Baross, J. A., Anderson, R. E., Stüeken, E. E., 2020. The Environmental Roots of the Origin of Life. In: Meadows, V. S., Arney, G. N., Schmidt, B. E., et al., eds., Planetary Astrobiology. University of Arizona Press, Tucson, 71-92. |
Board, S. S., 2019. National Academies of Sciences, Engineering, and Medicine: An Astrobiology Strategy for the Search for Life in the Universe. National Academies Press, Washington. |
Bottke, W. F., Norman, M. D., 2017. The Late Heavy Bombardment. Annu. Rev. Earth Pl. Sc., 45: 619-647. https://doi.org/10.1146/annurev-earth-063016-020131 |
Cabrol, N. A., 2018. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures. Astrobiology, 18(1): 1-27. https://doi.org/10.1089/ast.2017.1756 |
Chan, M. A., Hinman, N. W., Potter-McIntyre, S. L., et al., 2019. Deciphering Biosignatures in Planetary Contexts. Astrobiology, 19(9): 1075-1102. https://doi.org/10.1089/ast.2018.1903 |
Chen, J. W., Ge, J. W., Feng, L., et al., 2020. Methane Flux Characteristics and Its Relationship with Soil Microbial Community Composition of Dajiuhu Peatland in Shennongjia. Earth Science, 45(3): 1082-1092 (in Chinese with English abstract). |
Conrad, P. G., Archer, D., Atreya, S., et al., 2013. Habitability Assessment at Gale Crater: Implications from Initial Results. 44th Lunar and Planetary Science Conference, Woodlands. |
Dundas, C. M., McEwen, A. S., Chojnacki, M., et al., 2017. Granular Flows at Recurring Slope Lineae on Mars Indicate a Limited Role for Liquid Water. Nat. Geosci., 10: 903-907. https://doi.org/10.1038/s41561-017-0012-5 |
Ehlmann, B. L., Edwards, C. S., 2014. Mineralogy of the Martian Surface. Annual Review of Earth and Planetary Sciences, 42: 291-315. https://doi.org/10.1146/annurev-earth-060313-055024 |
Eigenbrode, J. L., Summons, R. E., Steele, A., et al., 2018. Organic Matter Preserved in 3-Billion-Year-Old Mudstones at Gale Crater, Mars. Science, 360(6393): 1096-1101. https://doi.org/10.1126/science.aas9185 |
Geng, Y., Zhang, R. Q., He, R. W., et al., 2022. The Science-Technology and Management Innovation for China's First Mars Exploration Mission. Frontiers of Science and Technology of Engineering Management, 41(1): 3-8 (in Chinese with English abstract). |
Gibney, E., 2022. Asteroids, Hubble Rival and Moon Base: China Sets out Space Agenda. Nature, 603(7899): 19-20. https://doi.org/10.1038/d41586-022-00439-2 |
Green, J., Hoehler, T., Neveu, M., et al., 2021. Call for a Framework for Reporting Evidence for Life beyond Earth. Nature, 598(7882): 575-579. https://doi.org/10.1038/s41586-021-03804-9 |
Hansen, C. J., Castillo-Rogez, J., Grundy, W., et al., 2021. Triton: Fascinating Moon, Likely Ocean World, Compelling Destination! The Planetary Science Journal, 2: 137. https://doi.org/10.3847/psj/abffd2 |
Hays, L., Archenbach, L., Bailey, J., et al., 2015. NASA Astrobiology Strategy. NASA, Washington. |
Hendrix, A. R., Hurford, T. A., Barge, L. M., et al., 2019. The NASA Roadmap to Ocean Worlds. Astrobiology, 19(1): 1-27. https://doi.org/10.1089/ast.2018.1955 |
Hoehler, T. M., Bains, W., Davila, A., et al., 2020. Life's Requirements, Habitability, and Biological Potential. In: Meadows, V. S., Arney, G. N., Schmidt, B. E., et al., eds., Planetary Astrobiology. University of Arizona Press, Arizona, 37-70. |
