Geochronology, Geochemistry and Tectonic Implications of Triassic A-Type Granites in Pingtian Area, Northern Guangdong
-
摘要: 坪田岩体位于华南南岭中部,是认识华南三叠纪岩浆作用及其地球动力背景的理想窗口.以坪田花岗岩类为研究对象,对其开展了系统的全岩地球化学、锆石U-Pb定年和锆石原位Hf同位素研究.结果表明,坪田岩体由粗粒似斑状黑云母花岗岩、粗粒似斑状钾长花岗岩和中粒二长岩组成,成岩年龄为238~239 Ma,形成于中三叠世.地球化学特征显示,岩石轻稀土元素富集,有明显铕负异常(δEu平均为0.42).富集Zr、Hf、Y、Ce,明显亏损Sr、P和Ti,属于准铝质到弱过铝质碱性花岗岩类,为A型花岗岩.锆石εHf(t)值为-37.7~-5.0,tDM2二阶段模式年龄为1 578~3 597 Ma之间,结合全岩地球化学特征,揭示其原始岩浆来源于地壳中长英质物质在低温高压环境下部分熔融,可能混入古老地壳物质,并经历了一定的结晶分异作用,形成于后碰撞伸展背景.综合华南A型花岗岩和碱性正长岩的地球化学特征和空间分布,认为华南内部三叠纪区域构造演化主要受华南地块与印支地块碰撞带和华南地块与华北地块碰撞带共同控制,华夏地块在中三叠世(238 Ma左右)发生构造环境的转变,从早三叠世的碰撞挤压环境,到中晚三叠世过渡到后碰撞伸展环境.Abstract: Pingtian pluton is located in the central part of South China, providing an ideal window for understanding the Triassic tectonic-magmatic activities and the geodynamic setting in South China. Systematic whole-rock geochemistry, zircon U-Pb dating and zircon in situ Hf isotope studies were carried out, taking the Pingtian granite group as the object of study. The results show that the Pingtian pluton consists of coarse-grained porphyritic biotite granite, coarse-grained porphyritic potassium feldspar granite and medium-grained monzonite, with diagenetic ages ranging from 238 to 239 Ma, and it was formed in the Middle Triassic. Geochemical characteristics show that the rocks are enriched in light rare earth elements with obvious europium negative anomalies (δEu average=0.42). It is enriched in Zr, Hf, Y and Ce, and significantly depleted in Sr, P and Ti. It belongs to the metaluminous to weakly peraluminous alkaline granite type, and is A-type granite. The zircon εHf(t) values range from -37.7 to -5.0, and the tDM2 two-stage model ages range from 1 578 to 3 597 Ma. Combined with the whole-rock geochemical characteristics, it reveals that the magmas were derived mainly from the partial melting of felsic material in the crust under low-temperature and high-pressure environment, probably mixed with old crustal material, and experienced crystalline differentiation, and was formed in the post-collisional extensional background. Integrating the geochemical characteristics and spatial distribution of A-type granites and alkaline syenite in South China, we propose that the tectonic evolution of the Triassic was mainly controlled by the collisional interaction of the South China block with the Indochina block and the North China block, and that the tectonic setting changed at around 238 Ma, from a collisional extrusion environment in the Early Triassic to a transition to a post-collisional extensional environment in the Middle to Late Triassic.
