Riverine Water Chemistry and Rock Weathering Processes of Qingyi River Basin
-
摘要: 为研究中国东部亚热带流域的岩石风化特征,以长江下游青弋江流域为研究区,通过测定青弋江干支流河水及雨水的主要离子浓度,结合水化学和正演模型识别流域岩石风化特征并估算其岩石风化速率和对大气CO2消耗速率.结果表明:流域岩石风化受人为活动影响小,岩石风化以碳酸参与风化为主,硫酸与硝酸的作用可忽略.流域河水阳离子主要来源为碳酸盐岩风化(占59.2%),其次为硅酸盐岩(17.9%).大气降水和蒸发岩的贡献较低,分别占9.6%和5.6%.碳酸盐岩和硅酸盐岩风化速率均为上游山区支流‒徽水(32.04 t·km‒2·a‒1和20.97 t·km‒2·a‒1) > 青弋江干流(24.12 t·km‒2·a‒1和8.91 t·km‒2·a‒1) > 下游平原支流‒漳河(13.68 t·km‒2·a‒1和2.85 t·km‒2·a‒1);CO2消耗速率为徽水(5.86×105 mol·km‒2·a‒1和3.29×105 mol·km‒2·a‒1) > 青弋江(2.45×105 mol·km‒2·a‒1和2.43×105 mol·km‒2·a‒1) > 漳河(0.77×105 mol·km‒2·a‒1和1.39×105 mol·km‒2·a‒1).青弋江流域的岩石风化以碳酸风化碳酸盐岩为主,其风化速率略低于我国东部的其他亚热带硅酸盐岩分布区.青弋江流域的化学风化速率在空间上有所差异,上游山区的硅酸盐岩风化为全流域贡献了更多碳汇,对区域碳循环过程具有重要意义.Abstract: To investigate the rock weathering processes in subtropical basin in east China, we analyzed major ion compositions of rivers and precipitation samples in the Qingyi River Basin in the lower reach of the Yangtze River. In this study, the characteristics of weathering processes in the Qingyi River Basin were identified, and the rock weathering rates and consumption rates of atmospheric CO2 were estimated based on water chemistry and the forward model. The results show that the anthropogenic influences on rock weathering were not significant, which means the rock weathering in the study area was mainly induced by carbonic acid while the influence of sulfuric acid and nitric acid could be neglected. The cations of rivers were mainly contributed by weathering of carbonates (59.2%), followed by weathering of silicates (17.9%). Atmospheric precipitation and evaporites contributed 9.6% and 5.6%, respectively. Spatially, the carbonate weathering rates and silicate weathering rates decreased in the order of tributary Huishui River in the upstream mountainous areas (32.04 t·km‒2·a‒1 and 20.97 t·km‒2·a‒1) > main stream of Qingyi River (24.12 t·km‒2·a‒1 and 8.91 t·km‒2·a‒1) > tributary Zhanghe River in the downstream areas (13.68 t·km‒2·a‒1 and 2.85 t·km‒2·a‒1). Similarly, the CO2 consumption rates from carbonates weathering and silicate weathering were in the order of tributary Huishui River (5.86×105 mol·km‒2·a‒1 and 3.29×105 mol·km‒2·a‒1) > main stream of Qingyi River (2.45×105 mol·km‒2·a‒1 and 2.43×105 mol·km‒2·a‒1) > tributary Zhanghe River (0.77×105 mol·km‒2·a‒1 and 1.39×105 mol·km‒2·a‒1). In conclusion, carbonate weathering induced by carbonic acid was dominant in the Qingyi River Basin, with chemical weathering rates slightly lower than those of similar silicate-dominated subtropical areas in east China. The rock weathering rates in the study area differed spatially. In particular, silicate weathering in upstream mountainous areas accounted for more carbon sink of the whole Qingyi River Basin, which is of great importance for the regional carbon cycle.
