Anderson, R. S., Rajaram, H., Anderson, S. P., 2019. Climate Driven Coevolution of Weathering Profiles and Hillslope Topography Generates Dramatic Differences in Critical Zone Architecture. Hydrological Processes, 33(1): 4-19. https://doi.org/10.1002/hyp.13307 |
Antonelli, A., Kissling, W. D., Flantua, S. G. A., et al., 2018. Geological and Climatic Influences on Mountain Biodiversity. Nature Geoscience, 11(10): 718-725. https://doi.org/10.1038/s41561-018-0236-z |
Badgley, C., 2010. Tectonics, Topography, and Mammalian Diversity. Ecography, 33(2): 220-231. https://doi.org/10.1111/j.1600-0587.2010.06282.x |
Davies, N. S., Gibling, M. R., 2010. Cambrian to Devonian Evolution of Alluvial Systems: The Sedimentological Impact of the Earliest Land Plants. Earth-Science Reviews, 98(3/4): 171-200. https://doi.org/10.1016/j.earscirev.2009.11.002 |
NRC (National Research Council), 2001. Basic Research Opportunities in Earth Science. National Academy Press, Washington, D. C. . |
Riebe, C. S., Hahm, W. J., Brantley, S. L., 2017. Controls on Deep Critical Zone Architecture: A Historical Review and Four Testable Hypotheses. Earth Surface Processes and Landforms, 42(1): 128-156. https://doi.org/10.1002/esp.4052 |
St Clair, J., Moon, S., Holbrook, W. S., et al., 2015. Geophysical Imaging Reveals Topographic Stress Control of Bedrock Weathering. Science, 350(6260): 534-538. https://doi.org/10.1126/science.aab2210 |
Steffen, W., Richardson, K., Rockström, J., et al., 2020. The Emergence and Evolution of Earth System Science. Nature Reviews Earth & Environment, 1(1): 54-63. https://doi.org/10.1038/s43017-019-0005-6 |
刘丛强, 2019. 表层地球系统科学与可持续发展. "焕庸地理大讲堂"系列学术报告, 2019月5月20日. |
刘静, 张金玉, 葛玉魁, 等, 2018. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究. 科学通报, 63(30): 3070-3088. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201830003.htm |