• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高钙酿酒沼渣制备生物炭吸附剂及其土壤改良性能

    贾晓凤 梁家伟 刘艳奇 买文宁 代吉华

    贾晓凤, 梁家伟, 刘艳奇, 买文宁, 代吉华, 2024. 高钙酿酒沼渣制备生物炭吸附剂及其土壤改良性能. 地球科学, 49(6): 2227-2241. doi: 10.3799/dqkx.2022.507
    引用本文: 贾晓凤, 梁家伟, 刘艳奇, 买文宁, 代吉华, 2024. 高钙酿酒沼渣制备生物炭吸附剂及其土壤改良性能. 地球科学, 49(6): 2227-2241. doi: 10.3799/dqkx.2022.507
    Jia Xiaofeng, Liang Jiawei, Liu Yanqi, Mai Wenning, Dai Jihua, 2024. Utilization of High Calcium Biogas Residue for Biochar Adsorbent Preparation and Its Soil Improvement Properties. Earth Science, 49(6): 2227-2241. doi: 10.3799/dqkx.2022.507
    Citation: Jia Xiaofeng, Liang Jiawei, Liu Yanqi, Mai Wenning, Dai Jihua, 2024. Utilization of High Calcium Biogas Residue for Biochar Adsorbent Preparation and Its Soil Improvement Properties. Earth Science, 49(6): 2227-2241. doi: 10.3799/dqkx.2022.507

    高钙酿酒沼渣制备生物炭吸附剂及其土壤改良性能

    doi: 10.3799/dqkx.2022.507
    基金项目: 

    国家自然科学基金面上项目 52370088

    河南省科技公关项目 222102320152

    河南省科技公关项目 222102320054

    河南省自然科学基金项目 232300420098

    详细信息
      作者简介:

      贾晓凤(1977-),副教授,主要研究方向为水污染控制理论与技术. E-mail:jxf001@zua.edu.cn

      通讯作者:

      代吉华, E-mail: water201@126.com

    • 中图分类号: X797

    Utilization of High Calcium Biogas Residue for Biochar Adsorbent Preparation and Its Soil Improvement Properties

    • 摘要: 为解决酿酒沼渣的资源化问题,采用热解法制备沼渣生物炭,通过批量吸附试验和盆栽试验考察其吸附性能和土壤改良性能.结果表明:700 ℃下限氧热解1.5 h所制备的高钙沼渣生物炭,初始pH为10时,吸附量最大,投加10 g·L-1的沼渣生物炭对实际废水COD、NH4+-N和TP的去除率分别可达45.29%、56.10%和86.33%,吸附符合拟一阶动力学模型和Langmuir等温吸附,属于物理吸附.吸附后生物炭表面C、N、P、O元素含量显著增加,出现新的N-H、P=O基团.当投加5%的吸附后生物炭时,土壤中速效磷、速效钾及有机质的含量均显著提高,小白菜生长得到促进.本研究探索了“一处理两用”的策略,为酿酒沼渣处置和资源回收提供了一种本土方法.

       

    • 图  1  BC-2 h在不同温度下热解对吸附效果的影响

      Fig.  1.  Effect on adsorption of BC-2 h in different temperatures

      图  2  BC-700 ℃不同热解时长对吸附效果的影响

      Fig.  2.  Effect on adsorption of BC-700 ℃ in different pyrolysis times

      图  3  不同初始pH下BC的吸附效果

      Fig.  3.  Effect on adsorption of BC in different pH

      图  4  不同BC投加量对吸附效果的影响

      Fig.  4.  Effect on adsorption of different BC dosages

      图  5  BC吸附前后有机废水三维荧光光谱分析图

      a.为吸附前;b.为吸附后

      Fig.  5.  Three-dimensional fluorescence spectra of organic wastewater

      图  6  BC吸附磷酸盐和NH4+-N的吸附动力学曲线

      Fig.  6.  Adsorption kinetics curves of phosphate and NH4+-N

      图  7  BC吸附磷酸盐和NH4+-N的吸附等温线

      Fig.  7.  Adsorption isotherm of BC adsorption for phosphate and NH4+-N

      图  8  吸附前BC(a~d)与吸附后BC(e~h)的电镜扫描图

      Fig.  8.  SEM of unabsorbed BC (a-d) and adsorbed BC (e-h)

      图  9  吸附前BC(a)与吸附后BC(b)的EDS分析图

      Fig.  9.  EDS of unabsorbed BC (a) and adsorbed BC (b)