-
Key words:
- subtropical /
- Qingyi River Basin /
- rock weathering /
- atmospheric CO2 consumption /
- carbon sink /
- hydrogeology
-
图 1 青弋江流域水文地质与采样点位置(根据Huang et al., 2022修改)
Fig. 1. Hydrogeological map and sampling locations of the Qingyi River basin (modified after Huang et al., 2022)
表 1 青弋江流域河流水化学组分
Table 1. Chemical compositions of rivers in the Qingyi River Basin
类别 统计量 pH EC T K+ Na+ Ca2+ Mg2+ Cl‒ SO42‒ NO3‒ HCO3‒ SiO2 μS/cm ℃ μmol/L μmol/L μmol/L μmol/L μmol/L μmol/L μmol/L μmol/L μmol/L 干流 最小值 7.19 98.1 24.3 22.6 130.0 357.5 83.3 65.2 50.1 56.4 632.1 25.0 最大值 9.59 311.0 32.5 60.8 478.3 1 072.5 355.4 453.5 331.3 217.7 1 996.1 145.0 平均值 7.85 147.6 27.8 36.6 193.1 534.9 161.2 188.3 117.3 121.4 1 023.1 110.2 标准差 0.71 65.4 2.9 10.1 105.7 207.0 89.5 127.0 84.7 57.0 374.5 35.1 支流 最小值 6.70 73.6 20.0 14.1 63.5 193.0 80.0 27.8 42.4 0.0 400.0 94.3 最大值 8.38 225.0 31.2 100.0 360.9 870.0 201.3 346.5 229.6 156.8 1 525.0 246.2 平均值 7.78 153.7 26.0 51.2 163.6 619.6 141.8 189.6 96.9 75.0 1 156.6 138.3 标准差 0.47 52.3 3.9 24.8 83.7 199.9 31.4 122.2 51.4 37.3 329.8 41.7 表 2 青弋江流域雨水样品主要水化学组分
Table 2. Field parameters and major ions of precipitation samples in the Qingyi River Basin
pH EC K+ Na+ Ca2+ Mg2+ Cl‒ SO42‒ NO3‒ HCO3‒ μS/cm μmol/L μmol/L μmol/L μmol/L μmol/L μmol/L μmol/L μmol/L 最小值 6.10 6.1 1.7 8.0 12.6 1.5 14.0 9.7 10.6 1.7 最大值 8.70 195.2 4.1 204.8 632.5 187.1 291.9 185.6 689.4 2.3 平均值 7.05 50.1 2.9 71.3 140.0 34.4 73.1 57.1 145.3 2.0 表 3 不同来源的离子摩尔比值
Table 3. Molar ratios of major ions from different endmembers
来源 Cl-/Na+ NO$ {}_{3}^{-} $/Na+ SO$ {}_{4}^{2-} $/Na+ Ca2+/Na+ Mg2+/Na+ K+/Na+ 大气降水 2.7 6.8 4.4 5.2 0.65 1.1 碳酸盐岩a 0 0 0 50 20 0 硅酸盐岩a 0 0 0 0.35 0.2 0.17 蒸发岩 - - - - - - 人为活动a 2 4 0 0 0 0.2 注:a引自Li et al. (2014).降水为研究区实测,由于研究区内无盐岩,计算时蒸发岩只考虑石膏([SO$ {}_{4}^{2-} $]蒸发岩= [Ca2+]蒸发岩). 表 4 青弋江流域化学风化速率及CO2消耗速率与我国其他流域对比
Table 4. Comparison of chemical weathering and CO2 consumption rates between the Qingyi River Basin and other basins in China
数据来源 河流名称 年均流量 流域面积 SWR CWR ΦCO2硅酸盐岩 ΦCO2碳酸盐岩 108 m3·a‒1 km2 t·km‒2·a‒1 105 mol·km‒2·a‒1 本研究M6 青弋江 48.56* 7 195 8.91 24.12 2.43 2.45 本研究T4 徽水 8.42* 1 064 20.97 32.04 5.86 3.29 本研究T10 漳河 2.61* 1 450 2.85 13.68 0.77 1.39 Xu and Liu, 2010 西江 2 300 3.53×105 7.45 78.5 1.54 8.04 余冲等, 2017 韩江 254 30 110 18.9 21.7 2.95 3.00 Liu et al., 2016 钱塘江 442.5 5.56×104 16.2 24.9 2.73 3.69 刘宝剑等, 2013 嫩江 225 2.97×105 2.80 1.37 0.40 0.29 陶正华等, 2015 澜沧江 290 8.6×104 3.27 33.13 1.18 2.47 怒江 531 1.13×105 4.27 33.54 1.40 2.22 金沙江 394 2.29×105 1.39 16.93 0.34 1.40 Zhang et al., 2021 全球平均‒硅酸盐岩 - - 1.67 - - - 注:*青弋江、徽水、漳河流量数据分别来源于西河水文站、平垣水文站、肇家埠水文站.韩江流域的流量为年径流量. -