Jakosky, B. M., Brain, D., Chaffin, M., et al., 2018. Loss of the Martian Atmosphere to Space: Present-Day Loss Rates Determined from MAVEN Observations and Integrated Loss through Time. Icarus, 315: 146-157. https://doi.org/10.1016/j.icarus.2018.05.030 |
Jia, X., Kivelson, M. G., 2021. The Magnetosphere of Ganymede. In: Maggiolo, R., André, N., Hasegawa, H., et al., eds., Magnetospheres in the Solar System. Wiley, Hoboken, 557-573. https://doi.org/10.1002/9781119815624.ch35 |
Kivelson, M. G., Khurana, K. K., Volwerk, M., 2009. Europa's Interaction with the Jovian Magnetosphere. In: Pappalardo, R. T., McKinnon, W. B., Khurana, K. K., eds., Europa. University of Arizona Press, Arizona, 545-570. |
Klein, H. P., Horowitz, N. H., Levin, G. V., et al., 1976. The Viking Biological Investigation: Preliminary Results. Science, 194(4260): 99-105. https://doi.org/10.1126/science.194.4260.99 |
Kminek, G., Meyer, M. A., Beaty, D. W., et al., 2022. Mars Sample Return (MSR): Planning for Returned Sample Science. Astrobiology, 22: S1-S4. doi: 10.1089/ast.2021.0198 |
Knauth, L. P., Burt, D. M., Wohletz, K. H., 2005. Impact Origin of Sediments at the Opportunity Landing Site on Mars. Nature, 438(7071): 1123-1128. https://doi.org/10.1038/nature04383 |
Koonin, E. V., Dolja, V. V., Krupovic, M., et al., 2021. Viruses Defined by the Position of the Virosphere within the Replicator Space. Microbiol. Mol. Biol. Rev., 85(4): e0019320. https://doi.org/10.1128/mmbr.00193-20 |
Korablev, O., Vandaele, A. C., Montmessin, F., et al., 2019. No Detection of Methane on Mars from Early ExoMars Trace Gas Orbiter Observations. PLoS One, 568(7753): 517-520. https://doi.org/10.1038/s41586-019-1096-4 |
Li, C., Zheng, Y., Wang, X., et al., 2022. Layered Subsurface in Utopia Basin of Mars Revealed by Zhurong Rover Radar. Nature, 610(7931): 308-312. https://doi.org/10.1038/s41586-022-05147-5 |
Lin, W., Li, Y. L., Wang, G. H., et al., 2020. Overview and Perspectives of Astrobiology. Chinese Science Bulletin, 65(5): 380-391 (in Chinese). doi: 10.1360/TB-2019-0396 |
Liu, J. J., Li, C. L., Zhang, R. Q., et al., 2021. Geomorphic Contexts and Science Focus of the Zhurong Landing Site on Mars. Nature Astronomy, 6: 65-71. https://doi.org/10.1038/s41550-021-01519-5 |
Liu, R., Ma, T., Qiu, W., et al., 2020. The Environmental Functions and Ecological Effects of Organic Carbon in Silt. Journal of Earth Science, 31(6): 834-844. https://doi.org/10.1007/s12583-020-1349-z |
Liu, Y., Wu, X., Zhao, Y. S., et al., 2022. Zhurong Reveals Recent Aqueous Activities in Utopia Planitia, Mars. Science Advances, 8(19): eabn8555. https://doi.org/10.1126/sciadv.abn8555 |
Lopes, R. M. C., Kirk, R. L., Mitchell, K. L., et al., 2013. Cryovolcanism on Titan: New Results from Cassini RADAR and VIMS. J. Geophys. Res-Planet., 118: 416-435. 10.1002/jgre. 20062 doi: 10.1002/jgre.20062 |
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., et al., 1996. Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001. Science, 273(5277): 924-930. https://doi.org/10.1126/science.273.5277.924 |
Ménez, B., Pisapia, C., Andreani, M., et al., 2018. Abiotic Synthesis of Amino Acids in the Recesses of the Oceanic Lithosphere. Nature, 564(7734): 59-63. https://doi.org/10.1038/s41586-018-0684-z |
Mojzsis, S. J., 2021. Habitable Potentials. Nature Astronomy, 5: 1083-1085. https://doi.org/10.1038/s41550-021-01529-3 |