      图  10  吸附前后BC红外光谱图

      Fig.  10.  FTIR spectra of BC

      图  11  吸附前后BC的XPS全谱扫描图

      Fig.  11.  XPS full spectrum scan of BC

      图  12  吸附前BC的XPS分谱扫描图

      Fig.  12.  XPS spectral scan of unabsorbed BC

      图  13  吸附后BC的XPS分谱扫描图

      Fig.  13.  XPS spectral scan of adsorbed BC

      图  14  吸附前后BC的XRD谱图

      Fig.  14.  XRD patterns of BC

      图  15  吸附前后BC对土壤pH的影响

      Fig.  15.  Effect of BC on soil pH

      图  16  吸附前后BC对土壤中碱解氮(a)和全氮(b)的影响

      Fig.  16.  Effects of BC on alkali-hydrolyzed nitrogen (a) and total nitrogen (b) in soil

      图  17  吸附前后BC对土壤中速效磷(a)和全磷(b)的影响

      Fig.  17.  Effect of BC on available phosphorus (a) and total phosphorus (b) in soil

      图  18  吸附前后BC对土壤中速效钾(a)和全钾(b)的影响

      Fig.  18.  Effect of BC on available potassium (a) and total potassium (b) in soil

      图  19  吸附前后BC对土壤中有机质含量的影响

      Fig.  19.  Effect of BC on the content of organic matter in soil

      图  20  施加吸附前后BC对小白菜鲜重的影响

      Fig.  20.  Effect of BC on fresh weight of Chinese cabbage

      图  21  生长时间为9 d时小白菜实拍

      Fig.  21.  The pictures of Chinese cabbage on day 9

      表  1  试验所用沼渣及废水水质

      Table  1.   Composition of brewing biogas residue and wastewater

      沼渣性质 含量 水质指标 指标范围
      灰分(%) 45.96 COD(mg·L-1) 340~370
      挥发性固体(%) 54.04 NH4+-N(mg·L-1) 9.5~10.8
      有机质(g·Kg-1) 418.30 TN(mg·L-1) 28~30
      硅(g·Kg-1) 4.00 TP(mg·L-1) 73~76
      钙(g·Kg-1) 11.80 pH 7.6~8.1
      镁(g·Kg-1) 14.72 温度(℃) 20~30
      pH 6.80 色度(倍数) 200
      下载: 导出CSV

      表  2  BC对磷酸盐和NH4+-N的吸附动力学模型拟合参数

      Table  2.   Fitting parameters of adsorption kinetics model for phosphate and NH4+-N

      模型 参数 磷酸盐 NH4+-N
      Pseudo-first-order
      $ {q}_{\mathrm{t}}={q}_{\mathrm{e}}(1-{\mathrm{e}}^{-{k}_{1}t}) $
      qe(mg·g-1) 2.430 0 0.350 9
      k1(min-1) 0.268 4 0.025 7
      R2 0.988 24 0.989 5
      Pseudo-second-order
      $ {q}_{\mathrm{t}}=\frac{{k}_{2}{q}_{\mathrm{e}}^{2}t}{1+{k}_{2}{q}_{\mathrm{e}}t} $
      qe(mg·g-1) 2.829 0 4.097 3
      k2(g·mg-1·min-1) 0.010 7 0.007 0
      R2 0.979 4 0.970 9
      下载: 导出CSV

      表  3  BC对磷酸盐和NH4+-N的吸附等温线拟合参数

      Table  3.   Fitting parameters of adsorption isotherm for phosphate and NH4+-N

      等温线模型 参数 磷酸盐 NH4+-N
      Langmuir
      $ {q}_{\mathrm{e}}=\frac{{q}_{\mathrm{m}\mathrm{a}\mathrm{x}}{K}_{\mathrm{L}}{C}_{\mathrm{e}}}{1+{K}_{\mathrm{L}}{C}_{\mathrm{e}}} $
      qmax (mg·g-1) 78.001 0 6.183 27
      KL (L·mg-1) 0.031 28 0.066 80
      R2 0.984 27 0.992 92
      Freundlich
      $ {q}_{\mathrm{e}}={K}_{\mathrm{F}}{C}_{\mathrm{e}}^{\frac{1}{n}} $
      KF (mg·g-1) 8.012 5 0.663 29
      1/n 0.434 5 0.538 66
      R2 0.958 39 0.977 06
      下载: 导出CSV