An, Y. L., Lü, J. M., Luo, J., et al., 2018. Chemical Weathering and CO2 Consumption of Chishuihe River Basin, Guizhou Province. Advances in Earth Science, 33(2): 179-188 (in Chinese with English abstract). Bai, L. H., Shi, W. Z., Zhang, X. M., et al., 2021. Characteristics of Permian Marine Shale and Its Sedimentary Environment in Xuanjing Area, South Anhui Province, Lower Yangtze Area. Earth Science, 46(6): 2204-2217 (in Chinese with English abstract). Dupré, B., Dessert, C., Oliva, P., et al., 2003. Rivers, Chemical Weathering and Earth's Climate. Comptes Rendus-Geoscience, 335(16): 1141-1160. https://doi.org/10.1016/j.crte.2003.09.015 Gaillardet, J., Dupré, B., Louvat, P., et al., 1999. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chemical Geology, 159(1-4): 3-30. https://doi.org/10.1016/S0009-2541(99)00031-5 Galy, A., France-Lanord, C., 1999. Weathering Processes in the Ganges-Brahmaputra Basin and the Riverine Alkalinity Budget. Chemical Geology, 159(1-4): 31-60. https://doi.org/10.1016/S0009-2541(99)00033-9 Gibbs, R. J., 1970. Mechanisms Controlling World Water Chemistry. Science, 170(3962): 1088-1090.10.1126/science. 170.3962.1088 doi: 10.1126/science.170.3962.1088 Hu, C. S., Tian, J. M., He, C. B., et al., 2021. Development Causes of the Qingyijiang River on the Northern Piedmont of the Huangshan Mountain and Its Relationship with the Channelization of the Yangtze River. Scientia Geographica Sinica, 41(10): 1862-1872 (in Chinese with English abstract). Huang, X., Jin, M. G., Ma, B., et al., 2022. Identifying Nitrate Sources and Transformation in Groundwater in a Large Subtropical Basin under a Framework of Groundwater Flow Systems. Journal of Hydrology, 610: 127943. https://doi.org/10.1016/j.jhydrol.2022.127943 Huang, X. W., 2019. Study on the Sources and Transformation of Sulfate and Its Environmental Significance in Northern Mount Huangshan Watershed (Dissertation). Anhui University of Technology, Ma'anshan (in Chinese with English abstract). Larssen, T., Seip, H. M., Semb, A., et al., 1999. Acid Deposition and Its Effects in China: An Overview. Environmental Science & Policy, 2(1): 9-24. https://doi.org/10.1016/S1462-9011(98)00043-4 Li, S. L., Chetelat, B., Yue, F. J., et al., 2014. Chemical Weathering Processes in the Yalong River Draining the Eastern Tibetan Plateau, China. Journal of Asian Earth Sciences, 88: 74-84. https://doi.org/10.1016/j.jseaes.2014.03.011 Li, S. Y., Bush, R. T., 2015. Changing Fluxes of Carbon and Other Solutes from the Mekong River. Scientific Reports, 5: 16005. https://doi.org/10.1038/srep16005 Liu, B. J., Zhao, Z. Q., Li, S. L., et al., 2013. Characteristics of Silicate Rock Weathering in Cold Temperate Zone: A Case Study of Nenjiang River, China. Chinese Journal of Ecology, 32(4): 1006-1016 (in Chinese with English abstract). Liu, W. J., Shi, C., Xu, Z. F., et al., 2016. Water Geochemistry of the Qiantangjiang River, East China: Chemical Weathering and