Nakamura, E., Kobayashi, K., Tanaka, R., et al., 2022. On the Origin and Evolution of the Asteroid Ryugu: A Comprehensive Geochemical Perspective. Proceedings of the Japan Academy Series B, Physical and Biological Sciences, 98(6): 227-282. https://doi.org/10.2183/pjab.98.015 |
Onstott, T. C., Ehlmann, B. L., Sapers, H., et al., 2019. Paleo-Rock-Hosted Life on Earth and the Search on Mars: A Review and Strategy for Exploration. Astrobiology, 19(10): 1230-1262. https://doi.org/10.1089/ast.2018.1960 |
Pan, Y. X., Wang, C., 2021. Developing the Planetary Science Research for the Sustainable Deep Space Exploration of China. Bulletin of National Natural Science Foundation of China, 35(2): 181-185 (in Chinese with English abstract). |
Postberg, F., Khawaja, N., Abel, B., et al., 2018. Macromolecular Organic Compounds from the Depths of Enceladus. Nature, 558(7711): 564-568. https://doi.org/10.1038/s41586-018-0246-4 |
Rampe, E. B., Blake, D. F., Bristow, T. F., et al., 2020. Mineralogy and Geochemistry of Sedimentary Rocks and Eolian Sediments in Gale Crater, Mars: A Review after Six Earth Years of Exploration with Curiosity. Geochemistry, 80: 125605. https://doi.org/10.1016/j.chemer.2020.125665 |
Schulze-Makuch, D., Mendez, A., Fairen, A. G., et al., 2011. A Two-Tiered Approach to Assessing the Habitability of Exoplanets. Astrobiology, 11: 1041-1052. https://doi.org/10.1089/ast.2010.0592 |
Shen, J., Chen, Y., Sun, Y., et al., 2022. Detection of Biosignatures in Terrestrial Analogs of Martian Regions: Strategical and Technical Assessments. Earth and Planetary Physics, 6(5): 431-450. https://doi.org/10.26464/epp2022042 |
Soffen, G. A., 1997. Astrobiology from Exobiology: Viking and the Current Mars Probes. Acta Astronautica, 41(4-10): 609-611. https://doi.org/10.1016/s0094-5765(98)00055-1 |
Solomon, S. C., Aharonson, O., Aurnou, J. M., et al., 2005. New Perspectives on Ancient Mars. Science, 307: 1214-1220. https://doi.org/10.1126/science.1101812 |
Squyres, S. W., Arvidson, R. E., Ruff, S., et al., 2008. Detection of Silica-Rich Deposits on Mars. Science, 320(5879): 1063-1067. https://doi.org/10.1126/science.1155429 |
Webster, C. R., Mahaffy, P. R., Atreya, S. K., et al., 2018. Background Levels of Methane in Mars' Atmosphere Show Strong Seasonal Variations. Science, 360(6393): 1093-1096. https://doi.org/10.1126/science.aaq0131 |
Weller, M. B., Lenardic, A., 2018. On the Evolution of Terrestrial Planets: Bi-Stability, Stochastic Effects, and the Non-Uniqueness of Tectonic States. Geosci. Front., 9: 91-102. https://doi.org/10.1016/j.gsf.2017.03.001 |
Ye, P. J., Zou, L. Y., Wang, D. Y., et al., 2018. Development and Prospect of Chinese Deep Space Exploration. Space International, (10): 4-10 (in Chinese). |
谌佳伟, 葛继稳, 冯亮, 等, 2020. 神农架大九湖泥炭湿地甲烷通量特征及其与土壤微生物群落组成的关系. 地球科学, 45(3): 1082-1092. doi: 10.3799/dqkx.2019.289 |
耿言, 张荣桥, 赫荣伟, 等, 2022. 首次火星探测任务的科技与管理创新. 工程管理科技前沿, 41(1): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YUCE202201002.htm |
林巍, 李一良, 王高鸿, 等, 2020. 天体生物学研究进展和发展趋势. 科学通报, 65(5): 380-391. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202005009.htm |
潘永信, 王赤, 2021. 国家深空探测战略可持续发展需求: 行星科学研究. 中国科学基金, 35(2): 181-185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ202102004.htm |
叶培建, 邹乐洋, 王大轶, 等, 2018. 中国深空探测领域发展及展望. 国际太空, (10): 4-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201810002.htm |