• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    Verhulst反函数预测模型的改进及滑坡时间概率预测

    陈铭熙 陶培捷 周创兵 姜清辉

    陈铭熙, 陶培捷, 周创兵, 姜清辉, 2024. Verhulst反函数预测模型的改进及滑坡时间概率预测. 地球科学, 49(5): 1692-1705. doi: 10.3799/dqkx.2023.003
    引用本文: 陈铭熙, 陶培捷, 周创兵, 姜清辉, 2024. Verhulst反函数预测模型的改进及滑坡时间概率预测. 地球科学, 49(5): 1692-1705. doi: 10.3799/dqkx.2023.003
    Chen Mingxi, Tao Peijie, Zhou Chuangbing, Jiang Qinghui, 2024. Model Modification of Verhulst Inverse-Function Forecasting Model and Probabilistic Forecast for Landslide Failure Time. Earth Science, 49(5): 1692-1705. doi: 10.3799/dqkx.2023.003
    Citation: Chen Mingxi, Tao Peijie, Zhou Chuangbing, Jiang Qinghui, 2024. Model Modification of Verhulst Inverse-Function Forecasting Model and Probabilistic Forecast for Landslide Failure Time. Earth Science, 49(5): 1692-1705. doi: 10.3799/dqkx.2023.003

    Verhulst反函数预测模型的改进及滑坡时间概率预测

    doi: 10.3799/dqkx.2023.003
    基金项目: 

    广西科技基地和人才专项项目 AD23026111

    广西自然科学基金项目 2024GXNSFBA010226

    广西科技重大专项 AA23023016

    详细信息
      作者简介:

      陈铭熙(1993-),男,助理教授,博士,主要从事滑坡灾害预测预警与风险评估等方面的教学和科研. ORCID:0000-0003-3988-8329.E-mail:chenmingxi@gxu.edu.cn

      通讯作者:

      姜清辉,E-mail:jqh1972@whu.edu.cn

    • 中图分类号: P694

    Model Modification of Verhulst Inverse-Function Forecasting Model and Probabilistic Forecast for Landslide Failure Time

    • 摘要: 滑坡时间预测是滑坡灾害防治的重要组成部分,但由于滑坡演化存在不确定性,准确预测滑坡的发生极为困难.Verhulst反函数模型是一种常用的滑坡时间预测模型,但其存在计算起始时刻选择不当会造成监测数据拟合质量差和预测精度低的问题.针对这一不足,提出了一种改进的Verhulst反函数模型(MVIF模型),并进行近实时概率预测分析.结果表明:(1)MVIF模型改善了原模型对计算起始时刻选择苛刻的问题;(2)MVIF模型预测精度较高,在滑坡进入中等加速变形阶段之后可进行可靠的预测;(3)预测滑坡时间与破坏概率结合提供了一种新的滑坡预报准则.该研究可为蠕滑型滑坡的预警预报提供有价值的参考.

       

    • 图  1  VIF模型(a)及MVIF模型(b)的预测曲线示意

      Fig.  1.  Schematic diagram of the forecasting curves of the VIF model (a) and the MVIF model (b)

      图  2  20个滑坡案例的计算结果

      Fig.  2.  Calculated results of 20 landslide cases

      图  3  加速变形阶段不同时期MVIF模型的模型不确定性{μm, σm}

      Fig.  3.  Model uncertainty {μm, σm} of the MVIF model for different periods of accelerating deformation phase

      图  4  周至滑坡位移监测数据及模型预测曲线

      Fig.  4.  Displacement monitoring data recorded from the Zhouzhi landslide and model forecasting curves

      图  5  周至滑坡的近实时预测结果

      Fig.  5.  Near real-time forecasting results of the Zhouzhi landslide

      图  6  周至滑坡预测滑坡时间的概率分布

      Fig.  6.  Probabilistic distribution of the forecasting landslide time of the Zhouzhi landslide