-
Key words:
- A-type granite /
- Middle Triassic /
- post-collision extension /
- Pingtian /
- South China /
- geochemistry
-
图 1 华南大地构造位置图(a)、三叠纪花岗岩分布简图(b)和坪田区域地质图(c)
图a据Sun et al.,2017修改;图b底图据孙涛,2006修改. 花岗岩类型及年龄据郭春丽等,2012;Wang et al.,2013;Sun et al.,2017. 补充修改参考:大神山:Xu et al.,2014a;阳明山、塔山:马丽艳等,2016;白马山:王川等,2021;塔山:郭爱民等,2017;瓦屋塘:柏道远等,2016;紫云山:刘凯等,2014;鲁玉龙等,2017;高坳背:王彦斌等,2010;关帝庙:赵增霞等,2015;Zhao et al.,2017;桃江:Xu et al.,2014b;越城岭:Chen et al.,2016;苗儿山:覃洪锋等,2018;栗木:Feng et al.,2019;大容山:王文宝等,2018;Gao et al.,2018;龙源坝、坪田:Sun et al.,2017;富城、翁山、小陶:Xia et al.,2020;蒙山:钟玉芳等,2011
Fig. 1. Geotectonic location map of South China (a), brief distribution map of Triassic granites in South China (b) and Pingtian regional geological map (c)
图 4 坪田地区侵入岩(a) (K2O+Na2O)-SiO2、(b) A/NK-A/CNK、(c) K2O-SiO2、(d) SiO2-(Na2O+K2O-CaO)图解
图a据Middlemost,1994;图b据Rickwood,1989;图c据Peccerillo and Taylor, 1976;图d据Frost et al.,2001.前人数据:坪田(239 Ma)和龙源坝(230 Ma)据孙立强(2018)和Sun et al.(2017);大神山(211 Ma)据Xu et al.,2014a;瓦屋塘(215 Ma)据柏道远等,2016;靖居(215 Ma)据李万友等,2012;富城(220 Ma)据任海涛等,2013;紫云山(222 Ma)据刘凯等,2014;铁山(254 Ma)和洋坊(242 Ma)据Wang et al.,2005
Fig. 4. (K2O+Na2O)-SiO2 (a), A/NK-A/CNK (b), K2O-SiO2 (c), SiO2-(Na2O+K2O-CaO) (d) plots of intrusive rocks in Pingtian area
图 5 坪田及华南部分地区侵入岩的稀土元素球粒陨石标准化配分图(a、c、e)和微量元素地幔标准化蛛网图(b、d、f)
标准化值据Sun and McDonough, 1989;地壳值据Rudnick and Gao, 2014;前人侵入岩数据同图 4
Fig. 5. Chondirite-normalized REE patterns (a, c, e) and primitive mantle-normalized trace element spider diagrams (b, d, f) of the intrusive rocks in Pingtian and parts of South China
图 7 坪田侵入岩(a) 10 000Ga/Al vs. (K2O+Na2O)、(b) 10 000Ga/Al vs. Zr、(c) (Zr+Nb+Ce+Y) vs. (Na2O+K2O)/CaO、(d) SiO2 vs. P2O5图解(a、b、c据Whalen et al., 1987)(图例下同)
Fig. 7. 10 000Ga/Al vs. (K2O+Na2O) (a), 10 000Ga/Al vs. Zr (b), (Zr+Nb+Ce+Y) vs. (Na2O+K2O)/CaO (c), SiO2 vs. P2O5 (d) diagrams of the Pingtian intrusive rocks
图 9 坪田侵入岩Zr vs. M图解
底图据Boehnke et al.,2013,M=(Na+K+2Ca)/(Al×Si);LFB A型花岗岩范围据Gao et al.,2017修改
Fig. 9. Plot of the Zr contents vs. M values for the Pingtian intrusive rocks
图 10 华南花岗岩类年龄统计图(a)及三叠纪花岗岩年龄直方图(b)
据Wang et al.(2013)和Sun et al.(2017)及补充数据修改,补充数据来源同图 1
Fig. 10. Statistical curve of ages (a) and histogram of Triassic ages (b) for granitoids in South China
图 11 坪田侵入岩(a) Y/Nb vs. Rb/Nb和(b) R1 vs. R2图解
图a据Eby(1992)和Sun et al.(2017);图b据Batchelor and Bowden, 1985
Fig. 11. Y/Nb vs. Rb/Nb (a) and R1 vs. R2 (b) diagrams of the Pingtian intrusive rocks
-
Anderson, J. L., 1983. Proterozoic Anorogenic Granite Plutonism of North America. Geological Society of America Memoirs, 161: 133-154. https://doi.org/10.1130/mem161-p133 Bai, D. Y., Wu, N. J., Zhong, X., et al., 2016. Geochronology, Petrogenesis and Tectonic Setting of Indosinian Wawutang Granites, Southwestern Hunan Province. Geotectonica et Metallogenia, 40(5): 1075-1091 (in Chinese with English abstract). Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8 Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248-260. https://doi.org/10.1007/s004100050278 Boehnke, P., Watson, E. B., Trail, D., et al., 2013. Zircon Saturation Re-Revisited. Chemical Geology, 351: 324-334. https://doi.org/10.1016/j.chemgeo.2013.05.028 Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97: 1-29. https://doi.org/10.1016/j.lithos.2006.12.007 Carter, A., Roques, D., Bristow, C., et al., 2001. Understanding Mesozoic Accretion in Southeast Asia: Significance of Triassic Thermotectonism (Indosinian Orogeny) in Vietnam. Geology, 29(3): 211-214. https://doi.org/10.1130/0091-7613(2001)0290211:umaisa>2.0.co;2 doi: 10.1130/0091-7613(2001)0290211:umaisa>2.0.co;2 Chappell, B. W., Bryant, C. J., Wyborn, D., et al., 1998. High- and Low-Temperature Ⅰ-Type Granites. Resource Geology, 48(4): 225-235. https://doi.org/10.1111/j.1751-3928.1998.tb00020.x Chappell, B. W., White, A. J. R., Williams, I. S., et al., 2004. Low- and High-Temperature Granites. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(1-2): 125-140. https://doi.org/10.1017/s0263593300000973 Chen, C. H., Hsieh, P. S., Lee, C. Y., et al., 2011. Two Episodes of the Indosinian Thermal Event on the South China Block: Constraints from LA-ICPMS U-Pb Zircon and Electron Microprobe Monazite Ages of the Darongshan S-Type Granitic Suite. Gondwana Research, 19(4): 1008-1023. https://doi.org/10.1016/j.gr.2010.10.009 Chen, W. D., Zhang, W. L., Wang, R. C., et al., 2016. A Study on the Dushiling Tungsten-Copper Deposit in the Miao'ershan-Yuechengling Area, Northern Guangxi, China: Implications for Variations in the Mineralization of Multi-Aged Composite Granite Plutons. Science China Earth Sciences, 59(11): 2121-2141. https://doi.org/10.1007/s11430-015-5360-3 Dai, B. Z., Jiang, S. Y., Jiang, Y. H., et al., 2008. Geochronology, Geochemistry and Hf-Sr-Nd Isotopic Compositions of Huziyan Mafic Xenoliths, Southern Hunan Province, South China: Petrogenesis and Implications for Lower Crust Evolution. Lithos, 102(1): 65-87. https://doi.org/10.1016/j.lithos.2007.08.010 Eby, N. G., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 Feng, M., Feng, Z. H., Kang, Z. Q., et al., 2019. Establishing an Indosinian Geochronological Framework for Episodic Granitic Emplacement and W-Sn-Nb-Ta Mineralization in Limu Mining District, South China. Ore Geology Reviews, 107: 1-13. https://doi.org/10.1016/j.oregeorev.2019.02.012 Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033 Gao, P., Zheng, Y. F., Chen, Y. X., et al., 2018. Relict Zircon U-Pb Age and O Isotope Evidence for Reworking of Neoproterozoic Crustal Rocks in the Origin of Triassic S-Type Granites in South China. Lithos, 300-301: 261-277. https://doi.org/10.1016/j.lithos.2017.11.036 Gao, P., Zheng, Y. F., Zhao, Z. F., 2017. Triassic Granites in South China: A Geochemical Perspective on Their Characteristics, Petrogenesis, and Tectonic Significance. Earth-Science Reviews, 173: 266-294. https://doi.org/10.1016/j.earscirev.2017.07.016 Gao, W. L., Wang, Z. X., Song, W. J., et al., 2014a. Zircon U-Pb Geochronology, Geochemistry and Tectonic Implications of Triassic A-Type Granites from Southeastern Zhejiang, South China. Journal of Asian Earth Sciences, 96(15): 255-268. https://doi.org/10.1016/j.jseaes.2014.09.024 Gao, P., Zhao, Z. F., Zheng, Y. F., 2014b. Petrogenesis of Triassic Granites from the Nanling Range in South China: Implications for