      表  4  吸附前后BC对小白菜出苗率、根冠比、比根长、比根表面积影响

      Table  4.   Effects of BC on seedling emergence rate, root shoot ratio, specific root length and specific root surface area

      处理 出苗率(%) 根冠比 比根长(m·g-1) 比根表面积(cm2·g-1)
      CK 80 0.040 42.93 304.75
      BC-1% 90 0.032 111.01 687.94
      BC-3% 90 0.035 99.16 534.47
      BC-5% 100 0.033 83.58 448.25
      吸附后BC-1% 100 0.044 82.06 538.29
      吸附后BC-3% 100 0.032 93.22 520.17
      吸附后BC-5% 100 0.003 150.25 956.48
      下载: 导出CSV
    • Baghoth, S. A., Sharma, S. K., Amy, G. L., 2011. Tracking Natural Organic Matter (NOM) in a Drinking Water Treatment Plant Using Fluorescence Excitation-Emission Matrices and PARAFAC. Water Research, 45(2): 797-809. https://doi.org/10.1016/j.watres.2010.09.005
      Bashir, S., Hussain, Q., Shaaban, M., et al., 2018. Efficiency and Surface Characterization of Different Plant Derived Biochar for Cadmium (Cd) Mobility, Bioaccessibility and Bioavailability to Chinese Cabbage in Highly Contaminated Soil. Chemosphere, 211: 632-639. https://doi.org/10.1016/j.chemosphere.2018.07.168
      Bijoy, B., Tawsif, R., Manish, S., et al., 2023. Phosphorus Adsorption Using Chemical and Metal Chloride Activated Biochars: Isotherms, Kinetics and Mechanism Study. Heliyon, 9(9): e19830. https://doi.org/10.1016/j.heliyon.2023.e19830
      Bogusz, A., Nowak, K., Stefaniuk, M., et al., 2017. Synthesis of Biochar from Residues after Biogas Production with Respect to Cadmium and Nickel Removal from Wastewater. Journal of Environmental Management, 201: 268-276. https://doi.org/10.1016/j.jenvman.2017.06.019
      Chang, S. L., Gao, X., Wei, J. Y., et al., 2024. Adsorption Characteristics of Calcium-Modified Corncob Biochar for Nitrogen and Phosphorus in Water. Chinese Journal of Environmental Engineering, 18(2): 481-491(in Chinese with English abstract).
      Chen, W., Westerhoff, P., Leenheer, J. A., et al., 2003. Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology, 37(24): 5701-5710. https://doi.org/10.1021/es034354c
      Cheng, N., Wang, B., Feng, Q. W., et al., 2021. Co-Adsorption Performance and Mechanism of Nitrogen and Phosphorus onto Eupatorium Adenophorum Biochar in Water. Bioresource Technology, 340: 125696. https://doi.org/10.1016/j.biortech.2021.125696
      Fan, S. S., Zhang, W. Y., Fan, X. R., et al., 2024. Hydrothermal Pretreatment and Pyrolytic Conversion of Biogas Residue into Biochar for Efficient Adsorption of Tetracycline. Fuel, 358: 130244. https://doi.org/10.1016/j.fuel.2023.130244
      Fan, Y. M., Li, W., Wen, Z. M., et al., 2021. Responses of Grassland Community Biomass and Root-Shoot Ratio to Nitrogen Addition in Different Restoration Years on the Loess Plateau. Acta Ecologica Sinica, 41(24): 9824-9835(in Chinese with English abstract).
      Feng, L. Y., Luo, J. Y., Chen, Y. G., 2015. Dilemma of Sewage Sludge Treatment and Disposal in China. Environmental Science & Technology, 49(8): 4781-4782. https://doi.org/10.1021/acs.est.5b01455
      Feng, Q. W., Chen, M., Wu, P., et al., 2022. Simultaneous Reclaiming Phosphate and Ammonium from Aqueous Solutions by Calcium Alginate-Biochar Composite: Sorption Performance and Governing Mechanisms. Chemical Engineering Journal, 429: 132166. https://doi.org/10.1016/j.cej.2021.132166
      Gai, X. P., Wang, H. Y., Liu, J., et al., 2014. Effects of Feedstock and Pyrolysis Temperature on Biochar Adsorption of Ammonium and Nitrate. PLoS One, 9(12): e113888. https://doi.org/10.1371/journal.pone.0113888