      图  7  茂县滑坡位移监测数据及模型预测曲线

      Fig.  7.  Displacement monitoring data recorded from the Maoxian landslide and model forecasting curves

      图  8  茂县滑坡的近实时预测结果

      Fig.  8.  Near real-time forecasting results of the Maoxian landslide

      图  9  茂县滑坡预测滑坡时间的概率分布

      Fig.  9.  Probabilistic distribution of the forecasting landslide time of the Maoxian landslide

      图  10  案例Failure#1和Failure#3的预测结果

      Fig.  10.  Forecasting results for the cases of Failure#1 and Failure#3

      图  11  呷爬滑坡的预测结果

      Fig.  11.  Forecasting result of the Gapa landslide

      图  12  Mesnil-Val崩塌和黑方台滑坡的预测结果

      Fig.  12.  Forecasting results of the Mesnil-Val collapse and the Heifangtai landslide

      图  13  基于MVIF模型的分阶段预测决策

      Fig.  13.  Phased forecasting decision principle based on the MVIF model

      图  14  周至滑坡和茂县滑坡的滑坡时间预报分析

      Fig.  14.  Analysis of landslide time-of-failure forecasts for the Zhouzhi landslide and the Maoxian landslide

      表  1  滑坡案例信息与最后一次观测的预测结果

      Table  1.   Information of landslide cases and forecasting results of final observation

      序号 滑坡名称 Tf/d μf/d σf/d 预测滑坡时间95%CI/d 参考文献
      仅考虑观测不确定性 考虑模型不确定性
      1 Vajont 725 725.11 6.60E-03 725.10 725.12 723.54 727.26 Seguí et al.(2020
      2 Preonzo 673 673.10 8.30E-03 673.08 673.12 671.53 675.25 Loew et al.(2017)
      3 Mt. Beni 249 246.09 3.80E-01 245.35 246.83 244.37 248.39 Gigli et al.(2011
      4 Nchanga Open Pit 220.3 220.71 2.00E-01 220.32 221.10 219.10 222.90 Naismith and Wessels(2005
      5 白什乡 196 196.20 3.40E-02 196.13 196.27 194.63 198.35 许强和曾裕平(2009
      6 党川6号滑坡 154.2 154.00 8.80E-02 153.83 154.17 152.42 156.16 王智伟等(2020
      7 美国明尼苏达州2号国道 113 113.26 1.80E-02 113.22 113.30 111.69 115.41 陈贺等(2019
      8 平庄西煤矿4·17 106 106.05 8.80E-03 106.03 106.07 104.48 108.20 王东等(2020
      9 金龙沟 104.7 103.14 2.90E-01 102.57 103.71 101.48 105.38 冷超勤和张扬(2016
      10 Ohto 89 87.97 6.70E-05 87.97 87.97 86.40 90.12 Suwa et al.(2010)
      11 New Tredegar 71 73.08 7.60E-02 72.93 73.23 71.50 75.24 Carey et al.(2007
      12 平庄西煤矿1·18 70 69.86 1.20E-02 69.84 69.88 68.29 72.01 何满潮等(2012
      13 Takabayama 64.1 64.15 3.60E-02 64.08 64.22 62.58 66.30 Saito(1979)
      14 Kagemori quarry 49 47.07 1.60E-03 47.07 47.07 45.50 49.22 Yamaguchi and Shimotani(1986
      15 Agoyama 26.1 24.79 2.20E-05 24.79 24.79 23.22 26.94 Saito(1979)
      16 Carlà2018 22.7 22.72 8.00E-03 22.70 22.74 21.15 24.87 Carlà et al.(2018
      17 龙井村 21.5 21.51 2.70E-08 21.51 21.51 19.94 23.66 亓星等(2020
      18 Ingelsberg 14.7 14.72 8.60E-08 14.72 14.72 13.15 16.87 Kieffer et al.(2016)
      19 Mount Owen Mine 12 11.66 9.40E-03 11.64 11.68 10.09 13.81 Harries et al.(2006
      20 Dosan Line 3.4 3.38 1.20E-04 3.38 3.38 1.81 5.53 Saito(1965)
      下载: 导出CSV