Geochemical Diversity in Granites. Lithos, 210-211: 40-56. https://doi.org/10.1016/j.lithos.2014.09.027 Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 Guo, A. M., Chen, B. H., Chen, J. F., et al., 2017. SHRIMP Zircon U-Pb Age of Tashan Granite in Hunan Province and Its Geological Significance. Geological Bulletin of China, 36(S1): 459-465 (in Chinese). Guo, C. L., Zheng, J. H., Lou, F. S., et al., 2012. Petrography, Genetic Types and Geological Dynamical Settings of the Indosinian Granitoids in South China. Geotectonica et Metallogenia, 36(3): 457-472 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2012.03.020 Guo, X. Z., Li, Y. Z., Jia, Q. Z., et al., 2018. Geochronology and Geochemistry of the Wulonggou Orefield Related Granites in Late Permian-Triassic East Kunlun: Implication for Metallogenic Tectonic. Acta Petrologica Sinica, 34(8): 2359-2379 (in Chinese with English abstract). He, Z. Y., Xu, X. S., Niu, Y. L., 2010. Petrogenesis and Tectonic Significance of a Mesozoic Granite-Syenite-Gabbro Association from Inland South China. Lithos, 119(3-4): 621-641. https://doi.org/10.1016/j.lithos.2010.08.016 Huang, H. Q., Li, X. H., Li, W. X., et al., 2011. Formation of High δ18O Fayalite-Bearing A-Type Granite by High-Temperature Melting of Granulitic Metasedimentary Rocks, Southern China. Geology, 39(10): 903-906. https://doi.org/10.1130/g32080.1 Lepvrier, C., Maluski, H., Van Tich, V., et al., 2004. The Early Triassic Indosinian Orogeny in Vietnam (Truong Son Belt and Kontum Massif); Implications for the Geodynamic Evolution of Indochina. Tectonophysics, 393(1-4): 87-118. https://doi.org/10.1016/j.tecto.2004.07.030 Li, G. L., Hua, R. M., Hu, D. Q., et al., 2010. Petrogenesis of Shilei Quartz Diorite in Southern Jiangxi: Constraints from Petrochemistry, Trace Elements of Accessory Minerals, Zircon U-Pb Dating, and Sr-Nd-Hf Isotopes. Acta Petrologica Sinica, 26(3): 903-918 (in Chinese with English abstract). Li, W. Y., Ma, C. Q., Liu, Y. Y., et al., 2012. Discovery of Indosinian Aluminous A-Type Granite in Zhejiang Province and Its Geological Significance. Scientia Sinica Terrae, 42(2): 164-177 (in Chinese). doi: 10.1360/zd-2012-42-2-164 Li, X., Wang, L. Z., Tu, B., et al., 2021. Zircon Geochronology, Geochemistry and Petrogenesis of the Taibao Pluton in Northwest Guangdong Province. Earth Science, 46(4): 1199-1216 (in Chinese with English abstract). Li, X. H., Li, Z. X., Li, W. X., et al., 2006. Initiation of the Indosinian Orogeny in South China: Evidence for a Permian Magmatic Arc on Hainan Island. The Journal of Geology, 114(3): 341-353. https://doi.org/10.1086/501222 Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/G23193A.1 Liu, K., Mao, J. R., Zhao, X. L., et al., 2014. Geological and Geochemical Characteristics and Genetic Significance of the Ziyunshan Pluton in Hunan Province. Acta Geologica Sinica, 88(2): 208-227 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201402005&dbcode=CJFD&year=2014&dflag=pdfdown Lu, Y. L., Peng, J. T., Yang, J. H., et al., 2017. Petrogenesis of the Ziyunshan Pluton in Central Hunan, South China: Constraints from Zircon U-Pb Dating, Element