Li-Sr-Nd Isotopes and Geochemistry of Wushan Intermediate-Acidic Magmatic Rocks in Middle-Lower Yangtze River Region
-
摘要: 为确定长江中下游地区中酸性岩石的成因,对武山花岗闪长斑岩、石英闪长玢岩和基性岩脉进行Li-Sr-Nd同位素和地球化学分析测试.武山花岗闪长斑岩样品以高SiO2、MgO、K2O和低Na2O的含量,富集大离子亲石元素和轻稀土元素,Y和Yb相对亏损为特征.花岗闪长斑岩的全岩(87Sr/86Sr)i、εNd(t)和δ7Li值分别为0.703 0~0.707 4、-5.1~-4.6和+0.9‰~+3.2‰,均介于地壳和地幔端元的同位素值之间,揭示出年轻下地壳起源的长英质熔体和富集地幔起源的基性熔体之间的壳幔岩浆混合过程.岩浆在上升至侵位过程中经历了轻微的以辉石和角闪石为主的分离结晶和轻微的地壳混染作用.长江中下游地区早白垩世中酸性岩及相关矿床与古太平洋板块俯冲引起的软流圈地幔上涌及其引起的岩石圈活化有关.
-
关键词:
- 长江中下游地区 /
- 武山 /
- 中酸性岩石 /
- 地球化学 /
- Li-Sr-Nd同位素
Abstract: To provide important insights into the petrogenesis of the Early Cretaceous intermediate-acidic magmatic rocks in middle-lower Yangtze River region, it carried out a detailed investigation of Li-Sr-Nd isotopes and geochemistry for the Wushan granodiorite porphyry, quartz diorite porphyry and the basic dyke. The Wushan granodiorite porphyry samples are characterized by the high concentrations of SiO2, MgO, and K2O and low concentration of Na2O, respectively, enrichment in LREEs and LILEs, and relative depletion in Y and Yb. They exhibit isotopic values of (87Sr/86Sr)i=0.703 0-0.707 4, εNd(t)=-5.1--4.6, and δ7Li=+0.9‰-+3.2‰, respectively, which are between the isotopic values of crustal and mantle end-members, revealing a crust-mantle mixing process between felsic melts from a juvenile lower crust and mafic melts from an enriched mantle source. They were subsequently subjected to weakly fractional crystallization of pyroxene and hornblende and minor crustal contamination during the ascent and emplacement. The Early Cretaceous intermediate-acidic magmatic rocks and related deposits in middle-lower Yangtze River region could be related to upwelling of asthenospheric mantle caused by the subduction of the Paleo-Pacific plate and its induced reactivation of sub-continental lithosphere. -
图 1 长江中下游地区晚中生代岩浆岩和相关矿床地质简图
据Pan and Dong(1999)、Mao et al.(2011)、Xie et al.(2011)修改
Fig. 1. Geological sketch map showing the distribution of the Late Mesozoic magmatic rocks and related ore deposits in the middle-lower Yangtze River region
图 2 (a)九瑞矿集区地质简图(据Xu et al.,2014修改);(b)武山矿区地质简图及采样位置(据Yang et al.,2011修改);(c)花岗闪长斑岩的薄片照片;(d)石英闪长玢岩的薄片照片
Fig. 2. (a) Geological sketch map of the Jiurui district (modified from Xu et al., 2014); (b) geological sketch map of the Wushan area (modified from Yang et al., 2011); (c) microphotograph of granodiorite porphyry; (d) microphotograph of quartz diorite porphyry
图 3 (a)TAS分类图解(据Irvine and Baragar, 1971);(b)K2O-SiO2图解(据Rickwood,1989);(c)A/NK-A/CNK图解(Maniar and Piccoli, 1989)
Fig. 3. (a) (Na2O+K2O) vs. SiO2 plot (Irvine and Baragar, 1971); (b)K2O vs. SiO2 plot (Rickwood, 1989); (c) A/NK vs. A/CNK plot (Maniar and Piccoli, 1989)
图 4 (a)球粒陨石标准化的稀土元素配分图和(b)原始地幔标准化的微量元素蛛网图(标准化值引自Sun and McDonough, 1989)
Fig. 4. (a) Chondrite-normalized REE patterns and (b) primitive mantle-normalized multi-element patterns (normalization values after Sun and McDonough, 1989)
图 6 (a)Sr/Y-Y图解和(b)(La/Yb)N-(Yb)N图解(据Martin et al.,2005)
Fig. 6. (a) Sr/Y vs. Y plot and (b) (La/Yb)N vs. (Yb)N plot (Martin et al., 2005)
图 7 (a)MgO-SiO2图解(据Martin et al.,2005)和(b)Mg#-SiO2图解(据Yang et al.,2008)
Fig. 7. (a) MgO vs. SiO2 plot(Martin et al., 2005)and (b) Mg# vs. SiO2 plot (Yang et al., 2008)