CO2 Consumption in a Basin Affected by Severe Acid Deposition. Journal of Asian Earth Sciences, 127(3): 246-256. https://doi.org/10.1016/j.jseaes.2016.06.010 Lü, J. M., 2018. The Hydrochemical Characteristics and Source-Sink Effects for Atmospheric CO2 of Small Karst River under the Influence of Anthropogenic Activities (Dissertation). Guizhou University, Guiyang (in Chinese with English abstract). Meybeck, M., 2003. 5.08-Global Occurrence of Major Elements in Rivers. Treatise on Geochemistry, 5(1): 207-223. https://doi.org/10.1016/B0-08-043751-6/05164-1 Millot, R., Gaillardet, J. É., Dupré, B., et al., 2003. Northern Latitude Chemical Weathering Rates: Clues from the Mackenzie River Basin, Canada. Geochimica et Cosmochimica Acta, 67(7): 1305-1329. https://doi.org/10.1016/S0016-7037(02)01207-3 Moon, S., Huh, Y., Qin, J. H., et al., 2007. Chemical Weathering in the Hong (Red) River Basin: Rates of Silicate Weathering and Their Controlling Factors. Geochimica et Cosmochimica Acta, 71(6): 1411-1430. https://doi.org/10.1016/j.gca.2006.12.004 Perrin, A. S., Probst, A., Probst, J. L., 2008. Impact of Nitrogenous Fertilizers on Carbonate Dissolution in Small Agricultural Catchments: Implications for Weathering CO2 Uptake at Regional and Global Scales. Geochimica et Cosmochimica Acta, 72(13): 3105-3123. https://doi.org/10.1016/j.gca.2008.04.011 Qin, X. Q., Jiang, Z. C., Zhang, L. K., et al., 2015. The Difference of the Weathering Rate between Carbonate Rocks and Silicate Rocks and Its Effects on the Atmospheric CO2 Consumption in the Pearl River Basin. Geological Bulletin of China, 34(9): 1749-1757 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2015.09.016 Qiu, X. L., Wang, B. L., Liang, C. S., et al., 2019. Impacts of Damming on Riverine Water Chemistry and Chemical Weathering Rate Estimation in Basins—A Case Study from the Sancha River and the Maotiao River. Earth and Environment, 47(6): 768-776 (in Chinese with English abstract). Roy, S., Gaillardet, J., Allègre, C. J., 1999. Geochemistry of Dissolved and Suspended Loads of the Seine River, France: Anthropogenic Impact, Carbonate and Silicate Weathering. Geochimica et Cosmochimica Acta, 63(9): 1277-1292. https://doi.org/10.1016/S0016-7037(99)00099-X Shi, C. E., Deng, X. L., Yang, Y. J., et al., 2015. The Trend of Precipitation Acidity in Anhui Province from 1992 to 2013 and Its Possible Reasons. Journal of Nanjing University (Natural Sciences), 51(3): 508-516 (in Chinese with English abstract). Shi, C. E., Qiu, M. Y., Zhang, A. M., et al., 2010. Spatiotemporal Trends and the Impact Factors of Acid Rain in Anhui Province. Environmental Science, 31(6): 1675-1681 (in Chinese with English abstract). Suchet, P. A., Probst, J. L., 2017. A Global Model for Present-Day Atmospheric/Soil CO2 