Utilization of High Calcium Biogas Residue for Biochar Adsorbent Preparation and Its Soil Improvement Properties
-
摘要: 为解决酿酒沼渣的资源化问题,采用热解法制备沼渣生物炭,通过批量吸附试验和盆栽试验考察其吸附性能和土壤改良性能.结果表明:700 ℃下限氧热解1.5 h所制备的高钙沼渣生物炭,初始pH为10时,吸附量最大,投加10 g·L-1的沼渣生物炭对实际废水COD、NH4+-N和TP的去除率分别可达45.29%、56.10%和86.33%,吸附符合拟一阶动力学模型和Langmuir等温吸附,属于物理吸附.吸附后生物炭表面C、N、P、O元素含量显著增加,出现新的N-H、P=O基团.当投加5%的吸附后生物炭时,土壤中速效磷、速效钾及有机质的含量均显著提高,小白菜生长得到促进.本研究探索了“一处理两用”的策略,为酿酒沼渣处置和资源回收提供了一种本土方法.Abstract: In order to solve the problem of resource utilization of brewing biogas residue, the biochar prepared by brewing biogas residue was added into garden soil. A batch incubation and absorption experiments were carried out with the amended soils to study the improvement of biochar addition on adsorption availability and soil physicochemical properties. Results show that: the high calcium biochar prepared by oxygen limited pyrolysis method at 700 ℃ for 1.5 h behaved best with initial pH 10, the removal rates of COD, NH4+-N and TP in actual wastewater by adding 10 g·L-1 biogas biochar can reach 45.29%, 56.10% and 86.33%, respectively. Langmuir isothermal model and pseudo-first-order kinetic equation were more consistent with its adsorption characteristics, indicating the physical adsorption were the main adsorption modes. The contents of C, N, P and O elements on the biochar surface increased significantly with new N-H and P=O groups generated after the adsorption. The available phosphorus, available potassium and organic matter in soil were significantly increased with 5% of adsorbed biochar added which could promote the growth of Chinese cabbage well. This study explored a 'one treatment but two uses' approach, which provides an application prospect for the disposal and resource recovery of biogas residue.
-
Key words:
- brewing biogas residue /
- biochar /
- adsorbents /
- wastewater treatment /
- soil conditioners
-
表 1 试验所用沼渣及废水水质
Table 1. Composition of brewing biogas residue and wastewater
沼渣性质 含量 水质指标 指标范围 灰分(%) 45.96 COD(mg·L-1) 340~370 挥发性固体(%) 54.04 NH4+-N(mg·L-1) 9.5~10.8 有机质(g·Kg-1) 418.30 TN(mg·L-1) 28~30 硅(g·Kg-1) 4.00 TP(mg·L-1) 73~76 钙(g·Kg-1) 11.80 pH 7.6~8.1 镁(g·Kg-1) 14.72 温度(℃) 20~30 pH 6.80 色度(倍数) 200 表 2 BC对磷酸盐和NH4+-N的吸附动力学模型拟合参数
Table 2. Fitting parameters of adsorption kinetics model for phosphate and NH4+-N
模型 参数 磷酸盐 NH4+-N Pseudo-first-order
$ {q}_{\mathrm{t}}={q}_{\mathrm{e}}(1-{\mathrm{e}}^{-{k}_{1}t}) $qe(mg·g-1) 2.430 0 0.350 9 k1(min-1) 0.268 4 0.025 7 R2 0.988 24 0.989 5 Pseudo-second-order
$ {q}_{\mathrm{t}}=\frac{{k}_{2}{q}_{\mathrm{e}}^{2}t}{1+{k}_{2}{q}_{\mathrm{e}}t} $qe(mg·g-1) 2.829 0 4.097 3 k2(g·mg-1·min-1) 0.010 7 0.007 0 R2 0.979 4 0.970 9 表 3 BC对磷酸盐和NH4+-N的吸附等温线拟合参数
Table 3. Fitting parameters of adsorption isotherm for phosphate and NH4+-N
等温线模型 参数 磷酸盐 NH4+-N Langmuir
$ {q}_{\mathrm{e}}=\frac{{q}_{\mathrm{m}\mathrm{a}\mathrm{x}}{K}_{\mathrm{L}}{C}_{\mathrm{e}}}{1+{K}_{\mathrm{L}}{C}_{\mathrm{e}}} $qmax (mg·g-1) 78.001 0 6.183 27 KL (L·mg-1) 0.031 28 0.066 80 R2 0.984 27 0.992 92 Freundlich
$ {q}_{\mathrm{e}}={K}_{\mathrm{F}}{C}_{\mathrm{e}}^{\frac{1}{n}} $KF (mg·g-1) 8.012 5 0.663 29 1/n 0.434 5 0.538 66 R2 0.958 39 0.977 06 表 4 吸附前后BC对小白菜出苗率、根冠比、比根长、比根表面积影响
Table 4. Effects of BC on seedling emergence rate, root shoot ratio, specific root length and specific root surface area