Geochemistry and Hf-O Isotopes. Acta Petrologica Sinica, 33(6): 1705-1728 (in Chinese with English abstract). Ma, L. Y., Liu, S. S., Fu, J. M., et al., 2016. Petrogenesis of the Tashan-Yangmingshan Granitic Batholiths: Constraint from Zircon U-Pb Age, Geochemistry and Sr-Nd Isotopes. Acta Geologica Sinica, 90(2): 284-303 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.02.007 Mao, J. R., Ye, H. M., Liu, K., et al., 2013. The Indosinian Collision-Extension Event between the South China Block and the Palaeo-Pacific Plate: Evidence from Indosinian Alkaline Granitic Rocks in Dashuang, Eastern Zhejiang, South China. Lithos, 172-173: 81-97. https://doi.org/10.1016/j.lithos.2013.04.004 Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 Mushkin, A., Navon, O., Halicz, L., et al., 2003. The Petrogenesis of A-Type Magmas from the Amram Massif, Southern Israel. Journal of Petrology, 44(5): 815-832. https://doi.org/10.1093/petrology/44.5.815 Nong, J. N., Sun, M. H., Guo, S. Y., et al., 2022. The Discovery and Petrogenesis of Early Triassic Volcanic Vent in Southeastern Guangxi. Geological Review, 68(3): 1089-1105 (in Chinese with English abstract). Papoutsa, A., Pe-Piper, G., Piper, D. J. W., 2016. Systematic Mineralogical Diversity in A-Type Granitic Intrusions: Control of Magmatic Source and Geological Processes. GSA Bulletin, 128(3-4): 487-501. https://doi.org/10.1130/b31245.1 Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743-746. https://doi.org/10.1130/0091-7613(1997)0250743:gomatg>2.3.co;2 doi: 10.1130/0091-7613(1997)0250743:gomatg>2.3.co;2 Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745 Qin, H. F., Huang, X. Q., Jiang, J., et al., 2018. Genesis of Indosinian Granites in Maoershan, Northern Guangxi: Evidence from Petrology, Geochemistry, Zircon U-Pb Ages and Hf Isotope. Journal of Guilin University of Technology, 38(4): 597-613 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-9057.2018.04.001 Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891 Ren, H. T., Wu, J. Q., Ye, X. F., et al., 2013. Zircon U-Pb Age and Geochemical Characteristics of Peraluminous Fine-Grained Granite in Western Part of the Fucheng Pluton, Jiangxi Province. Geological Journal of China Universities, 19(2): 327-345 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2013.02.015 Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5 Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. Treatise on Geochemistry, 4: 1-51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6 Shu, X. J., 2014. Petrogenesis and Crustal Evolution of the Mesozoic Granites from Nanling, South China (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249: 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005 Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3 Sun, Y., Ma, C. Q., Liu, Y. Y., et al., 2011. Geochronological and Geochemical Constraints on the Petrogenesis of Late Triassic Aluminous A-Type Granites in Southeast China. Journal of Asian Earth Sciences, 42(6): 1117-1131. https://doi.org/10.1016/j.jseaes.2011.06.007 Sun, L. Q., 2018. Petrogenesis of the Mesozoic Granites in the Zhuguangshan Area in the