• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    四川盆地高石梯-磨溪地区走滑断裂控制下的“层楼式”油气成藏模式: 以震旦系-寒武系为例

    李纯泉 陈红汉 唐大卿 汪泽成 姜华

    李纯泉, 陈红汉, 唐大卿, 汪泽成, 姜华, 2023. 四川盆地高石梯-磨溪地区走滑断裂控制下的“层楼式”油气成藏模式: 以震旦系-寒武系为例. 地球科学, 48(6): 2254-2266. doi: 10.3799/dqkx.2023.018
    引用本文: 李纯泉, 陈红汉, 唐大卿, 汪泽成, 姜华, 2023. 四川盆地高石梯-磨溪地区走滑断裂控制下的“层楼式”油气成藏模式: 以震旦系-寒武系为例. 地球科学, 48(6): 2254-2266. doi: 10.3799/dqkx.2023.018
    Li Chunquan, Chen Honghan, Tang Daqing, Wang Zecheng, Jiang Hua, 2023. Strike-Slip Faults Controlled 'Floor Type' Hydrocarbon Accumulation Model in Gaoshiti-Moxi Area, Sichuan Basin: A Case Study of Sinian-Cambrian. Earth Science, 48(6): 2254-2266. doi: 10.3799/dqkx.2023.018
    Citation: Li Chunquan, Chen Honghan, Tang Daqing, Wang Zecheng, Jiang Hua, 2023. Strike-Slip Faults Controlled "Floor Type" Hydrocarbon Accumulation Model in Gaoshiti-Moxi Area, Sichuan Basin: A Case Study of Sinian-Cambrian. Earth Science, 48(6): 2254-2266. doi: 10.3799/dqkx.2023.018

    四川盆地高石梯-磨溪地区走滑断裂控制下的“层楼式”油气成藏模式: 以震旦系-寒武系为例

    doi: 10.3799/dqkx.2023.018
    基金项目: 

    国家重大科技专项 2016ZX05004-001

    详细信息
      作者简介:

      李纯泉(1974-),男,副教授,博士,主要从事储层成岩作用分析及常规和非常规油气成藏综合研究.ORCID:0000-0002-2301-0610.E-mail:chunquanli@cug.edu.cn

    • 中图分类号: P618.130

    Strike-Slip Faults Controlled "Floor Type" Hydrocarbon Accumulation Model in Gaoshiti-Moxi Area, Sichuan Basin: A Case Study of Sinian-Cambrian

    • 摘要: 走滑断裂对油气成藏具有重要的控制作用.为了探究四川盆地高石梯-磨溪地区走滑断裂在震旦系-寒武系油气成藏中的控藏作用,在走滑断裂的精细地震解释,以及储层溶蚀孔洞充填成岩矿物流体包裹体系统分析的基础上,通过划分走滑断裂活动期次,以及拟定油气充注成藏期次和时期,并探讨二者之间的耦合关系,从而建立油气成藏模式.结果表明,四川盆地高石梯-磨溪地区存在加里东早期、加里东晚期-海西早期、海西晚期及印支期4期走滑断裂,震旦系-寒武系总体存在两期油三期气充注成藏的特征.走滑断裂的活动与油气活动存在良好的时空耦合关系,从而形成了震旦系-寒武系走滑断裂控制下的“层楼式”油气成藏模式.该模式下,走滑断裂垂向连通主力烃源岩与多套优质储层,形成多层系含有油气的格局,且各层系油气成藏特征表现出高度相似性.对存在“层楼式”油气成藏模式的地区,应注重立体勘探.

       

    • 图  1  研究区位置(a)及震旦系-寒武系地层柱状图(b)

      Fig.  1.  Location of the study area (a) and stratigraphic column of the Sinian-Cambrian (b)

      图  2  研究区走滑断层典型剖面构造样式

      Fig.  2.  Typical structural style of strike-slip fault in profile of the study area

      图  3  研究区震旦系灯影组底界(a)和寒武系龙王庙组底界(b)走滑断层分布图

      Fig.  3.  Distribution of strike-slip faults in the bottom of the Sinian Dengying Formation (a) and the Cambrian Longwangmiao Formation (b) of the study area

      图  4  研究区NW-SE向AA'地震解释剖面(剖面位置见图 3b)

      Fig.  4.  Seismic interpretation of the NW-SE profile (AA') of the study area (see profile location in Fig.3b)

