山岩浆核杂岩基本特征. 地质学报, 90(3) : 468-474. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201603004.htm 楼法生, 沈渭洲, 王德滋, 等, 2005. 江西武功山穹隆复式花岗岩的锆石U-Pb年代学研究. 地质学报, 79(5): 636-644. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200505008.htm 毛景文, 谢桂青, 郭春丽, 等, 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804007.htm 舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm 舒良树, 郭令智, 施央申, 等, 1994. 九岭山南缘断裂带运动学研究. 地质科学, 3: 209-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX403.000.htm 舒良树, 王德滋, 沈渭洲, 2000. 江西武功山中生代变质核杂岩的花岗岩类Nd-Sr同位素研究. 南京大学学报(自然科学版), 36(3): 306-311. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ200003005.htm 宋鸿林, 朱忠, 颜丹平, 2003. 赣北萍乐拗陷是对冲构造还是巨型构造窗? 地质通报, 22(2): 124-129. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200302006.htm 孙建东, 李海立, 陆凡, 等, 2022. 赣西蒙山岩体地球化学、锆石U-Pb年龄、Hf同位素特征及地质意义. 地质与勘探, 58(1): 96-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202201009.htm 王先广, 胡正华, 余希, 等, 2019. 赣西蒙山地区石竹山超大型硅灰石矿床地质特征及找矿意义. 地球学报, 40(2): 259-264. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201902002.htm 王晓颖, 曾超, 王雪莲, 等, 2013. 江西武功山热穹隆变质‒岩浆作用及演化. 安徽地质, 23(4): 244-249. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ201304003.htm 王岳军, 王洋, 张玉芝, 等, 2022. 华南印支期变形格局及多陆块围限模型. 大地构造与成矿学, 46(3): 399-415. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202203001.htm 续海金, 王国庆, 舒坦, 等, 2021. 北京南观地区构造组合特征及成因机制. 地球科学, 46(5): 1657-1676. doi: 10.3799/dqkx.2020.147 徐先兵, 张岳桥, 贾东, 等, 2009. 华南早中生代大地构造过程. 中国地质, 36(3): 573-593. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200903009.htm 叶永芳, 张缓缓, 2022. 赣西蒙山岩体岩石成因及其构造背景研究. 江西煤炭科技, 1: 125-129. https://www.cnki.com.cn/Article/CJFDTOTAL-JXMT202201042.htm 游正义, 曾书明, 刘金元, 2009. 萍乐坳陷带西段伸展构造体系浅析. 东华理工大学学报(自然科学版), 32(2): 123-129. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ200902005.htm 张岳桥, 董树文, 李建华, 等, 2012. 华南中生代大地构造研究新进展. 地球学报, 33(3): 257-279. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201203001.htm 张岳桥, 徐先兵, 贾东, 等, 2009. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录. 地学前缘, 16(1): 234-247. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200901033.htm 赵葵东, 李吉人, 凌洪飞, 等, 2013. 江西省峡江铀矿床两期印支期花岗岩的年代学、岩石地球化学和岩石成因——对华南印支期构造背景和产铀花岗岩成因的指示. 岩石学报, 29(12): 4349-4361. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201312020.htm 钟南昌, 1992. 江西萍乡‒乐平地区推覆构造. 中国区域地质, 1: 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD199201000.htm 钟玉芳, 马昌前, 佘振兵, 等, 2011. 赣西北蒙山岩体的锆石U-Pb-Hf、地球化学特征及成因. 地球科学, 36(4): 703-720. doi: 10.3799/dqkx.2011.071 -