• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    四川盆地中部高石梯-磨溪地区FI9走滑断裂带构造特征与演化

    鲁国 田方磊 何登发 刘欢 赵小辉

    鲁国, 田方磊, 何登发, 刘欢, 赵小辉, 2023. 四川盆地中部高石梯-磨溪地区FI9走滑断裂带构造特征与演化. 地球科学, 48(6): 2238-2253. doi: 10.3799/dqkx.2022.505
    引用本文: 鲁国, 田方磊, 何登发, 刘欢, 赵小辉, 2023. 四川盆地中部高石梯-磨溪地区FI9走滑断裂带构造特征与演化. 地球科学, 48(6): 2238-2253. doi: 10.3799/dqkx.2022.505
    Lu Guo, Tian Fanglei, He Dengfa, Liu Huan, Zhao Xiaohui, 2023. Structural Characteristics and Evolution of No.9 Strike-Slip Fault Zone in Gaoshiti-Moxi Area in Central Sichuan Basin. Earth Science, 48(6): 2238-2253. doi: 10.3799/dqkx.2022.505
    Citation: Lu Guo, Tian Fanglei, He Dengfa, Liu Huan, Zhao Xiaohui, 2023. Structural Characteristics and Evolution of No.9 Strike-Slip Fault Zone in Gaoshiti-Moxi Area in Central Sichuan Basin. Earth Science, 48(6): 2238-2253. doi: 10.3799/dqkx.2022.505

    四川盆地中部高石梯-磨溪地区FI9走滑断裂带构造特征与演化

    doi: 10.3799/dqkx.2022.505
    基金项目: 

    三大克拉通位置的恢复复原与相互关系及裂解-聚合过程、构造热体制项目 U19B6003-01-01

    详细信息
      作者简介:

      鲁国(1996-),男,博士研究生,矿产普查与勘探专业,从事含油气盆地构造分析研究. ORCID:0000-0002-2515-3551. E-mail:chowlg@163.com

      通讯作者:

      何登发,E-mail: hedengfa282@263.net

    • 中图分类号: P54

    Structural Characteristics and Evolution of No.9 Strike-Slip Fault Zone in Gaoshiti-Moxi Area in Central Sichuan Basin

    • 摘要: 四川盆地中部高石梯-磨溪地区已识别出多组走滑断裂,为深化川中地区走滑断裂的构造几何学与运动学特征认识,基于川中地区深钻井及高精度三维地震资料,详细刻画高石梯-磨溪地区FI9走滑断裂带的构造几何学特征,建立断层三维构造模型.通过构造回剥反演重建其形成演化过程.FI9走滑断裂带整体为近东西走向,延伸长度60 km,表现为右行张扭性走滑断层.断裂带在平面上发育马尾构造、线性构造、斜列构造、叠覆构造,具有明显的分段特征;剖面上发育高陡线性构造、“Y”字形构造、花状构造等典型走滑构造样式.断裂带由7条主干断层组成,各断层片的规模、展布、倾向以及相互之间的连接方式等存在差异.FI9走滑断裂带在基底先存断裂的基础上,经历了3期构造叠加活动:晚震旦世-早加里东期的雏形发育阶段、晚加里东期-早海西期的强烈活动阶段以及晚二叠世的局部复活阶段.断层在元古界-下古生界中具有不同的生长模式:(1)断层由基底逐渐向上生长,上下地层断距一致或逐渐减小;(2)断层核部位于下古生界中,断层在活动期逐渐向上、下扩展,在下古生界中断距最大.