      表  2  周至滑坡MVIF模型和VIF模型的模型参数

      Table  2.   Model parameters of the MVIF and VIF models in the Zhouzhi landslide

      模型参数 Aa Bb C tf(d) Tf(d) 拟合优度R2
      MVIF-1 325.58 -0.11 -4.83 68.05 67.19 0.999 8
      MVIF-2 325.59 -0.11 -5.00 68.05 0.999 7
      VIF-1 83.63 1.25 - 66.90 0.897 6
      VIF-2 194.70 2.90 - 67.14 0.992 8
      下载: 导出CSV

      表  3  茂县滑坡MVIF模型和VIF模型的模型参数

      Table  3.   Model parameters of the MVIF and VIF models in the Maoxian landslide

      模型参数 Aa Bb C tf(d) Tf(d) 拟合优度R2
      MVIF-1 9.89 -3.38 -6.04 427.03 426 0.996 2
      MVIF-2 9.04 -11.36 -12.63 425.54 0.995 5
      VIF-1 3.43 0.0082 - 418.29 0.855 5
      VIF-2 8.33 0.020 - 416.50 0.995 1
      下载: 导出CSV
    • Amitrano, D., Grasso, J. R., Senfaute, G., 2005. Seismic Precursory Patterns before a Cliff Collapse and Critical Point Phenomena. Geophysical Research Letters, 32(8): L08314. https://doi.org/10.1029/2004gl022270
      Carey, J. M., Moore, R., Petley, D., et al., 2007. Pre- Failure Behaviour of Slope Materials and Their Significance in the Progressive Failure of Landslides. Landslides and Climate Change: Challenges and Solutions, London, 207-215.
      Carlà, T., Farina, P., Intrieri, E., et al., 2017a. On the Monitoring and Early-Warning of Brittle Slope Failures in Hard Rock Masses: Examples from an Open-Pit Mine. Engineering Geology, 228: 71-81. https://doi.org/10.1016/j.enggeo.2017.08.007
      Carlà, T., Intrieri, E., Di Traglia, F., et al., 2017b. Guidelines on the Use of Inverse Velocity Method as a Tool for Setting Alarm Thresholds and Forecasting Landslides and Structure Collapses. Landslides, 14(2): 517-534. https://doi.org/10.1007/s10346-016-0731-5
      Carlà, T., Farina, P., Intrieri, E., et al., 2018. Integration of Ground-Based Radar and Satellite InSAR Data for the Analysis of an Unexpected Slope Failure in an Open-Pit Mine. Engineering Geology, 235: 39-52. https://doi.org/10.1016/j.enggeo.2018.01.021
      Chen, H., Tang, H., Ge, X. R., et al., 2019. Study on Early Warning Index and Early Warning Forecast of Creep Landslide Based on Deep Displacement. Chinese Journal of Rock Mechanics and Engineering, 38(S1): 3015-3024 (in Chinese with English abstract).
      Crosta, G. B., Agliardi, F., 2003. Failure Forecast for Large Rock Slides by Surface Displacement Measurements. Canadian Geotechnical Journal, 40(1): 176-191. https://doi.org/10.1139/t02-085
      Fang, S. A., Xu, Q., Xiu, D. H., et al., 2021. A Study of the Predicted Instability Time of Sudden Loess Landslides Based on the SLO Model. Hydrogeology & Engineering Geology, 48(4): 169-179 (in Chinese with English abstract).
      Fukuzono, T., 1985. A New Method for Predicting the Failure Time of a Slope. The Fourth International Conference and Field Workshop on Landslides, Tokyo, 145-150.
      Gigli, G., Fanti, R., Canuti, P., et al., 2011. Integration of Advanced Monitoring and Numerical Modeling Techniques for the Complete Risk Scenario Analysis of Rockslides: The Case of Mt. Beni (Florence, Italy). Engineering Geology, 120(1/2/3/4): 48-59. https://doi.org/10.1016/j.enggeo.2011.03.017