-
Chen, B., Chen, Z. C., Jahn, B. M., 2009. Origin of Mafic Enclaves from the Taihang Mesozoic Orogen, North China Craton. Lithos, 110(1-4): 343-358. https://doi.org/10.1016/j.lithos.2009.01.015 Chen, B., Gu, H. O., Chen, Y. J., et al., 2018. Lithium Isotope Behaviour during Partial Melting of Metapelites from the Jiangnan Orogen, South China: Implications for the Origin of REE Tetrad Effect of F-Rich Granite and Associated Rare-Metal Mineralization. Chemical Geology, 483: 372-384. https://doi.org/10.1016/j.chemgeo.2018.03.002 Chen, C. J., Chen, B., Li, Z., et al., 2016. Important Role of Magma Mixing in Generating the Mesozoic Monzodioritic-Granodioritic Intrusions Related to Cu Mineralization, Tongling, East China: Evidence from Petrological and In Situ Sr-Hf Isotopic Data. Lithos, 248-251: 80-93. https://doi.org/10.1016/j.lithos.2016.01.009 Chen, J. F., Yan, J., Xie, Z., et al., 2001. Nd and Sr Isotopic Compositions of Igneous Rocks from the Lower Yangtze Region in Eastern China: Constraints on Sources. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9-10): 719-731. https://doi.org/10.1016/S1464-1895(01)00122-3 Chu, G. B., Chen, H. Y., Falloon, T. J., et al., 2020. Early Cretaceous Mantle Upwelling and Melting of Juvenile Lower Crust in the Middle-Lower Yangtze River Metallogenic Belt: Example from Tongshankou Cu-(Mo-W) Ore Deposit. Gondwana Research, 83: 183-200. https://doi.org/10.1016/j.gr.2020.02.004 Flesch, G. D., Anderson, A. R. Jr, Svec, H. J., 1973. A Secondary Isotopic Standard for 6Li/7Li Determinations. International Journal of Mass Spectrometry and Ion Physics, 12(3): 265-272. https://doi.org/10.1016/0020-7381(73)80043-9 Gao, Y. J., Casey, J. F., 2012. Lithium Isotope Composition of Ultramafic Geological Reference Materials JP-1 and DTS-2. Geostandards and Geoanalytical Research, 36(1): 75-81. https://doi.org/10.1111/j.1751-908X.2011.00117.x Gromet, P., Silver, L. T., 1987. REE Variations across the Peninsular Ranges Batholith: Implications for Batholithic Petrogenesis and Crustal Growth in Magmatic Arcs. Journal of Petrology, 28(1): 75-125. https://doi.org/10.1093/petrology/28.1.75 Hou, Z. Q., Pan, X. F., Li, Q. Y., et al., 2013. The Giant Dexing Porphyry Cu-Mo-Au Deposit in East China: Product of Melting of Juvenile Lower Crust in an Intracontinental Setting. Mineralium Deposita, 48(8): 1019-1045. https://doi.org/10.1007/s00126-013-0472-5 Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055 Jiang, S. Y., Duan, D. F., Xu, Y. M., et al., 2019. Geological Characteristic and Discrimination Criteria of the Ore-Related Granitoids from the Edong and Juirui Districts in the Middle-Lower Yangtze Metallogenic Belt. Acta Petrologica Sinica, 35(12): 3609-3628 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.12.03 Langmuir, C. H., Vocke, R. D. Jr, Hanson, G. N., et al., 1978. A General Mixing Equation with Applications to Icelandic Basalts. Earth and Planetary Science Letters, 37(3): 380-392. https://doi.org/10.1016/0012-821X(78)90053-5 Li, L., Jiang, S. Y., 2009. Petrogenesis and Geochemistry of the Dengjiashan Porphyritic Granodiorite, Jiujiang-Ruichang Metallogenic District of the Middle-Lower Reaches of the