• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地震作用下软硬互层顺层岩质边坡动力响应研究

    李师毓 吴琼 王亮清 罗红明 秦越 刘智琪

    李师毓, 吴琼, 王亮清, 罗红明, 秦越, 刘智琪, 2023. 地震作用下软硬互层顺层岩质边坡动力响应研究. 地球科学, 48(8): 3127-3136. doi: 10.3799/dqkx.2023.002
    引用本文: 李师毓, 吴琼, 王亮清, 罗红明, 秦越, 刘智琪, 2023. 地震作用下软硬互层顺层岩质边坡动力响应研究. 地球科学, 48(8): 3127-3136. doi: 10.3799/dqkx.2023.002
    Li Shiyu, Wu Qiong, Wang Liangqing, Luo Hongming, Qin Yue, Liu Zhiqi, 2023. Study of Dynamic Response of Soft and Hard Interbedded Rock Slopes under Earthquakes. Earth Science, 48(8): 3127-3136. doi: 10.3799/dqkx.2023.002
    Citation: Li Shiyu, Wu Qiong, Wang Liangqing, Luo Hongming, Qin Yue, Liu Zhiqi, 2023. Study of Dynamic Response of Soft and Hard Interbedded Rock Slopes under Earthquakes. Earth Science, 48(8): 3127-3136. doi: 10.3799/dqkx.2023.002

    地震作用下软硬互层顺层岩质边坡动力响应研究

    doi: 10.3799/dqkx.2023.002
    基金项目: 

    国家重点研发计划项目 2019YFC1509705

    国家重点研发计划项目 2022YFC3080200

    国家自然科学基金面上项目 41877259

    详细信息
      作者简介:

      李师毓(1998-),男,硕士研究生,从事地质灾害与岩土工程专业研究.ORCID:0000-0003-2612-344X.E-mail:269952725@qq.com

      通讯作者:

      吴琼,ORCID:0000-0001-5029-5925.E-mail:wuqiong@cug.edu.cn

    • 中图分类号: P642

    Study of Dynamic Response of Soft and Hard Interbedded Rock Slopes under Earthquakes

    • 摘要: 软硬互层顺层岩质边坡在我国强震区广泛存在,地震极易诱发该类边坡产生地质灾害. 针对地震作用下软硬互层顺层岩质边坡动力响应关键科学问题开展研究,基于离散元数值模拟法,揭示了软硬互层顺层岩质边坡动力响应规律,分析了不同边坡特征因素对其动力响应的影响. 结果表明:地震作用下软硬互层边坡变形破坏主要受软硬岩间层面控制,坡表剪切口和软岩位移增量明显;地震波在传播过程中,软硬岩层对地震加速度具有放大作用,其中软岩的放大作用更明显;地震波频谱特征显示:当地震波从硬岩传播至软岩时,多个固定频段被显著放大,当从软岩传播至硬岩时,频谱有所降低;坡表位移和加速度放大系数随软岩和层面强度的增加而减小,随层厚比的增加而增大;软岩强度和层厚比会改变地震波中显著放大频段的位置,二者增大时,放大频段的数量不变,频率减小;岩层层面强度降低时,放大频段的数量和频率不变,放大程度增大.

       

    • 图  1  软硬互层顺层岩质边坡数值模型(单位:m)

      Fig.  1.  Numerical model of soft and hard interbedded rock slope (unit: m)

      图  2  El Centro地震波加速度时程曲线

      Fig.  2.  Time-history curve of acceleration of El Centro seismic wave

      图  3  数值模型边界条件

      Fig.  3.  Boundary condition of numerical model

      图  4  坡表位移时程曲线

      Fig.  4.  Time history curves of displacement on the slope surface

      图  5  计算终态坡体位移云图

      Fig.  5.  Displacement contour of the slope in terminal state

      图  6  竖直和水平方向监测点PGA

      a.垂直方向各点PGA;b. 水平方向各点PGA

      Fig.  6.  PGA of monitoring sites in vertical and horizontal directions

      图  7  不同位置监测点加速度的傅氏谱

      a. 模型底部;b. 模型中部;c.模型顶部

      Fig.  7.  Fourier spectra of acceleration of monitoring sites at different locations

      图  8  不同软岩强度下坡表各点最大位移和测线1上各点PGA

      a. 坡表监测点最大位移;b. 测线1上监测点PGA

      Fig.  8.  Maximum displacements of monitoring sites on slope surface and PGA at test line 1 under different strength of soft rock