Nanling Region and Their Implications for the Uranium Mineralization (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). Sun, L. Q., Ling, H. F., Shen, W. Z., et al., 2010. Geochronology of Youshan and Pingtian Granites in Nanling Range and Its Geological Implication. Geological Journal of China Universities, 16(2): 186-197 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2010.02.006 Sun, L. Q., Ling, H. F., Shen, W. Z., et al., 2017. Petrogenesis of Two Triassic A-Type Intrusions in the Interior of South China and Their Implications for Tectonic Transition. Lithos, 284-285: 642-653. https://doi.org/10.1016/j.lithos.2017.05.006 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 Sun, T., 2006. A New Map Showing the Distribution of Granites in South China and Its Explanatory Notes. Geological Bulletin of China, 25(3): 332-335 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2006.03.002 Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/s0024-4937(98)00024-3 Wang, C., Peng, J. T., Xu, J. B., et al., 2021. Petrogenesis and Metallogenic Effect of the Baimashan Granitic Complex in Central Hunan, South China. Acta Petrologica Sinica, 37(3): 805-829 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.03.11 Wang, L. J., Yu, J. H., Xu, X. S., et al., 2007. Formation Age and Origin of the Gutian-Xiaotao Granitic Complex in the Southweslern Fujian Province, China. Acta Petrologica Sinica, 23(6): 1470-1484 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.06.022 Wang, Q., Li, J. W., Jian, P., et al., 2005. Alkaline Syenites in Eastern Cathaysia (South China): Link to Permian-Triassic Transtension. Earth and Planetary Science Letters, 230(3-4): 339-354. https://doi.org/10.1016/j.epsl.2004.11.023 Wang, W. B., Li, J. H., Xin, Y. J., et al., 2018. Zircon LA-ICP-MS U-Pb Dating and Geochemical Analysis of the Darongshan-Shiwandashan Granitoids in Southwestern South China and Their Geological Implications. Acta Geoscientica Sinica, 39(2): 179-194 (in Chinese with English abstract). Wang, Y. B., Wang, D. H., Han, J., et al., 2010. U-Pb Dating and Hf Isotopic Characteristics of Zircons and Re-Os Dating of Molybdenite from Gao'aobei Tungsten-Molybdenum Deposit, Southern Hunan Province. Geological Review, 56(6): 820-830 (in Chinese with English abstract). Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019 Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5 Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 Xia, Y., Xu, X. S., 2020. The Epilogue of Paleo-Tethyan Tectonics in the South China Block: Insights from the Triassic Aluminous A-Type Granitic and Bimodal Magmatism. Journal of Asian Earth Sciences, 190: 104129. https://doi.org/10.1016/j.jseaes.2019.104129 Xiang, W. S., Jiang, J. S., Lei, Y. J., et al., 2021. Petrogenesis of A-Type Granite and Geological Significance of Bure Area, Western Ethiopia. Earth Science, 46(7): 2299-2310 (in Chinese with English abstract). Xu, H. J., Ma, C. Q., Zhao, J. H., et al., 2014a. Petrogenesis of Dashenshan Ⅰ-Type Granodiorite: Implications for Triassic Crust-Mantle Interaction, South China. International Geology Review, 56(3): 