      Guo, Z. Z., Yang, Y. F., He, J., et al., 2022. A Novel Deep Learning Model to Predict Landslide Displacement Considering Attention Mechanism. Earth Science, 1-21 (in Chinese with English abstract).
      Harries, N., Noon, D., Rowley, K., 2006. Case Studies of Slope Stability Radar Used in Open Cut Mines. In: Stability of Rock Slopes in Open Pit Mining and Civil Engineering Situations, Proceedings International Symposium on Stability of Rock Slopes in Open Pit Mining and Civil Engineering. The South African Institute of Mining and Metallurgy, Johannesburg, 335-342.
      He, M. C., Han, X., Zhang, B., et al., 2012. Real-Time Remote Monitoring and Forecasting Technology for Landslide Disasters Based on Sliding Force Variation and Its Engineering Application. Journal of Heilongjiang Institute of Science and Technology, 22(4): 337-342 (in Chinese with English abstract).
      He, X. H., 2018. Modification of Verhulst Inverse Function Model of Landslide Forecast. Geology and Mineral Resources of South China, 34(4): 289-293 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-3701.2018.04.002
      Hu, X. L., Wu, S. S., Zhang, G. C., et al., 2021. Landslide Displacement Prediction Using Kinematics-Based Random Forests Method: A Case Study in Jinping Reservoir Area, China. Engineering Geology, 283: 105975. https://doi.org/10.1016/j.enggeo.2020.105975
      Intrieri, E., Carlà, T., Gigli, G., 2019. Forecasting the Time of Failure of Landslides at Slope-Scale: A Literature Review. Earth-Science Reviews, 193: 333-349. https://doi.org/10.1016/j.earscirev.2019.03.019
      Kieffer, D. S., Valentin, G., Unterberger, K., 2016. Continuous Real-Time Slope Monitoring of the Ingelsberg in Bad Hofgastein, Austria. Geomechanics and Tunnelling, 9(1): 37-44. https://doi.org/10.1002/geot.201500047
      Leng, C. Q., Zhang, Y., 2016. Prediction of Slope Instability Time in Jinlonggou Yard Based on Deformation Monitoring. Design of Hydroelectric Power Station, 32(1): 84-88 (in Chinese). doi: 10.3969/j.issn.1003-9805.2016.01.021
      Li, T. B., Chen, M. D., 1996. Felhaas Inverse Function Model Method for Landslide Time Prediction. Journal of Geological Hazards and Environment Preservation, 7(3): 13-17, 29 (in Chinese with English abstract).
      Loew, S., Gschwind, S., Gischig, V., et al., 2017. Monitoring and Early Warning of the 2012 Preonzo Catastrophic Rockslope Failure. Landslides, 14(1): 141-154. https://doi.org/10.1007/s10346-016-0701-y
      Long, W. X., Lin, J., Xu, X. H., et al., 2008. Selection of Initial Prediction Time of Landslide Based on Verhulst Inverse Function Model. Chinese Journal of Rock Mechanics and Engineering, 27(S1): 3298-3304 (in Chinese with English abstract).
      Naismith, W. A., Wessels, S. D. N., 2005. Management of a Major Slope Failure at Nchanga Open Pit, Chingola, Zambia. Journal of the Southern African Institute of Mining and Metallurgy, 105(9): 619-626. https://hdl.handle.net/10520/AJA0038223X_3086 https://hdl.handle.net/10520/AJA0038223X_3086
      Qi, X., Zhu, X., Xu, Q., et al., 2020. Improvement and Application of Landslide Proximity Time Prediction Method Based on Saito Model. Journal of Engineering Geology, 28(4): 832-839 (in Chinese with English abstract).