处理 出苗率(%) 根冠比 比根长(m·g-1) 比根表面积(cm2·g-1) CK 80 0.040 42.93 304.75 BC-1% 90 0.032 111.01 687.94 BC-3% 90 0.035 99.16 534.47 BC-5% 100 0.033 83.58 448.25 吸附后BC-1% 100 0.044 82.06 538.29 吸附后BC-3% 100 0.032 93.22 520.17 吸附后BC-5% 100 0.003 150.25 956.48 -
Baghoth, S. A., Sharma, S. K., Amy, G. L., 2011. Tracking Natural Organic Matter (NOM) in a Drinking Water Treatment Plant Using Fluorescence Excitation-Emission Matrices and PARAFAC. Water Research, 45(2): 797-809. https://doi.org/10.1016/j.watres.2010.09.005 Bashir, S., Hussain, Q., Shaaban, M., et al., 2018. Efficiency and Surface Characterization of Different Plant Derived Biochar for Cadmium (Cd) Mobility, Bioaccessibility and Bioavailability to Chinese Cabbage in Highly Contaminated Soil. Chemosphere, 211: 632-639. https://doi.org/10.1016/j.chemosphere.2018.07.168 Bijoy, B., Tawsif, R., Manish, S., et al., 2023. Phosphorus Adsorption Using Chemical and Metal Chloride Activated Biochars: Isotherms, Kinetics and Mechanism Study. Heliyon, 9(9): e19830. https://doi.org/10.1016/j.heliyon.2023.e19830 Bogusz, A., Nowak, K., Stefaniuk, M., et al., 2017. Synthesis of Biochar from Residues after Biogas Production with Respect to Cadmium and Nickel Removal from Wastewater. Journal of Environmental Management, 201: 268-276. https://doi.org/10.1016/j.jenvman.2017.06.019 Chang, S. L., Gao, X., Wei, J. Y., et al., 2024. Adsorption Characteristics of Calcium-Modified Corncob Biochar for Nitrogen and Phosphorus in Water. Chinese Journal of Environmental Engineering, 18(2): 481-491(in Chinese with English abstract). Chen, W., Westerhoff, P., Leenheer, J. A., et al., 2003. Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology, 37(24): 5701-5710. https://doi.org/10.1021/es034354c Cheng, N., Wang, B., Feng, Q. W., et al., 2021. Co-Adsorption Performance and Mechanism of Nitrogen and Phosphorus onto Eupatorium Adenophorum Biochar in Water. Bioresource Technology, 340: 125696. https://doi.org/10.1016/j.biortech.2021.125696 Fan, S. S., Zhang, W. Y., Fan, X. R., et al., 2024. Hydrothermal Pretreatment and Pyrolytic Conversion of Biogas Residue into Biochar for Efficient Adsorption of Tetracycline. Fuel, 358: 130244. https://doi.org/10.1016/j.fuel.2023.130244 Fan, Y. M., Li, W., Wen, Z. M., et al., 2021. Responses of Grassland Community Biomass and Root-Shoot Ratio to Nitrogen Addition in Different Restoration Years on the Loess Plateau. Acta Ecologica Sinica, 41(24): 9824-9835(in Chinese with English abstract). Feng, L. Y., Luo, J. Y., Chen, Y. G., 2015. Dilemma of Sewage Sludge Treatment and Disposal in China. Environmental Science & Technology, 49(8): 4781-4782. https://doi.org/10.1021/acs.est.5b01455 Feng, Q. W., Chen, M., Wu, P., et al., 2022. Simultaneous Reclaiming Phosphate and Ammonium from Aqueous Solutions by Calcium Alginate-Biochar Composite: Sorption Performance and Governing Mechanisms. Chemical Engineering Journal, 429: 132166. https://doi.org/10.1016/j.cej.2021.132166 Gai, X. P., Wang, H. Y., Liu, J., et al., 2014. Effects of Feedstock and Pyrolysis Temperature on Biochar Adsorption of Ammonium and Nitrate. PLoS One, 9(12): e113888. https://doi.org/10.1371/journal.pone.0113888 Gao, G., Yan, L., Tong, K. Q., et