       

    • 图  1  研究区构造位置图(a)、断裂分布图(b)和地层柱状图(c)

      构造位置图修改自Lu et al.(2021),断裂分布图修改自管树巍等(2022)

      Fig.  1.  Structural location map of central Sichuan (a), faults distribution map of Gaoshiti-Moxi area (b) and stratigraphic histogram of central Sichuan (c)

      图  2  研究区北西-南东向AA'地震解释剖面(剖面位置见图 1b)

      Fig.  2.  NW-SE trending AA' seismic interpretation section of the study area (the section position is shown in Fig.1b)

      图  3  研究区灯影组底界T0图

      Fig.  3.  The time-domain map at base of the Sinian in study area

      图  4  FI9断裂带震旦系灯影组底相干属性图(a)及断裂分布与断距统计直方图(b)

      Fig.  4.  The coherent map of the Sinian Dengying Formation bottom of No.9 Fault (a), and fault distribution map and statistical histogram of fault throw (b)

      图  5  FI9走滑断裂带剖面构造特征(剖面位置见图 4b)

      Fig.  5.  Structural characteristics of No.9 strike-slip fault zone profile (the section position is shown in Fig.4b)

      图  6  研究区寒武系底相干属性图(a)及断裂分布与断距统计直方图(b)

      Fig.  6.  The coherent map of the Cambrian bottom of No.9 fault (a), and fault distribution map and statistical histogram of fault throw (b)

      图  7  研究区二叠系底相干属性图(a)及断裂分布与断距统计直方图(b)

      Fig.  7.  The coherent map of the Permian bottom of No.9 fault (a), and fault distribution map and statistical histogram of fault throw (b)

      图  8  FI9走滑断裂带三维构造模型北面侧视图(a)与俯视图(b)

      Fig.  8.  Three-dimensional structural model of No.9 strike-slip fault zone north side view (a) and top view (b)