Consumption by Chemical Erosion of Continental Rocks (GEM-CO2). Tellus B: Chemical & Physical Meteorology, 47(1-2): 273-280. https://doi.org/10.3402/tellusb.v47i1-2.16047 Tao, Z. H., Zhao, Z. Q., Zhang, D., et al., 2015. Chemical Weathering in the Three Rivers (Jinshajiang, Lancangjiang, and Nujiang) Watershed, Southwest China. Chinese Journal of Ecology, 34(8): 2297-2308 (in Chinese with English abstract). Ulloa-Cedamanos, F., Probst, A., Moussa, I., et al., 2021. Chemical Weathering and CO2 Consumption in a Multi-Lithological Karstic Critical Zone: Long Term Hydrochemical Trends and Isotopic Survey. Chemical Geology, 585: 120567. https://doi.org/10.1016/j.chemgeo.2021.120567 Wang, Y. X., Ma, T., 2022. How do Natural Processes and Human Activities Affect River Basin Water Resources? Earth Science, 47(10): 3813-3814 (in Chinese with English abstract). Wu, Z. Z., Geng, T. Z., Wu, Z. W., et al., 2021. Water Quality Evaluation and Spatiotemporal Variation Characteristics of Qingyi River Basin. Journal of Anhui Agricultural Sciences, 49(18): 79-83, 86 (in Chinese with English abstract). Xu, S., Li, S. L., Su, J., et al., 2021. Oxidation of Pyrite and Reducing Nitrogen Fertilizer Enhanced the Carbon Cycle by Driving Terrestrial Chemical Weathering. Science of the Total Environment, 768: 144343. https://doi.org/10.1016/j.scitotenv.2020.144343 Xu, Z. F., Liu, C. Q., 2010. Water Geochemistry of the Xijiang Basin Rivers, South China: Chemical Weathering and CO2 Consumption. Applied Geochemistry, 25(10): 1603-1614. https://doi.org/10.1016/j.apgeochem.2010.08.012 Xue, D. M., Botte, J., De Baets, B., et al., 2009. Present Limitations and Future Prospects of Stable Isotope Methods for Nitrate Source Identification in Surface- and Groundwater. Water Research, 43(5): 1159-1170. https://doi.org/10.1016/j.watres.2008.12.048 Yang, Q. Q., Xu, G. L., Zhang, P., et al., 2022. Macroinvertebrate Community Structure and Water Quality Assessment in the Qingyi River Watershed. Acta Ecologica Sinica, 42(10): 4169-4180 (in Chinese with English abstract). Yu, C., Xu, Z. F., Liu, W. J., et al., 2017. River Water Geochemistry of Hanjiang River, Implications for Silicate Weathering and Sulfuric Acid Participation. Earth and Environment, 45(4): 390-398 (in Chinese with English abstract). Zhang, C., 2018. Sedimentary Characteristics, Developmental Models and Distribution Regularities of the Triassic Spontaneous in Lower Yangtze Region of Anhui Province (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). Zhang, D., Qin, Y., Zhao, Z. Q., 2015. Chemical Weathering of Carbonate Rocks by Sulfuric Acid on Small Basin in North China. Acta Scientiae Circumstantiae, 35(11): 3568-3578 (in Chinese with English abstract). Zhang, J., Cao, M. D., Jin, M. G., et al., 2022. Identifying