al., 2024. The Potential and Prospects of Modified Biochar for Comprehensive Management of Salt-Affected Soils and Plants: A Critical Review. Science of the Total Environment, 912: 169618. https://doi.org/10.1016/j.scitotenv.2023.169618 Guo, C. G., He, S. G., Wei, Y. L., 2017. Research on Distiller's Grains Energy Development and Utilization. Liquor Making, 44(4): 99-102(in Chinese with English abstract). Heimersson, S., Svanström, M., Cederberg, C., et al., 2017. Improved Life Cycle Modelling of Benefits from Sewage Sludge Anaerobic Digestion and Land Application. Resources, Conservation and Recycling, 122: 126-134. https://doi.org/10.1016/j.resconrec.2017.01.016 Jiang, G. Y., Xu, D. H., Hao, B. T., et al., 2021. Thermochemical Methods for the Treatment of Municipal Sludge. Journal of Cleaner Production, 311: 127811. https://doi.org/10.1016/j.jclepro.2021.127811 Kończak, M., Siatecka, A., Nazarkovsky, M. A., et al., 2021. Sewage Sludge and Solid Residues from Biogas Production Derived Biochar as an Effective Bio-Waste Adsorbent of Fulvic Acids from Water or Wastewater. Chemosphere, 278: 130447. https://doi.org/10.1016/j.chemosphere.2021.130447 Li, X., 2023. Study on the Adsorption Effect of Biochar on Nitrogen and Phosphorus and Its Fertilizer Application (Dissertation). Yangzhou University, Yangzhou(in Chinese with English abstract). Li, Y. Y., Zhang, S. Y., Yang, H. J., et al., 2021. Research Progress in Resourcezation of Spent Grains. Liquor-Making Science & Technology, (7): 102-105, 109(in Chinese with English abstract). Pan, J. W., Gao, B. Y., Wang, S. Y., et al., 2020. Waste-to-Resources: Green Preparation of Magnetic Biogas Residues-Based Biochar for Effective Heavy Metal Removals. Science of the Total Environment, 737: 140283. https://doi.org/10.1016/j.scitotenv.2020.140283 Qin, J. F., Zhang, C. C., Chen, Z. G., et al., 2022. Converting Wastes to Resource: Utilization of Dewatered Municipal Sludge for Calcium-Based Biochar Adsorbent Preparation and Land Application as a Fertilizer. Chemosphere, 298: 134302. https://doi.org/10.1016/j.chemosphere.2022.134302 Tan, L. Z., Qi, S. H., Zhang, J. Q., et al., 2012. Removal of DDTS from Water by Modified Diatomite. Earth Science, 37(3): 621-626(in Chinese with English abstract). Tang, J. F., Cao, C. L., Gao, F., et al., 2019. Effects of Biochar Amendment on the Availability of Trace Elements and the Properties of Dissolved Organic Matter in Contaminated Soils. Environmental Technology & Innovation, 16: 100492. https://doi.org/10.1016/j.eti.2019.100492 Tsai, W. T., Liu, S. C., Chen, H. R., et al., 2012. Textural and Chemical Properties of Swine-Manure-Derived Biochar Pertinent to Its Potential Use as a Soil Amendment. Chemosphere, 89(2): 198-203. https://doi.org/10.1016/j.chemosphere.2012.05.085 Wang, J. J., 2022. Effect of Potassium Salts on Bio-Char Formation in Biomass Pyrolysis (Dissertation). Yantai University, Yantai (in Chinese with English abstract). Wang, X. D., 2016. Study on Chemical Constituents and Biological Activities of Distiller's Lees and Distiller's Koji from Maotai Town (Dissertation). Guizhou University, Guizhou (in Chinese with English abstract). Wei, L. L., Zhu, F. Y., Li, Q. Y., et al., 2020. Development, Current State and Future