      图  9  不同软岩强度下A1监测点加速度傅式谱

      a. 强度1;b. 强度2;c. 强度3

      Fig.  9.  Fourier spectra of acceleration of A1 monitoring site under different strength of soft rock

      图  10  不同岩层层面强度下坡表各点最大位移和测线1上各点PGA

      a. 坡表监测点最大位移;b. 测线1上监测点PGA

      Fig.  10.  Maximum displacements of monitoring sites on slope surface and PGA at test line 1under different strength of bedding plane

      图  11  不同岩层层面强度下A1监测点加速度傅式谱

      Fig.  11.  Fourier spectra of acceleration of A1 monitoring site under different strength of bedding plane

      图  12  不同层厚比下坡表各点最大位移和测线1上各点PGA

      a. 坡表监测点最大位移;b. 测线1上监测点PGA

      Fig.  12.  Maximum displacements of monitoring sites on slope surface and PGA of monitoring sites at test line 1 under different thickness ratio

      图  13  不同层厚比下A1监测点加速度傅式谱

      a. 层厚比0.5;b. 层厚比1;c. 层厚比1.5

      Fig.  13.  Fourier spectra of acceleration of A1 monitoring site under different thickness ratio

      表  1  岩石物理力学指标

      Table  1.   Physical and mechanical indices of rock

      序号 密度(kg·m-3) 粘聚力(MPa) 内摩擦角(°) 体积模量(GPa) 剪切模量(GPa) 抗拉强度(MPa)
      1
      2
      3
      4
      2 000
      2 150
      2 350
      2 650
      0.30
      0.45
      0.60
      1.50
      30
      35
      40
      50
      0.17
      0.83
      3.48
      10.00
      0.11
      0.48
      1.38
      5.40
      0.10
      0.22
      0.60
      0.80
      下载: 导出CSV

      表  2  岩层层面物理力学指标

      Table  2.   Physical and mechanical indices of bedding plane

      序号 粘聚力(MPa) 内摩擦角(°) 法向刚度(GPa·m-1) 切向刚度(GPa·m-1)
      1
      2
      3
      0.1
      0.1
      0.1
      20
      30
      40
      12
      12
      12
      6
      6
      6
      下载: 导出CSV