      Ren, K. Y., Yao, X., Zhao, X. M., et al., 2020. Study on Landslide Instability and Failure Prediction Based on Time Series InSAR, GPS and Image Migration Measurement. Chinese Journal of Rock Mechanics and Engineering, 39(S2): 3421-3431 (in Chinese with English abstract).
      Saito, M., 1965. Forecasting the Time of Occurrence of a Slope Failure. In: Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering. Montreal, 2: 537-541.
      Saito, M., 1979. Evidential Study on Forecasting Occurrence of Slope Failure. OYO Technical Report, 1: 1-23.
      Seguí, C., Rattez, H., Veveakis, M., 2020. On the Stability of Deep-Seated Landslides. The Cases of Vaiont (Italy) and Shuping (Three Gorges Dam, China). Journal of Geophysical Research: Earth Surface, 125(7): e2019JF005203. https://doi.org/10.1029/2019JF005203
      Suwa, H., Mizuno, T., Ishii, T., 2010. Prediction of a Landslide and Analysis of Slide Motion with Reference to the 2004 Ohto Slide in Nara, Japan. Geomorphology, 124(3/4): 157-163. https://doi.org/10.1016/j.geomorph.2010.05.003
      Tang, H. M., Li, C. D., Hu, W., et al., 2022. What is the Physical Mechanism of Major Landslides?. Earth Science, 47(10): 3902-3903 (in Chinese with English abstract).
      Wang, D., Du, H., Wang, Q. L., 2020. Research and Application for Early Warning of Landslides Based on Hierarchical Clustering Coupling Weighting Markov Chain Model. Journal of China Coal Society, 45(5): 1783-1794 (in Chinese with English abstract).
      Wang, H. H., Zhong, P., Xiu, D. H., et al., 2022. Monitoring Tilting Angle of the Slope Surface to Predict Loess Fall Landslide: An on-Site Evidence from Heifangtai Loess Fall Landslide in Gansu Province, China. Landslides, 19(3): 719-729. https://doi.org/10.1007/s10346-021-01727-0
      Wang, Z. W., Wang, L., Han, Q. Q., et al., 2020. Data Decoding Method of the Displacement Sensor and Its Application in Landslide Monitoring. Journal of Geodesy and Geodynamics, 40(4): 436-440 (in Chinese with English abstract).
      Xu, Q., 2020. Understanding the Landslide Monitoring and Early Warning: Consideration to Practical Issues. Journal of Engineering Geology, 28(2): 360-374 (in Chinese with English abstract).
      Xu, Q., Tang, M. G., Huang, R. Q., et al., 2015. Monitoring, Early Warning, and Emergency Disposal of Large-Scale Landslides. Science Press, Beijing (in Chinese).
      Xu, Q., Zeng, Y. P., 2009. Research on Acceleration Variation Characteristics of Creep Landslide and Early- Warning Prediction Indicator of Critical Sliding. Journal of Rock Mechanics and Engineering, 28(6): 1099-1106 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2009.06.003
      Yamaguchi, U., Shimotani, T., 1986. A Case Study of Slope Failure in a Limestone Quarry. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 23(1): 95-104. https://doi.org/10.1016/0148-9062(86)91670-0
      Yan, B., 2021. MT-InSAR Technology Combined with Inverse-Velocity Method for High Level Landslide Monitoring and Early Warning. Southwest Jiaotong University, Chengdu (in Chinese with English abstract).