the Source and Transformation of Riverine Nitrates in a Karst Watershed, North China: Comprehensive Use of Major Ions, Multiple Isotopes and a Bayesian Model. Journal of Contaminant Hydrology, 246: 103957. https://doi.org/10.1016/j.jconhyd.2022.103957 Zhang, L. X., 2019. Study on Surface Water Quality Characteristics and Water Quality Evaluation of Typical Watershed in Wanjiang Economic Belt (Dissertation). Hefei University of Technology, Hefei (in Chinese with English abstract). Zhang, S. R., Bai, X. Y., Zhao, C. W., et al., 2021. Global CO2 Consumption by Silicate Rock Chemical Weathering: Its Past and Future. Earth's Future, 9(5): 1-20. https://doi.org/10.1029/2020ef001938 安艳玲, 吕婕梅, 罗进, 等, 2018. 赤水河流域岩石化学风化及其对大气CO2的消耗. 地球科学进展, 33(2): 179-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201802006.htm 白卢恒, 石万忠, 张晓明, 等, 2021. 下扬子皖南宣泾地区二叠系海相页岩特征及其沉积环境. 地球科学, 46(6): 2204-2217. doi: 10.3799/dqkx.2020.372 胡春生, 田景梅, 何成邦, 等, 2021. 黄山北麓青弋江发育原因及其与长江贯通的关系. 地理科学, 41(10): 1862-1872. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX202110018.htm 黄学文, 2019. 黄山北部景观流域硫酸盐来源与转化过程及其环境意义研究(硕士学位论文). 马鞍山: 安徽工业大学. 刘宝剑, 赵志琦, 李思亮, 等, 2013. 寒温带流域硅酸盐岩的风化特征——以嫩江为例. 生态学杂志, 32(4): 1006-1016. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201304033.htm 吕婕梅, 2018. 人类活动影响下喀斯特小流域岩石风化及其与大气CO2的源汇效应关系研究(博士学位论文). 贵阳: 贵州大学. 覃小群, 蒋忠诚, 张连凯, 等, 2015. 珠江流域碳酸盐岩与硅酸盐岩风化对大气CO2汇的效应. 地质通报, 34(9): 1749-1757. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201509016.htm 仇晓龙, 王宝利, 梁重山, 等, 2019. 筑坝对河流水化学和流域风化速率估算的影响——以乌江支流三岔河、猫跳河为例. 地球与环境, 47(6): 768-776. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201906003.htm 石春娥, 邓学良, 杨元建, 等, 2015.1992-2013年安徽省酸雨变化特征及成因分析. 南京大学学报(自然科学), 51(3): 508-516. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201503007.htm 石春娥, 邱明燕, 张爱民, 等, 2010. 安徽省酸雨分布特征和发展趋势及其影响因子. 环境科学, 31(6): 1675-1681. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201006049.htm 陶正华, 赵志琦, 张东, 等, 2015. 西南三江(金沙江、澜沧江和怒江)流域化学风化过程. 生态学杂志, 34(8): 2297-2308. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201508031.htm 王焰新, 马腾, 2022. 自然过程与人类活动如何影响流域水资源?. 地球科学, 47(10): 3813-3814. doi: 10.3799/dqkx.2022.821 吴转璋, 耿天召, 伍震威, 等, 2021. 青弋江流域水质评价及时空变化特征分析. 安徽农业科学, 49(18): 79-83, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY202118021.htm 杨强强, 徐光来, 章翩, 等, 2022. 青弋江流域大型底栖动物群落结构及水质评价. 生态学报, 42(10): 4169-4180. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202210025.htm 余冲, 徐志方, 刘文景, 等, 2017. 韩江流域河水地球化学特征与硅酸盐岩风化——风化过程硫酸作用. 地球与环境, 45(4): 390-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201704002.htm 张弛, 2018. 安徽下扬子区中三叠统蒸发岩沉积特征、发育模式及分布规律(硕士学位论文). 南京: 南京大学. 张东, 秦勇, 赵志琦, 2015. 我国北方小流域硫酸参与碳酸盐矿物化学风化过程研究. 环境科学学报, 35(11): 3568-3578. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201511021.htm 章凌曦, 2019. 皖江经济带地表水水质特征及典型流域水质评价研究(硕士学位论文). 合肥: 合肥工业大学. -