332-350. https://doi.org/10.1080/00206814.2013.857457 Xu, H. J., Ma, C. Q., Zhao, J. H., et al., 2014b. Magma Mixing Generated Triassic Ⅰ-Type Granites in South China. The Journal of Geology, 122(3): 329-351. https://doi.org/10.1086/675667 Xu, X. B., Liang, C. H., Chen, J. J., et al., 2021. Fundamental Geological Features and Metallogenic Geological Backgrounds of Nanling Tectonic Belt. Earth Science, 46(4): 1133-1150 (in Chinese with English abstract). Yang, J. B., Zhao, Z. D., Mo, X. X., et al., 2015. Petrogenesis and Implications for Alkali Olivine Basalts and Its Basic Xenoliths from Huziyan in Dao County, Hunan Province. Acta Petrologica Sinica, 31(5): 1421-1432 (in Chinese with English abstract). Yang, J. H., Du, Y. S., Yu, X., et al., 2017. Early Permian Volcanic Fragment-Bearing Sandstones in Babu of Southeast Yunnan: Indicative of Paleo-Tethyan Ocean Subduction. Earth Science, 42(1): 24-34 (in Chinese with English abstract). Zhang, Q., Ran, H., Li, C. D., 2012. A-Type Granite: What is the Essence? Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2012.04.014 Zhang, Q., Wang, Y., Li, C. D., et al., 2006. Granite Classification on the Basis of Sr and Yb Contents and Its Implications. Acta Petrologica Sinica, 22(9): 2249-2269 (in Chinese with English abstract). Zhao, K. D., Jiang, S. Y., Chen, W. F., et al., 2013. Zircon U-Pb Chronology and Elemental and Sr-Nd-Hf Isotope Geochemistry of Two Triassic A-Type Granites in South China: Implication for Petrogenesis and Indosinian Transtensional Tectonism. Lithos, 160-161: 292-306. https://doi.org/10.1016/j.lithos.2012.11.001 Zhao, Z., Wang, D. H., Chen, Z. Y., et al., 2014. Metallogenic Specialization of Rare Earth Mineralized Igneous Rocks in the Eastern Nanling Region. Geotectonica et Metallogenia, 38(2): 255-263 (in Chinese with English abstract). Zhao, Z. X., Miao, B. H., Xu, Z. W., et al., 2017. Petrogenesis of Two Types of Late Triassic Granite from the Guandimiao Complex, Southern Hunan Province, China. Lithos, 282-283: 403-419. https://doi.org/10.1016/j.lithos.2017.02.021 Zhao, Z. X., Xu, Z. W., Miao, B. H., et al., 2015. Diagenetic Age and Material Source of the Guandimiao Granitic Batholith, Hengyang City, Hunan Province. Acta Geologica Sinica, 89(7): 1219-1230 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2015.07.006 Zhong, Y. F., Ma, C. Q., She, Z. B., et al., 2011. U-Pb-Hf Isotope of Zircons, Geochemistry and Genesis of Mengshan Granitoids in Northwestern Jiangxi Province. Earth Science, 36(4): 703-720 (in Chinese with English abstract). Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004 柏道远, 吴能杰, 钟响, 等, 2016. 湘西南印支期瓦屋塘岩体年代学、成因与构造环境. 大地构造与成矿学, 40(5): 1075-1091. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201605016.htm 郭爱民, 陈必河, 陈剑锋, 等, 2017. 湖南塔山花岗岩SHRIMP锆石U-Pb年龄及其地质意义. 地质通报, 36(S1): 459-465. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2017Z1027.htm 郭春丽, 郑佳浩, 楼法生, 等, 2012. 华南印支期花岗岩类的岩石特征、成因类型及其构造动力学背景探讨. 大地构造与成矿学, 36(3): 457-472. doi: 10.3969/j.issn.1001-1552.2012.03.020 国显正, 栗亚芝, 贾群子, 等, 2018. 东昆仑五龙沟金多金属矿集区晚二叠世‒三叠纪岩浆岩年代学、地球化学及其构造意义. 岩石学报, 34(8): 2359-2379. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201808011.htm 李光来, 华仁民, 胡东泉, 等, 2010. 