      Gao, G., Yan, L., Tong, K. Q., et al., 2024. The Potential and Prospects of Modified Biochar for Comprehensive Management of Salt-Affected Soils and Plants: A Critical Review. Science of the Total Environment, 912: 169618. https://doi.org/10.1016/j.scitotenv.2023.169618
      Guo, C. G., He, S. G., Wei, Y. L., 2017. Research on Distiller's Grains Energy Development and Utilization. Liquor Making, 44(4): 99-102(in Chinese with English abstract).
      Heimersson, S., Svanström, M., Cederberg, C., et al., 2017. Improved Life Cycle Modelling of Benefits from Sewage Sludge Anaerobic Digestion and Land Application. Resources, Conservation and Recycling, 122: 126-134. https://doi.org/10.1016/j.resconrec.2017.01.016
      Jiang, G. Y., Xu, D. H., Hao, B. T., et al., 2021. Thermochemical Methods for the Treatment of Municipal Sludge. Journal of Cleaner Production, 311: 127811. https://doi.org/10.1016/j.jclepro.2021.127811
      Kończak, M., Siatecka, A., Nazarkovsky, M. A., et al., 2021. Sewage Sludge and Solid Residues from Biogas Production Derived Biochar as an Effective Bio-Waste Adsorbent of Fulvic Acids from Water or Wastewater. Chemosphere, 278: 130447. https://doi.org/10.1016/j.chemosphere.2021.130447
      Li, X., 2023. Study on the Adsorption Effect of Biochar on Nitrogen and Phosphorus and Its Fertilizer Application (Dissertation). Yangzhou University, Yangzhou(in Chinese with English abstract).
      Li, Y. Y., Zhang, S. Y., Yang, H. J., et al., 2021. Research Progress in Resourcezation of Spent Grains. Liquor-Making Science & Technology, (7): 102-105, 109(in Chinese with English abstract).
      Pan, J. W., Gao, B. Y., Wang, S. Y., et al., 2020. Waste-to-Resources: Green Preparation of Magnetic Biogas Residues-Based Biochar for Effective Heavy Metal Removals. Science of the Total Environment, 737: 140283. https://doi.org/10.1016/j.scitotenv.2020.140283
      Qin, J. F., Zhang, C. C., Chen, Z. G., et al., 2022. Converting Wastes to Resource: Utilization of Dewatered Municipal Sludge for Calcium-Based Biochar Adsorbent Preparation and Land Application as a Fertilizer. Chemosphere, 298: 134302. https://doi.org/10.1016/j.chemosphere.2022.134302
      Tan, L. Z., Qi, S. H., Zhang, J. Q., et al., 2012. Removal of DDTS from Water by Modified Diatomite. Earth Science, 37(3): 621-626(in Chinese with English abstract).
      Tang, J. F., Cao, C. L., Gao, F., et al., 2019. Effects of Biochar Amendment on the Availability of Trace Elements and the Properties of Dissolved Organic Matter in Contaminated Soils. Environmental Technology & Innovation, 16: 100492. https://doi.org/10.1016/j.eti.2019.100492
      Tsai, W. T., Liu, S. C., Chen, H. R., et al., 2012. Textural and Chemical Properties of Swine-Manure-Derived Biochar Pertinent to Its Potential Use as a Soil Amendment. Chemosphere, 89(2): 198-203. https://doi.org/10.1016/j.chemosphere.2012.05.085
      Wang, J. J., 2022. Effect of Potassium Salts on Bio-Char Formation in Biomass Pyrolysis (Dissertation). Yantai University, Yantai (in Chinese with English abstract).
      Wang, X. D., 2016. Study on Chemical Constituents and Biological Activities of Distiller's Lees and Distiller's Koji from Maotai Town (Dissertation). Guizhou University, Guizhou (in Chinese with English abstract).
      Wei, L. L., Zhu, F. Y., Li, Q. Y., et al., 2020. Development, Current State and Future Trends of Sludge Management in China: Based on Exploratory Data and CO2-Equivaient Emissions Analysis. Environment International, 144: 106093. https://doi.org/10.1016/j.envint.2020.106093