      图  9  FI9走滑断裂带断距统计

      Fig.  9.  Statistics of fault throw of No.9 strike-slip fault zone

      图  10  剖面a构造回剥反演

      Fig.  10.  Structural back-stripping restoration of section a

      图  11  剖面f构造回剥反演

      Fig.  11.  Structural back-stripping restoration of section f

      图  12  剖面l构造回剥反演

      Fig.  12.  Structural back-stripping restoration of section l

      图  13  剖面p构造回剥反演

      Fig.  13.  Structural back-stripping restoration of section p

      图  14  F9走滑断裂带断层生长模式

      Fig.  14.  Fault growth pattern of No.9 strike-slip fault zone

    • Chen, Z. Q., 2013. On Five Crustal Movements and Petroleum Exploration in Lower Paleozoic, Sichuan Basin. China Petroleum Exploration, 18(5): 15-23(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2013.05.003
      Deng, L., Yan, Q. R., Song, B., et al., 2021. Sedimentary Responses to Rifting of the Upper Yangtze Block (Sichuan Basin Area) in the Middle-Late Permian. Acta Petrologica Sinica, 37(8): 2465-2482(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.08.13
      Deng, S., Liu, Y. Q., Liu, J., et al., 2021. Structural Styles and Evolution Models of Intracratonic Strike-Slip Faults and the Implications for Reservoir Exploration and Appraisal: A Case Study of the Shunbei Area, Tarim Basin. Geotectonica et Metallogenia, 45(6): 1111-1126(in Chinese with English abstract).
      Gu, Z. D., Wang, Z. C., 2014. The Discovery of Neoproterozoic Extensional Structures and Its Significance for Gas Exploration in the Central Sichuan Block, Sichuan Basin, South China. Science China (Earth Sciences), 44(10): 2210-2220(in Chinese).
      Guan, S. W., Wu, L., Ren, R., et al., 2017. Distribution and Petroleum Prospect of Precambrian Rifts in the Main Cratons, China. Acta Petrolei Sinica, 38(1): 9-22(in Chinese with English abstract). doi: 10.1038/aps.2016.94
      Guan, S. W., Liang, H., Jiang, H., et al., 2022. Characteristics and Evolution of the Main Strike-Slip Fault Belts of the Central Sichuan Basin, Southwestern China, and Associated Structures. Earth Science Frontiers, 29(6): 252-264(in Chinese with English abstract).
      He, D. F., 2022. Formation, Evolution, Geologic Framework and Hydrocarbon Occurrence of Multi-Cycle Superimposed Sedimentary Basins in China. Earth Science Frontiers, 29(6): 24-59(in Chinese with English abstract).
      Hu, J., Jia, D., Wei, G. Q., et al., 2022. Seismic Reflection Analysis of the Deeply Buried Neoproterozoic Rift Basin beneath Sichuan Basin, Southern China. AAPG Bulletin, 106(4): 759-782. https://doi.org/10.1306/10212120127
      Jia, C. Z., Ma, D. B., Yuan, J. Y., et al., 2021. Structural Characteristics, Formation & Evolution and Genetic Mechanisms of Strike-Slip Faults in the Tarim Basin. Natural Gas Industry, 41(8): 81-91(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.08.008
      Jiao, F. Z., Yang, Y., Ran, Q., et al., 2021. Distribution and Gas Exploration of the Strike-Slip Faults in the Central Sichuan Basin. Natural Gas Industry, 41(8): 92-101(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.08.009
      Li, S. B., 2017. Study on the Fracture Characteristics of Moxi-Gaoshiti Area in Sichuan Basin (Dissertation). China University of Petroleum, Dongying(in Chinese with English abstract).
      Li, L. S., Wang, Z. C., Xiao, A. C., et al., 2021. Rift System in Northern Yangtze Block during Nanhua Period: Implications from Gravity Anomaly and Sedimentology. Earth Science, 46(10): 3496-3508(in Chinese with English abstract).
      Li, R. N., Jiang, B., Zhou, S. Y., et al., 2021. Identification and Comprehensive Evaluation of Strike-Slip Faults in CN Shale Gas Area in Sichuan Basin. 11th Asia-Pacific Shale & Unconventional Resources Summit, Energy China Forum 2021, Shanghai (in Chinese).
      Li, W., Liu, J. J., Deng, S. H., et al., 2015. The Nature and Role of Late Sinian-Early Cambrian Tectonic Movement in Sichuan Basin and Its Adjacent Areas. Acta Petrolei Sinica, 36(5): 546-556, 563(in Chinese with English abstract).