Trends of Sludge Management in China: Based on Exploratory Data and CO2-Equivaient Emissions Analysis. Environment International, 144: 106093. https://doi.org/10.1016/j.envint.2020.106093 Wu, C., Huang, L., Xue, S. G., et al., 2017. Oxic and Anoxic Conditions Affect Arsenic (As) Accumulation and Arsenite Transporter Expression in Rice. Chemosphere, 168: 969-975. https://doi.org/10.1016/j.chemosphere.2016.10.114 Xing, X. Y., Yin, D. H., Zhang, Y. L., et al., 2023. Research Progress of the Effect of Biochar on Distribution and Phosphorus Transformation of Soil Phosphorus-Solubilizing Microorganism. Jiangsu Journal of Agricultural Sciences, 39(8): 1784-1792(in Chinese with English abstract). Ye, S. P., Li, T., Zhang, J. T., et al., 2022. Comprehensive Evaluation of Soil Fertility for Ancient Trees Based on Principal Component Analysis. Ecological Science, 41(1): 196-205(in Chinese with English abstract). Zhang, L., Deng, F., Liu, Z. K., et al., 2021. Removal of Ammonia Nitrogen and Phosphorus by Biochar Prepared from Sludge Residue after Rusty Scrap Iron and Reduced Iron Powder Enhanced Fermentation. Journal of Environmental Management, 282: 111970. https://doi.org/10.1016/j.jenvman.2021.111970 Zhang, X. H., Xiang, N., Wang, W. L., et al., 2018. An Emergy Evaluation of the Sewage Sludge Treatment System with Earthworm Compositing Technology in Chengdu, China. Ecological Engineering, 110: 8-17. https://doi.org/10.1016/j.ecoleng.2017.10.007 Zhou, G. L., Gu, Y. F., Yuan, H. R., et al., 2020. Selecting Sustainable Technologies for Disposal of Municipal Sewage Sludge Using a Multi-Criterion Decision-Making Method: A Case Study from China. Resources, Conservation and Recycling, 161: 104881. https://doi.org/10.1016/j.resconrec.2020.104881 Zhou, H., Meng, A. H., Long, Y. Q., et al., 2015. A Review of Dioxin-Related Substances during Municipal Solid Waste Incineration. Waste Management, 36: 106-118. https://doi.org/10.1016/j.wasman.2014.11.011 Zhu, L., Lei, H. W., Wang, L., et al., 2015. Biochar of Corn Stover: Microwave-Assisted Pyrolysis Condition Induced Changes in Surface Functional Groups and Characteristics. Journal of Analytical and Applied Pyrolysis, 115: 149-156. https://doi.org/10.1016/j.jaap.2015.07.012 常思露, 高茜, 魏佳宇, 等, 2024. 钙改性玉米芯生物炭对水中氮磷吸附特性. 环境工程学报, 18(2): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ202402018.htm 樊勇明, 李伟, 温仲明, 等, 2021. 黄土区不同恢复年限草地群落生物量及根冠比对氮添加的响应. 生态学报, 41(24): 9824-9835. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202124026.htm 郭传广, 何松贵, 卫云路, 2017. 酒糟能源开发利用研究. 酿酒, 44(4): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-NJZZ201704028.htm 李夏, 2023. 生物炭对氮磷的吸附效应及其肥料化应用研究(硕士学位论文). 扬州: 扬州大学. 李依阳, 张宿义, 杨红军, 等, 2021. 酿酒废弃物资源化利用研究进展. 酿酒科技, (7): 102-105, 109. https://www.cnki.com.cn/Article/CJFDTOTAL-NJKJ202107019.htm 谭凌智, 祁士华, 张家泉, 等, 2012. 改性硅藻土对水中DDTs的吸附机理. 地球科学, 37(3): 621-626. doi: 10.3799/dqkx.2012.071 王金杰, 2022. 钾盐在生物质热解过程中对生物炭形成影响的研究(硕士学位论文). 烟台: 烟台大学. 王兴东, 2016. 贵州茅台镇酒糟与酒曲化学成分及生物活性研究(硕士学位论文). 贵阳: 贵州大学. 邢肖毅, 尹丹红, 张亚丽, 等, 2023. 生物质炭对土壤解磷菌分布及磷转化的影响研究进展. 江苏农业学报, 39(8): 1784-1792. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNB202308019.htm 叶少萍, 李铤, 张俊涛, 等, 2022. 基于主成分分析的古树土壤肥力综合评价. 生态科学, 41(1): 196-205. https://www.cnki.com.cn/Article/CJFDTOTAL-STKX202201022.htm -