      Yan, T. Z., 1998. Landslide Dynamic Law and Forecasting Application. The 3th National Congress of Engineering Geology, Chengdu, 37-43 (in Chinese).
      Yu, X., Zhao, Q. H., Zhang, C. H., et al., 2019. Application of GNSS Real-Time Monitoring in Landslide Early Warning: Case of Landslide of G108 Section in Zhouzhi County, Shannxi Province. Yangtze River, 50(10): 126-130, 142 (in Chinese with English abstract).
      Zhang, J., Wang, Z. P., Zhang, G. D., et al., 2020. Probabilistic Prediction of Slope Failure Time. Engineering Geology, 271: 105586. https://doi.org/10.1016/j.enggeo.2020.105586
      陈贺, 汤华, 葛修润, 等, 2019. 基于深部位移的蠕滑型滑坡预警指标及预警预报研究. 岩石力学与工程学报, 38(S1): 3015-3024. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1042.htm
      方汕澳, 许强, 修德皓, 等, 2021. 基于斜率模型的突发型黄土滑坡失稳时间预测. 水文地质工程地质, 48(4): 169-179. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202104022.htm
      郭子正, 杨玉飞, 何俊, 等, 2022. 考虑注意力机制的新型深度学习模型预测滑坡位移. 地球科学, 1-21.
      何满潮, 韩雪, 张斌, 等, 2012. 滑坡地质灾害远程实时监测预报技术与工程应用. 黑龙江科技学院学报, 22(4): 337-342. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJI201204005.htm
      贺小黑, 2018. Verhulst反函数滑坡预测预报模型的改进. 华南地质与矿产, 34(4): 289-293. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201804004.htm
      冷超勤, 张扬, 2016. 基于变形监测的金龙沟料场边坡失稳时间预测. 水电站设计, 32(1): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-SDSJ201601021.htm
      李天斌, 陈明东, 1996. 滑坡时间预报的费尔哈斯反函数模型法. 地质灾害与环境保护, 7(3): 13-17, 29. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB603.002.htm
      龙万学, 林剑, 许湘华, 等, 2008. Verhulst反函数模型滑坡起始预测时刻的选择. 岩石力学与工程学报, 27(S1): 3298-3304. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S1109.htm
      亓星, 朱星, 许强, 等, 2020. 基于斋藤模型的滑坡临滑时间预报方法改进及应用. 工程地质学报, 28(4): 832-839. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004017.htm
      任开瑀, 姚鑫, 赵小铭, 等, 2020. 基于时序InSAR、GPS、影像偏移测量3种监测数据的滑坡失稳破坏预测研究. 岩石力学与工程学报, 39(S2): 3421-3431. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S2021.htm
      唐辉明, 李长冬, 胡伟, 等, 2022. 重大滑坡启滑的物理机制是什么?. 地球科学, 47(10): 3902-3903. doi: 10.3799/dqkx.2022.857
      王东, 杜涵, 王前领, 2020. 基于系统聚类‒加权马尔科夫耦合模型滑坡预警方法研究与应用. 煤炭学报, 45(5): 1783-1794. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005024.htm
      王智伟, 王利, 韩清清, 等, 2020. 一种位移传感器数据解码方法及其在滑坡监测中的应用. 大地测量与地球动力学, 40(4): 436-440. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202004022.htm
      许强, 2020. 对滑坡监测预警相关问题的认识与思考. 工程地质学报, 28(2): 360-374. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002017.htm
      许强, 汤明高, 黄润秋, 等, 2015. 大型滑坡监测预警与应急处置. 北京: 科学出版社.
      许强, 曾裕平, 2009. 具有蠕变特点滑坡的加速度变化特征及临滑预警指标研究. 岩石力学与工程学报, 28(6): 1099-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200906005.htm
      闫斌, 2021. 基于逆速率法的MT-InSAR高位滑坡监测及预警. 成都: 西南交通大学.
      晏同珍, 1988. 滑坡动态规律及预测应用. 成都: 全国第三次工程地质大会论文选集(下卷), 37-43. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ198812002007.htm
      喻小, 赵其华, 张埕豪, 等, 2019. GNSS实时监测在滑坡预警中的应用: 以陕西省周至G108路段滑坡为例. 人民长江, 50(10): 126-130, 142. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201910022.htm
    • 加载中
    图(14) / 表(3)
    计量
    • 文章访问数:  520
    • HTML全文浏览量:  104
    • PDF下载量:  58
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-11-05
    • 网络出版日期:  2024-06-04
    • 刊出日期:  2024-05-25

    目录

      /

      返回文章
      返回