      Liu, S. L., Cui, X. Z., Wang, C. L., et al., 2020. New Sedimentological and Geochronological Evidence for Mid-Neoproterozoic Rifting in Western Yangtze Block, South China. Earth Science, 45(8): 3082-3093(in Chinese with English abstract).
      Lu, G., Li, C. X., Li, W. Z., et al., 2021. Structural Geometry and Kinematics of Thrust Belts between the Dabashan and Eastern Sichuan Basin, South China Block: Constraints from (U-Th)/He Dating and Seismic Data. Geological Society of America Bulletin, 133(7-8): 1749-1764. https://doi.org/10.1130/b35781.1
      Lu, Y., Wang, S. X., Chen, S., et al., 2010. Computing Method about Intensity of Fault Activity and Its Application. Natural Gas Geoscience, 21(4): 612-616(in Chinese with English abstract).
      Ma, D. B., Wang, Z. C., Duan, S. F., et al., 2018. Strike-Slip Faults and Their Significance for Hydrocarbon Accumulation in Gaoshiti-Moxi Area, Sichuan Basin, SW China. Petroleum Exploration and Development, 45(5): 795-805(in Chinese with English abstract).
      Qiu, Z. H., Zhou, L., Chen, X., et al., 2022. Identification of Strike-Slip Faults in Gaoshiti-Moxi Area of Sichuan Basin. Oil Geophysical Prospecting, 57(3): 647-655, 494(in Chinese with English abstract).
      Shi, Y. L., Huang, W. H., Wei, Q., et al., 2016. Deep Rift Identification with MT Inversion Constrained by Shallow Logging and Seismic Data. Oil Geophysical Prospecting, 51(6): 1233-1240, 1054(in Chinese with English abstract).
      Song, Y. T., Wu, G. H., Tian, W. Z., et al., 2022. Application of Navigation Pyramid Technology in the Identification of Strike Slip Faults in Gaomo Area, Sichuan Basin. Chemical Engineering Design Communications, 48(1): 19-20, 174(in Chinese with English abstract).
      Wang, P., Zang, D. G., He, X. H., et al., 2020. Role and Effect of Strike-Slip Faults in Exploration of Lower Permian in Sichuan Basin. The 32nd National Natural Gas Academic Annual Conference, Chongqing, 305-312(in Chinese).
      Wang, X. L., Liang, H., Zhu, Y. D., et al., 2021. Distribution Characteristics of Strike-Slip Faults in Central-Southern Sichuan and Their Relationship with Hydrocarbon Accumulation. Geophysical Exploration Technology Symposium 2021 of China Petroleum Institute, Chengdu(in Chinese).
      Wang, Z. C., Shi, Y. Z., Wen, L., et al., 2022. Exploring the Potential of Oil and Gas Resources in Sichuan Basin with Super Basin Thinking. Petroleum Exploration and Development, 49(5): 847-858(in Chinese with English abstract).
      Wei, G. Q., Yang, W., Zhang, J., et al., 2018. The Pre-Sinian Rift in Central Sichuan Basin and Its Control on Hydrocarbon Accumulation in the Overlying Strata. Petroleum Exploration and Development, 45(2): 179-189(in Chinese with English abstract).
      Yang, Z. R., Wang, X. J., Feng, X. K., et al., 2014. Geological Research and Significance of a Rift Valley in the Presinian Period in Central Sichuan Basin. Natural Gas Industry, 34(3): 80-85(in Chinese).
      Zhang, C., Pan, L., Ma, B. S., et al., 2021. Strike-Slip Fault Identification Technique and Its Application in the Central Sichuan Basin. 2021 IFEDC Organizing Committee, Qingdao(in Chinese with English abstract).
      Zhang, X., Ran, Q., Chen, K., et al., 2022. The Controlling Effect of Strike-Slip Fault on Dengying Formation Reservoir and Gas Enrichment in Anyue Gas Field in Central Sichuan Basin. Natural Gas Geoscience, 33(6): 917-928(in Chinese with English abstract).
      Zhong, Y., Li, Y. L., Zhang, X. B., et al., 2013. Features of Extensional Structures in Pre-Sinian to Cambrian Strata, Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 40(5): 498-510(in Chinese with English abstract).