      Wu, C., Huang, L., Xue, S. G., et al., 2017. Oxic and Anoxic Conditions Affect Arsenic (As) Accumulation and Arsenite Transporter Expression in Rice. Chemosphere, 168: 969-975. https://doi.org/10.1016/j.chemosphere.2016.10.114
      Xing, X. Y., Yin, D. H., Zhang, Y. L., et al., 2023. Research Progress of the Effect of Biochar on Distribution and Phosphorus Transformation of Soil Phosphorus-Solubilizing Microorganism. Jiangsu Journal of Agricultural Sciences, 39(8): 1784-1792(in Chinese with English abstract).
      Ye, S. P., Li, T., Zhang, J. T., et al., 2022. Comprehensive Evaluation of Soil Fertility for Ancient Trees Based on Principal Component Analysis. Ecological Science, 41(1): 196-205(in Chinese with English abstract).
      Zhang, L., Deng, F., Liu, Z. K., et al., 2021. Removal of Ammonia Nitrogen and Phosphorus by Biochar Prepared from Sludge Residue after Rusty Scrap Iron and Reduced Iron Powder Enhanced Fermentation. Journal of Environmental Management, 282: 111970. https://doi.org/10.1016/j.jenvman.2021.111970
      Zhang, X. H., Xiang, N., Wang, W. L., et al., 2018. An Emergy Evaluation of the Sewage Sludge Treatment System with Earthworm Compositing Technology in Chengdu, China. Ecological Engineering, 110: 8-17. https://doi.org/10.1016/j.ecoleng.2017.10.007
      Zhou, G. L., Gu, Y. F., Yuan, H. R., et al., 2020. Selecting Sustainable Technologies for Disposal of Municipal Sewage Sludge Using a Multi-Criterion Decision-Making Method: A Case Study from China. Resources, Conservation and Recycling, 161: 104881. https://doi.org/10.1016/j.resconrec.2020.104881
      Zhou, H., Meng, A. H., Long, Y. Q., et al., 2015. A Review of Dioxin-Related Substances during Municipal Solid Waste Incineration. Waste Management, 36: 106-118. https://doi.org/10.1016/j.wasman.2014.11.011
      Zhu, L., Lei, H. W., Wang, L., et al., 2015. Biochar of Corn Stover: Microwave-Assisted Pyrolysis Condition Induced Changes in Surface Functional Groups and Characteristics. Journal of Analytical and Applied Pyrolysis, 115: 149-156. https://doi.org/10.1016/j.jaap.2015.07.012
      常思露, 高茜, 魏佳宇, 等, 2024. 钙改性玉米芯生物炭对水中氮磷吸附特性. 环境工程学报, 18(2): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ202402018.htm
      樊勇明, 李伟, 温仲明, 等, 2021. 黄土区不同恢复年限草地群落生物量及根冠比对氮添加的响应. 生态学报, 41(24): 9824-9835. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202124026.htm
      郭传广, 何松贵, 卫云路, 2017. 酒糟能源开发利用研究. 酿酒, 44(4): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-NJZZ201704028.htm
      李夏, 2023. 生物炭对氮磷的吸附效应及其肥料化应用研究(硕士学位论文). 扬州: 扬州大学.
      李依阳, 张宿义, 杨红军, 等, 2021. 酿酒废弃物资源化利用研究进展. 酿酒科技, (7): 102-105, 109. https://www.cnki.com.cn/Article/CJFDTOTAL-NJKJ202107019.htm
      谭凌智, 祁士华, 张家泉, 等, 2012. 改性硅藻土对水中DDTs的吸附机理. 地球科学, 37(3): 621-626. doi: 10.3799/dqkx.2012.071
      王金杰, 2022. 钾盐在生物质热解过程中对生物炭形成影响的研究(硕士学位论文). 烟台: 烟台大学.
      王兴东, 2016. 贵州茅台镇酒糟与酒曲化学成分及生物活性研究(硕士学位论文). 贵阳: 贵州大学.
      邢肖毅, 尹丹红, 张亚丽, 等, 2023. 生物质炭对土壤解磷菌分布及磷转化的影响研究进展. 江苏农业学报, 39(8): 1784-1792. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNB202308019.htm
      叶少萍, 李铤, 张俊涛, 等, 2022. 基于主成分分析的古树土壤肥力综合评价. 生态科学, 41(1): 196-205. https://www.cnki.com.cn/Article/CJFDTOTAL-STKX202201022.htm
    • 加载中
    图(21) / 表(4)
    计量
    • 文章访问数:  423
    • HTML全文浏览量:  153
    • PDF下载量:  23
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-12-10
    • 网络出版日期:  2024-07-11
    • 刊出日期:  2024-06-25

    目录

      /

      返回文章
      返回