      表  3  数值模拟加载方案

      Table  3.   Loading schemes of numerical simulation

      工况 软岩强度 岩层层面强度 层厚比
      1
      2
      3
      4
      5
      6
      7
      1
      2
      3
      3
      3
      3
      3
      B
      B
      B
      A
      C
      B
      B
      1.0
      1.0
      1.0
      1.0
      1.0
      0.5
      1.5
      下载: 导出CSV
    • Cui, F. P., Xu, Q., Yin, Y. P., et al., 2018. Dynamic Response of Slope Based on Fracture Mechanisms of Strip-Shape Hypocenter. Rock and Soil Mechanics, 39(1): 320-330(in Chinese with English abstract).
      Dong, M. L., Zhang, F. M., Lv, J. Q., et al., 2020. Study on Deformation and Failure Law of Soft-Hard Rock Interbedding Toppling Slope Base on Similar Test. Bulletin of Engineering Geology and the Environment, 79(9): 4625-4637. https://doi.org/10.1007/s10064-020-01845-4
      Du, X. L., Dai, J., Wei, J. S., et al., 2009. Application of Seismic Wave Theory to Analysis of Rock Slope Stability. Journal of China Three Gorges University(Natural Sciences), 31(2): 55-58(in Chinese with English abstract).
      Feng, J., Zhang, Y. B., He, J. X., et al., 2022. Dynamic Response and Failure Evolution of Low-Angled Interbedding Soft and Hard Stratum Rock Slope under Earthquake. Bulletin of Engineering Geology and the Environment, 81(10): 1-10. https://doi.org/10.1007/s10064-022-02910-w
      Gao, G., Meguid, M. A., Chouinard, L. E., et al., 2021. Dynamic Disintegration Processes Accompanying Transport of an Earthquake-Induced Landslide. Landslides, 18(3): 909-933. https://doi.org/10.1007/s10346-020-01508-1
      Guo, M. Z., Gu, K. S., Zhang, H., et al., 2022. Experimental Study of Dynamic Response Law of Bedding Rock Slopewith Weak Interlayer under Strong Earthquake. Rock and Soil Mechanics, 43(5): 1306-1316(in Chinese with English abstract).
      Huang, Y. D., Xu, C., Zhang, X. L., et al., 2021. An Updated Database and Spatial Distribution of Landslides Triggered by the Milin, Tibet Mw 6.4 Earthquake of 18 November 2017. Journal of Earth Science, 32(5): 1069-1078. https://doi.org/10.1007/s12583-021-1433-z
      Li, L. Q., He, W., Wang, T., et al., 2020. Study on Fracture Development Characteristics and Marginal Spectral Entropy Response of Soft and Hard Interbedded Slope with Steep Inclination Subjected to Strong Earthquakes. Rock and Soil Mechanics, 41(10): 3456-3464 (in Chinese with English abstract).
      Li, Y. J., Chen, L. W., Lu, Y. Z., et al., 2013. Numerical Simulation on Influences of Wenchuan Earthquake onthe Stability of Faults in the Neighborhood. Earth Science, 38(2): 398-410(in Chinese with English abstract).
      Lin, M. L., Wang, K. L., 2006. Seismic Slope Behavior in a Large-Scale Shaking Table Model Test. Engineering Geology, 86(2/3): 118-133. https://doi.org/10.1016/j.enggeo.2006.02.011
      Liu, B., He, K., Han, M., et al., 2021. Dynamic Process Simulation of the Xiaogangjian Rockslide Occurred in Shattered Mountain Based on 3DEC and DFN. Computersand Geotechnics, 134: 104122. https://doi.org/10.1016/j.compgeo.2021.104122
      Liu, C. L., Qi, S. W., Tong, L. Q., et al., 2010. Great Landslides in Himalaya Mountain Area and Their Occurrence with Lithology. Journal of Engineering Geology, 18(5): 669-676(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2010.05.010
      Liu, X. R., He, C. M., Liu, S. L., et al., 2019. Dynamic Stability of Slopes with Interbeddings of Soft and Hard Layers under High-Frequency Microseims. Chinese Journal of Geotechnical Engineering, 41(3): 430-438(in Chinese with English abstract).
      Luo, D. G., Liu, J. P., Jin, C., et al., 2017. Instantaneous Seismic Attributes and Response Characteristics of Active Faults. Earth Science, 42(3): 462-470(in Chinese with English abstract).
      Luo, Y. H., Fan, X. M., Huang, R. Q., et al., 2020. Topographic and Near-Surface Stratigraphic Amplification of the Seismicresponse of a Mountain Slope Revealed by Field Monitoring and Numericalsimulations. Engineering Geology, 271: 105607. https://doi.org/10.1016/j.enggeo.2020.105607
      Luo, Y. H., Zhang, Y., Wang, Y. S., et al., 2021. A Unique Failure Model for a Landslide Induced by the Wenchuan Earthquake in the Liujiawan Area, Qingchuan County, China. Engineering Geology, 295: 106412. https://doi.org/10.1016/j.enggeo.2021.106412
      Mreyen, A., Donati, D., Elmo, D., et al., 2022. Dynamic Numerical Modelling of Co-Seismic Landslides Using the 3D Distinct Element Method: Insights from the Balta Rockslide (Romania) Engineering Geology, 307: 106774. https://doi.org/10.1016/j.enggeo.2022.106774