      Zhou, B. W., Chen, H. H., Yun, L., et al., 2022. The Relationship between Fault Displacement and Damage Zone Width of the Paleozoic Strike-Slip Faults in Shunbei Area, Tarim Basin. Earth Science, 47(2): 437-451(in Chinese with English abstract).
      陈宗清, 2013. 论四川盆地下古生界5次地壳运动与油气勘探. 中国石油勘探, 18(5): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201305003.htm
      邓莉, 闫全人, 宋博, 等, 2021. 中-晚二叠世上扬子地块(四川盆地区)裂解的沉积响应. 岩石学报, 37(8): 2465-2482. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202108013.htm
      邓尚, 刘雨晴, 刘军, 等, 2021. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例. 大地构造与成矿学, 45(6): 1111-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202106003.htm
      谷志东, 汪泽成, 2014. 四川盆地川中地块新元古代伸展构造的发现及其在天然气勘探中的意义. 中国科学: 地球科学, 44(10): 2210-2220. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201410010.htm
      管树巍, 吴林, 任荣, 等, 2017. 中国主要克拉通前寒武纪裂谷分布与油气勘探前景. 石油学报, 38(1): 9-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201701002.htm
      管树巍, 梁瀚, 姜华, 等, 2022. 四川盆地中部主干走滑断裂带及伴生构造特征与演化. 地学前缘, 29(6): 252-264. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202206017.htm
      何登发, 2022. 中国多旋回叠合沉积盆地的形成演化、地质结构与油气分布规律. 地学前缘, 29(6): 24-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202206003.htm
      贾承造, 马德波, 袁敬一, 等, 2021. 塔里木盆地走滑断裂构造特征、形成演化与成因机制. 天然气工业, 41(8): 81-91. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108012.htm
      焦方正, 杨雨, 冉崎, 等, 2021. 四川盆地中部地区走滑断层的分布与天然气勘探. 天然气工业, 41(8): 92-101. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108013.htm
      李树博, 2017. 四川盆地磨溪—高石梯地区断裂特征研究(硕士学位论文). 东营: 中国石油大学.
      李路顺, 汪泽成, 肖安成, 等, 2021. 扬子北缘南华纪裂谷系统: 基于重力异常及沉积学证据. 地球科学, 46(10): 3496-3508. doi: 10.3799/dqkx.2020.395
      李睿宁, 蒋波, 周诗雨, 等, 2021. 四川盆地CN页岩气区走滑断层特征识别及综合评价. 上海: ECF国际页岩气论坛2021第十一届亚太页岩油气暨非常规能源峰会.
      李伟, 刘静江, 邓胜徽, 等, 2015. 四川盆地及邻区震旦纪末—寒武纪早期构造运动性质与作用. 石油学报, 36(5): 546-556. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505003.htm
      刘石磊, 崔晓庄, 汪长林, 等, 2020. 扬子西缘新元古代中期裂谷作用: 来自年代学与沉积学的新证据. 地球科学, 45(8): 3082-3093. doi: 10.3799/dqkx.2020.145
      卢异, 王书香, 陈松, 等, 2010. 一种断裂活动强度计算方法及其应用. 天然气地球科学, 21(4): 612-616. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201004016.htm
      马德波, 汪泽成, 段书府, 等, 2018. 四川盆地高石梯—磨溪地区走滑断层构造特征与天然气成藏意义. 石油勘探与开发, 45(5): 795-805. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805006.htm
      邱泽华, 周路, 陈骁, 等, 2022. 四川盆地高石梯—磨溪地区走滑断层识别. 石油地球物理勘探, 57(3): 647-655, 494. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202203015.htm
      石艳玲, 黄文辉, 魏强, 等, 2016. 电磁井震约束反演识别川中深层裂谷. 石油地球物理勘探, 51(6): 1233-1240. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201606025.htm
      宋玉婷, 邬光辉, 田威振, 等, 2022. 导航金字塔技术在四川盆地高磨地区走滑断裂识别中的应用. 化工设计通讯, 48(1): 19-20, 174. https://www.cnki.com.cn/Article/CJFDTOTAL-WGTX202201009.htm
      王鹏, 臧殿光, 何小会, 等, 2020. 走滑断裂在四川盆地下二叠统勘探中的作用及效果. 重庆: 第32届全国天然气学术年会论文集, 305-312.
      王新岚, 梁虹, 朱亚东, 等, 2021. 川中-川南走滑断裂展布特征及与油气成藏关系. 成都: 中国石油学会2021年物探技术研讨会.
      汪泽成, 施亦做, 文龙, 等, 2022. 用超级盆地思维挖掘四川盆地油气资源潜力的探讨. 石油勘探与开发, 49(5): 847-858. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202205002.htm
      魏国齐, 杨威, 张健, 等, 2018. 四川盆地中部前震旦系裂谷及对上覆地层成藏的控制. 石油勘探与开发, 45(2): 179-189. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201802001.htm
      杨志如, 王学军, 冯许魁, 等, 2014. 川中地区前震旦系裂谷研究及其地质意义. 天然气工业, (3): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201403018.htm
      张晨, 潘力, 马兵山, 等, 2021. 四川盆地川中地区走滑断层识别技术与应用效果. 青岛: 2021油气田勘探与开发国际会议.
      张旋, 冉崎, 陈康, 等, 2022. 川中地区安岳气田走滑断裂对灯影组储层及含气富集的控制作用. 天然气地球科学, 33(6): 917-928. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202206006.htm
      钟勇, 李亚林, 张晓斌, 等, 2013. 四川盆地下组合张性构造特征. 成都理工大学学报(自然科学版), 40(5): 498-510. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201305002.htm
      周铂文, 陈红汉, 云露, 等, 2022. 塔里木盆地顺北地区下古生界走滑断裂带断距分段差异与断层宽度关系. 地球科学, 47(2): 437-451. doi: 10.3799/dqkx.2021.073
    • 加载中
    图(14)
    计量
    • 文章访问数:  613
    • HTML全文浏览量:  927
    • PDF下载量:  134
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-08-31
    • 刊出日期:  2023-06-25

    目录

      /

      返回文章
      返回