Yangtze River. Acta Petrologica Sinica, 25(11): 2877-2888 (in Chinese with English abstract). Li, J. W., Zhao, X. F., Zhou, M. F., et al., 2009. Late Mesozoic Magmatism from the Daye Region, Eastern China: U-Pb Ages, Petrogenesis, and Geodynamic Implications. Contributions to Mineralogy and Petrology, 157(3): 383-409. https://doi.org/10.1007/s00410-008-0341-x Li, X. H., Li, W. X., Wang, X. C., et al., 2010. SIMS U-Pb Zircon Geochronology of Porphyry Cu-Au-(Mo) Deposits in the Yangtze River Metallogenic Belt, Eastern China: Magmatic Response to Early Cretaceous Lithospheric Extension. Lithos, 119(3-4): 427-438. https://doi.org/10.1016/j.lithos.2010.07.018 Li, X. H., Li, Z. X., Li, W. X., et al., 2013. Revisiting the "C-Type Adakites" of the Lower Yangtze River Belt, Central Eastern China: In-Situ Zircon Hf-O Isotope and Geochemical Constraints. Chemical Geology, 345: 1-15. https://doi.org/10.1016/j.chemgeo.2013.02.024 Li, Z., Chen, B., Wei, C. J., et al., 2015. Provenance and Tectonic Setting of the Paleoproterozoic Metasedimentary Rocks from the Liaohe Group, Jiao-Liao-Ji Belt, North China Craton: Insights from Detrital Zircon U-Pb Geochronology, Whole-Rock Sm-Nd Isotopes, and Geochemistry. Journal of Asian Earth Sciences, 111: 711-732. https://doi.org/10.1016/j.jseaes.2015.06.003 Li, Z., Chen, C. J., Chen, B., et al., 2021. Early Cretaceous Crust-Mantle Interaction in the Middle-Lower Yangtze River Metallogenic Belt, East China: Li-Nd-Sr Isotopic and Elemental Constraints. Lithos, 398-399: 106308. https://doi.org/10.1016/j.lithos.2021.106308 Li, Z., Wei, C. J., Chen, B., et al., 2020. Late Neoarchean Reworking of the Mesoarchean Crustal Remnant in Northern Liaoning, North China Craton: A U-Pb-Hf-O-Nd Perspective. Gondwana Research, 80: 350-369. https://doi.org/10.1016/j.gr.2019.10.020 Li, Z., Wei, C. J., Zhang, S. W., et al., 2019. Neoarchean Granitoid Gneisses in Eastern Hebei, North China Craton: Revisited. Precambrian Research, 324: 62-85. https://doi.org/10.1016/j.precamres.2019.01.020 Lian, C. Q., Li, G. Z., Yu, Y., et al., 2021. LA-ICP-MS Zircon U-Pb Age and Whole-Rock Geochemistry of the Triassic Intrusive Rocks in the Solon Obo Area, Inner Mongolia and Its Geological Significance. Earth Science, 46(1): 87-100 (in Chinese with English abstract). Ling, M. X., Wang, F. Y., Ding, X., et al., 2009. Cretaceous Ridge Subduction along the Lower Yangtze River Belt, Eastern China. Economic Geology, 104(2): 303-321. https://doi.org/10.2113/gsecongeo.104.2.303 Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 Mao, J. W., Xie, G. Q., Duan, C., et al., 2011. A Tectono-Genetic Model for Porphyry-Skarn-Stratabound Cu-Au-Mo-Fe and Magnetite-Apatite Deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43(1): 294-314. https://doi.org/10.1016/j.oregeorev.2011.07.010 Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.048.