      Pal, S., Kaynia, A. M., Bhasin, R. K., et al., 2012. Earthquake Stability Analysis of Rock Slopes; A Case Study. Rock Mechanics and Rock Engineering, 45(2): 205-215. https://doi.org/10.1007/s00603-011-0145-6
      Qi, S. W., Xu, Q., Lan, H. X., et al., 2010. Spatial Distribution Analysis of Landslides Triggered by 2008.5. 12 Wenchuan Earthquake, China. Engineering Geology, 116(1-2): 95-108. https://doi.org/10.1016/j.enggeo.2010.07.011
      Wu, J. H., Chen, C. H., 2011. Application of DDA to Simulate Characteristics of the Tsaoling Landslide. Computersand Geotechnics, 38(5): 741-750. https://doi.org/10.1016/j.compgeo.2011.04.003.
      Wu, J. H., Hsieh, P. H., 2021. Simulating the Postfailure Behavior of the Seismically- Triggered Chiu-fen-erh-shan Landslide Using 3DEC. Engineering Geology, 287: 106113. https://doi.org/10.1016/j.enggeo.2021.106113
      Wu, Q., Kulatilake, P. H. S. W., 2012. REV and Its Properties on Fracture System and Mechanical Properties, and An Orthotropic Constitutive Model for A Jointed Rock Mass in A DamSite in China. Computers and Geotechnics, 43: 124-142. https://doi.org/10.1016/j.compgeo.2012.02.010.
      Wu, S. B., Wang, L. Q., Wu, Q., et al., 2022. Advance and Prospect for Seismic Dynamic Response of Anchored Rock Slope. Earth Science, 1-13(in Chinese with English abstract).
      Xu, W. J., Wang, L., Cheng, K., 2022. The Failure and River Blocking Mechanism of Large‑Scale Anti‑dip Rock Landslide Induced by Earthquake. Rock Mechanics and Rock Engineering, 55(8): 4941-4961. https://doi.org/10.1007/s00603-022-02903-x
      Yan, Z. X., Zhang, S., Zhang, X. D., et al., 2011. Study of Dynamic Response of Bedding Rock Slope under Earthquake and Influence of Ground Motion Parameters. Chinese Journal of Rock Mechanics and Engineering, 30(S2): 3522-3528(in Chinese with English abstract).
      Zhang, Y. B., Wang, J. M., Xu, Q., et al., 2015. DDAValidation of the Mobility of Earthquake-Induced Landslides. Engineering Geology, 194: 38-51. https://doi.org/10.1016/j.enggeo.2014.08.024
      Zhao, F., Yu, S. B., Li, B., et al., 2022. Research Advances on Large-Scale Shaking Table Test for Rocky Slopes under Earthquake. Earth Science, 1-13(in Chinese with English abstract).
      Zheng, Y. R., Zhao, S. Y., Zhang, L. Y., 2002. Slope Stability Analysis by Strength Reduction FEM. Engineering Science, (10): 57-61(in Chinese with English abstract).
      Zou, Y., Qi, S. W., Guo, S. F., et al., 2022. Factors Controlling the Spatial Distribution of Coseismic Landslides Triggered by the Mw 6.1 Ludian Earthquake in China. Engineering Geology, 296, 106477. https://doi.org/10.1016/j.enggeo.2021.106477
      崔芳鹏, 许强, 殷跃平, 等, 2018. 基于带状震源破裂机制的斜坡动力响应. 岩土力学, 39(1): 320-330. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801040.htm
      杜晓丽, 戴俊, 魏京胜, 等, 2009. 岩质边坡稳定性分析中地震波理论的应用研究. 三峡大学学报(自然科学版), 31(2): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200902013.htm
      郭明珠, 谷坤生, 张合, 等, 2022. 强震作用下含软弱夹层顺层岩质斜坡动力响应规律试验研究. 岩土力学, 43(5): 1306-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202205016.htm
      李龙起, 何川, 王滔, 等, 2020. 陡倾软硬互层顺向坡强震裂隙发育特征及边际谱熵值响应规律. 岩土力学, 41(10): 3456-3464. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010032.htm
      李玉江, 陈连旺, 陆远忠, 等, 2013. 汶川地震的发生对周围断层稳定性影响的数值模拟. 地球科学, 38(2): 398-410. doi: 10.3799/dqkx.2013.039
      刘春玲, 祁生文, 童立强, 等, 2010. 喜马拉雅山地区重大滑坡灾害及其与地层岩性的关系研究. 工程地质学报, 18(5): 669-676. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201005011.htm
      刘新荣, 何春梅, 刘树林, 等, 2019. 高频次微小地震下顺倾软硬互层边坡动力稳定性研究. 岩土工程学报, 41(3): 430-438. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903005.htm
      罗登贵, 刘江平, 金聪, 等, 2017. 活断层的地震响应特征与瞬时地震属性. 地球科学, 42(3): 462-470. doi: 10.3799/dqkx.2017.036
      吴善百, 王亮清, 吴琼, 等, 2022. 地震作用下锚固岩质边坡动力响应研究进展与展望. 地球科学, 1-13. doi: 10.3799/dqkx.2022.374
      言志信, 张森, 张学东, 等, 2011. 顺层岩质边坡地震动力响应及地震动参数影响研究. 岩石力学与工程学报, 30(S2): 3522-3528. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2022.htm
      赵飞, 俞松波, 李博, 等, 2022. 地震作用下岩质边坡大型振动台试验研究进展. 地球科学, 1-13. doi: 10.3799/dqkx.2022.317
      郑颖人, 赵尚毅, 张鲁渝, 2002. 用有限元强度折减法进行边坡稳定分析. 中国工程科学, (10): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200210010.htm
    • 加载中
    图(13) / 表(3)
    计量
    • 文章访问数:  702
    • HTML全文浏览量:  531
    • PDF下载量:  103
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-01-02
    • 刊出日期:  2023-08-25

    目录

      /

      返回文章
      返回