赣南地区石雷石英闪长岩的成因: 岩石化学、副矿物微量元素、锆石U-Pb年代学与Sr-Nd-Hf同位素制约. 岩石学报, 26(3): 903-918. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201003021.htm 李万友, 马昌前, 刘园园, 等, 2012. 浙江印支期铝质A型花岗岩的发现及其地质意义. 中国科学: 地球科学, 42(2): 164-177. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201202004.htm 李响, 王令占, 涂兵, 等, 2021. 粤西北印支期太保岩体的锆石U-Pb年代学、地球化学及岩石成因. 地球科学, 46(4): 1199-1216. doi: 10.3799/dqkx.2020.193 刘凯, 毛建仁, 赵希林, 等, 2014. 湖南紫云山岩体的地质地球化学特征及其成因意义. 地质学报, 88(2): 208-227. doi: 10.3969/j.issn.1006-0995.2014.02.011 鲁玉龙, 彭建堂, 阳杰华, 等, 2017. 湘中紫云山岩体的成因: 锆石U-Pb年代学、元素地球化学及Hf-O同位素制约. 岩石学报, 33(6): 1705-1728. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201912018.htm 马丽艳, 刘树生, 付建明, 等, 2016. 湖南塔山、阳明山花岗岩的岩石成因: 来自锆石U-Pb年龄、地球化学及Sr-Nd同位素证据. 地质学报, 90(2): 284-303. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201602007.htm 农军年, 孙明行, 郭尚宇, 等, 2022. 桂东南早三叠世火山通道的发现及岩石成因. 地质论评, 68(3): 1089-1105. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202203023.htm 覃洪锋, 黄锡强, 蒋剑, 等, 2018. 桂北猫儿山印支期花岗岩成因: 来自岩石学、岩石地球化学、锆石U-Pb年龄和Hf同位素的证据. 桂林理工大学学报, 38(4): 597-613. doi: 10.3969/j.issn.1674-9057.2018.04.001 任海涛, 吴俊奇, 叶锡芳, 等, 2013. 江西富城岩体西部过铝质细粒花岗岩锆石U-Pb年龄和地球化学特征. 高校地质学报, 19(2): 327-345. doi: 10.3969/j.issn.1006-7493.2013.02.015 舒徐洁, 2014. 华南南岭地区中生代花岗岩成因与地壳演化(博士学位论文). 南京: 南京大学. 孙立强, 2018. 南岭诸广山地区中生代花岗岩成因及其对铀成矿作用的启示(博士学位论文). 南京: 南京大学. 孙立强, 凌洪飞, 沈渭洲, 等, 2010. 南岭地区油山岩体和坪田岩体形成年龄及其地质意义. 高校地质学报, 16(2): 186-197. doi: 10.3969/j.issn.1006-7493.2010.02.006 孙涛, 2006. 新编华南花岗岩分布图及其说明. 地质通报, 25(3): 332-335. doi: 10.3969/j.issn.1671-2552.2006.03.002 王川, 彭建堂, 徐接标, 等, 2021. 湘中白马山复式岩体成因及其成矿效应. 岩石学报, 37(3): 805-829. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202103011.htm 王丽娟, 于津海, 徐夕生, 等, 2007. 闽西南古田‒小陶花岗质杂岩体的形成时代和成因. 岩石学报, 23(6): 1470-1484. doi: 10.3969/j.issn.1000-0569.2007.06.022 王文宝, 李建华, 辛宇佳, 等, 2018. 华南大容山‒十万大山花岗岩体LA-ICP-MS锆石U-Pb定年、地球化学特征及地质意义. 地球学报, 39(2): 179-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201802006.htm 王彦斌, 王登红, 韩娟, 等, 2010. 汝城高坳背钨‒钼矿区花岗岩锆石U-Pb年龄、Hf同位素及矿石辉钼矿Re-Os年龄. 地质论评, 56(6): 820-830. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006008.htm 向文帅, 姜军胜, 雷义均, 等, 2021. 埃塞俄比亚西部布雷地区A型花岗岩成因及地质意义. 地球科学, 46(7): 2299-2310. doi: 10.3799/dqkx.2020.209 徐先兵, 梁承华, 陈家驹, 等, 2021. 南岭构造带基础地质特征与成矿地质背景. 地球科学, 46(4): 1133-1150. doi: 10.3799/dqkx.2020.151 杨金豹, 赵志丹, 莫宣学, 等, 2015. 湖南道县虎子岩碱性玄武岩及其基性捕虏体成因和地质意义. 岩石学报, 31(5): 1421-1432. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201505017.htm 杨江海, 杜远生, 于鑫, 等, 2017. 滇东南八布早二叠世含火山岩屑砂岩指示古特提斯洋俯冲. 地球科学, 42(1): 24-34. doi: 10.3799/dqkx.2017.002 张旗, 冉皞, 李承东, 2012. A型花岗岩的实质是什么? 岩石矿物学杂志, 31(4): 621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014 张旗, 王焰, 李承东, 等, 2006. 花岗岩的Sr-Yb分类及其地质意义. 岩石学报, 22(9): 2249-2269. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609000.htm 赵芝, 王登红, 陈振宇, 等, 2014. 南岭东段与稀土矿有关岩浆岩的成矿专属性特征. 大地构造与成矿学, 38(2): 255-263. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402005.htm 赵增霞, 徐兆文, 缪柏虎, 等, 2015. 湖南衡阳关帝庙花岗岩岩基形成时代及物质来源探讨. 地质学报, 89(7): 1219-1230. doi: 10.3969/j.issn.0001-5717.2015.07.006 钟玉芳, 马昌前, 佘振兵, 等, 2011. 赣西北蒙山岩体的锆石U-Pb-Hf、地球化学特征及成因. 地球科学, 36(4): 703-720. doi: 10.3799/dqkx.2011.071 -
dqkxzx-49-7-2508-附表.docx
-