[LinkOut] Pan, Y. M., Dong, P., 1999. The Lower Changjiang (Yangzi/Yangtze River) Metallogenic Belt, East Central China: Intrusion- and Wall Rock-Hosted Cu-Fe-Au, Mo, Zn, Pb, Ag Deposits. Ore Geology Reviews, 15(4): 177-242. https://doi.org/10.1016/S0169-1368(99)00022-0 Petford, N., Gallagher, K., 2001. Partial Melting of Mafic (Amphibolitic) Lower Crust by Periodic Influx of Basaltic Magma. Earth and Planetary Science Letters, 193(3-4): 483-499. https://doi.org/10.1016/S0012-821X(01)00481-2 Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/S0009-2541(99)00106-0 Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Wang, Q., Wyman, D. A., Xu, J. F., et al., 2006. Petrogenesis of Cretaceous Adakitic and Shoshonitic Igneous Rocks in the Luzong Area, Anhui Province (Eastern China): Implications for Geodynamics and Cu-Au Mineralization. Lithos, 89(3-4): 424-446. https://doi.org/10.1016/j.lithos.2005.12.010 Xiao, L., Clemens, J. D., 2007. Origin of Potassic (C-Type) Adakite Magmas: Experimental and Field Constraints. Lithos, 95(3-4): 399-414. https://doi.org/10.1016/j.lithos.2006.09.002 Xie, G. Q., Mao, J. W., Zhao, H. J., 2011. Zircon U-Pb Geochronological and Hf Isotopic Constraints on Petrogenesis of Late Mesozoic Intrusions in the Southeast Hubei Province, Middle-Lower Yangtze River Belt (MLYRB), East China. Lithos, 125(1-2): 693-710. https://doi.org/10.1016/j.lithos.2011.04.001 Xu, Y. M., Jiang, S. Y., Zhu, Z. Y., et al., 2012. Geochronology, Geochemistry and Mineralization of the Quartz Diorite-Porphyrite and Granodiorite Porphyry in the Shanshangwan Area of the Jiurui Ore District, Jiangxi Province. Acta Petrologica Sinica, 28(10): 3306-3324 (in Chinese with English abstract). Xu, Y. M., Jiang, S. Y., Zhu, Z. Y., et al., 2014. Petrogenesis of Late Mesozoic Granitoids and Coeval Mafic Rocks from the Jiurui District in the Middle-Lower Yangtze Metallogenic Belt of Eastern China: Geochemical and Sr-Nd-Pb-Hf Isotopic Evidence. Lithos, 190-191: 467-484. https://doi.org/10.1016/j.lithos.2013.12.022 Yang, S. Y., Jiang, S. Y., Li, L., et al., 2011. Late Mesozoic Magmatism of the Jiurui Mineralization District in the Middle-Lower Yangtze River Metallogenic Belt, Eastern China: Precise U-Pb Ages and Geodynamic Implications. Gondwana Research, 20(4): 831-843. https://doi.org/10.1016/j.gr.2011.03.012 Yang, J. H., Wu, F. Y., Wilde, S. A., et al., 2008. Petrogenesis and Geodynamics of Late Archean Magmatism in Eastern Hebei, Eastern North China Craton: Geochronological, Geochemical and Nd-Hf Isotopic Evidence. Precambrian Research, 167(1-2): 125-149. https://doi.org/10.1016/j.precamres.2008.07.004 Yang, X., Tang, J. X., Yang, Z. Y., et al., 2021. Late Cretaceous Adakite in Sinongduo Area, Tibet: Implications for Petrogenesis and Mineralization. Earth Science, 46(5): 1597-1612 (in Chinese with English abstract). Zhou, T. F., Wang, S. W., Fan, Y., et al., 2015. A Review of the Intracontinental Porphyry Deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt, Eastern China. Ore Geology Reviews, 65: 433-456. https://doi.org/10.1016/j.oregeorev.2014.10.002 蒋少涌, 段登飞, 徐耀明, 等, 2019. 长江中下游地区鄂东南和九瑞矿集区成矿岩体特征及其识别标志. 岩石学报, 35(12): 3609-3628. 李亮, 蒋少涌, 2009. 长江中下游地区九瑞矿集区邓家山花岗闪长斑岩的地球化学与成因研究. 岩石学报, 25(11): 2877-2888. 连琛芹, 李钢柱, 于洋, 等, 2021. 内蒙古索伦山地区三叠纪侵入岩锆石U-Pb年龄、岩石地球化学特征及地质意义. 地球科学, 46(1): 87-100. doi: 10.3799/dqkx.2019.014 徐耀明, 蒋少涌, 朱志勇, 等, 2012. 九瑞矿集区山上湾矿区石英闪长玢岩和花岗闪长斑岩的年代学、地球化学及成矿意义. 岩石学报, 28(10): 3306-3324. 杨昕, 唐菊兴, 杨宗耀, 等, 2021. 西藏斯弄多地区晚白垩世埃达克岩: 岩石成因及成矿潜力指示. 地球科学, 46(5): 1597-1612. doi: 10.3799/dqkx.2020.157 -
dqkxzx-49-7-2475-附表.docx
-