      图  5  研究区走滑断裂发育期次图

      Fig.  5.  Orders of strike-slip faults of the study area

      图  6  研究区震旦系-寒武系储层及流体包裹体典型特征

      a.磨溪119井,5 039.24 m,灯影组,白云岩,溶蚀孔洞充填白云石+沥青+白云石;b.高石102井,5 081.78 m,灯影组,白云岩,溶洞充填白云石+沥青+石英;c.磨溪20井,4 614.89 m,龙王庙组,白云岩,溶蚀孔洞充填沥青;d.高石17井,4 464.44 m,龙王庙组,白云岩,溶蚀孔洞充填多期方解石;e.磨溪39井,4 686.63 m,洗象池组,白云岩,溶蚀孔洞充填白云石+沥青;f~f'.磨溪13井,5 104.72 m,灯影组,白云岩,溶洞充填发红色阴极光中-粗晶白云石,f为透射光照片,f'为阴极光照片;g~g'.磨溪105井,5 364.99 m,灯影组,白云岩,溶洞充填白云石+沥青+白云石+沥青,g为投射光照片,g'为紫外荧光照片;h~h'.磨溪51井,5 334.70 m,灯影组,白云岩,溶洞充填方解石中见大量纯气相包裹体,h'为h中红框视域;i~i'.磨溪22井,5 417.22 m,灯影组,白云岩,溶洞充填白云石+萤石,白云石发红色阴极光,萤石发深蓝色阴极光,萤石中捕获纯气相包裹体(红色箭头)和气液两相盐水包裹体(绿色箭头),i为阴极光照片,i'为i中红框视域透射光照片;j~j'.高石17井,4 490.48 m,龙王庙组,白云岩,溶洞充填方解石中见大量纯气相包裹体,j'为j中红框视域,均为透射光照片;k~k'.磨溪20井,4 607.25 m,龙王庙组,白云岩,溶洞充填粗晶白云石+沥青,白云石中见大量沥青包裹体和纯气相包裹体;j'为j中红框视域,均为透射光照片;l~l'.高石109井,5 312.26 m,灯影组,白云岩,基质重结晶白云石中见发亮蓝色荧光油包裹体,l和l'分别为同视域的透射光和紫外荧光照片;m~m'.磨溪20井,4 605.46 m,龙王庙组,白云岩,溶孔充填早期白云石中见发亮蓝色荧光油包裹体,m和m'分别为同视域的透射光和紫外荧光照片;n~n'~n''.磨溪39井,4 683.70 m,洗象池组,白云岩,溶蚀孔洞充填白云石/石英+沥青,白云石中见沥青包裹体(蓝色箭头)和纯气相包裹体(红色箭头),n'为薄片n中红框视域阴极光照片,n''为n'中红框视域透射光照片. Dol.白云石,Cc.方解石,Qtz.石英,Flu.萤石,Bit.沥青

      Fig.  6.  Typical characteristics of the reservoir rocks and fluid inclusions in the Sinian-Cambrian of the study area

      图  7  研究区震旦系-寒武系油(红色)气(黄色)充注期次及时期划分

      Fig.  7.  Oil (red) and gas (yellow) charging orders and time of the Sinian-Cambrian of the study area

      图  8  研究区寒武系底界走滑断裂与多层系高产井叠合图

      Fig.  8.  Overlay map of the strike-slip faults in the Cambrian bottom and the high yield wells of multilayers in the study area

      图  9  走滑断裂控制下的“层楼式”油气成藏模式

      Fig.  9.  "Floor type" hydrocarbon accumulation model controlled by strike-slip faults

    • Curren, I. S., Bird, P., 2014. Formation and Suppression of Strike-Slip Fault Systems. Pure and Applied Geophysics, 171(11): 2899-2918. https://doi.org/10.1007/s00024-014-0826-7
      de Joussineau, G., Aydin, A., 2009. Segmentation along Strike-Slip Faults Revisited. Pure and Applied Geophysics, 166(10): 1575-1594. https://doi.org/10.1007/s00024-009-0511-4
      Deng, S., Liu, Y. Q., Liu, J., et al., 2021. Structural Styles and Evolution Models of Intracratonic Strike-Slip Faults and the Implications for Reservoir Exploration and Appraisal: A Case Study of the Shunbei Area, Tarim Basin. Geotectonica et Metallogenia, 45(6): 1111-1126(in Chinese with English abstract).
      Deng, S., Zhao, R., Kong, Q. F., et al., 2022. Two Distinct Strike-Slip Fault Networks in the Shunbei Area and Its Surroundings, Tarim Basin: Hydrocarbon Accumulation, Distribution, and Controlling Factors. AAPG Bulletin, 106(1): 77-102. https://doi.org/10.1306/07202119113
      Duan, J. B., Mei, Q. H., Li, B. S., et al., 2019. Sinian-Early Cambrian Tectonic-Sedimentary Evolution in Sichuan Basin. Earth Science, 44(3): 738-755(in Chinese with English abstract).
      Gao, D., Hu, M. Y., Li, A. P., et al., 2021. High-Frequency Sequence and Microfacies and Their Impacts on Favorable Reservoir of Longwangmiao Formation in Central Sichuan Basin. Earth Science, 46(10): 3520-3534(in Chinese with English abstract).
      Ge, X. H., Ren, S. M., Liu, Y. J., et al., 2006. Restoration of the Large-Scale Strike-Slip Faults and Prediction of Related Oil and Gas Exploration Strategic Target Area in China. Geological Bulletin of China, 25(9): 1022-1027(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2006.09.005
      Gogonenkov, G. N., Timurziev, A. I., 2010. Strike-Slip Faults in the West Siberian Basin: Implications for Petroleum Exploration and Development. Russian Geology and Geophysics, 51(3): 304-316. https://doi.org/10.1016/j.rgg.2010.02.007
      Guan, S. W., Jiang, H., Lu, X. S., et al., 2022. Strike-Slip Fault System and Its Control on Oil & Gas Accumulation in Central Sichuan Basin. Acta Petrolei Sinica, 43(11): 1542-1557(in Chinese with English abstract).
      Han, J. F., Su, Z., Chen, L. X., et al., 2019. Reservoir-Controlling and Accumulation-Controlling of Strike-Slip Faults and Exploration Potential in the Platform of Tarim Basin. Acta Petrolei Sinica, 40(11): 1296-1310(in Chinese with English abstract). doi: 10.7623/syxb201911002
      Hao, B., Zhao, W. Z., Hu, S. Y., et al., 2017. Bitumen Genesis and Hydrocarbon Accumulation History of the Cambrian Longwangmiao Formation in Central Sichuan Basin. Acta Petrolei Sinica, 38(8): 863-875(in Chinese with English abstract).
      He, D. F., Li, D. S., Zhang, G. W., et al., 2011. Formation and Evolution of Multi-Cycle Superposed Sichuan Basin, China. Chinese Journal of Geology, 46(3): 589-606(in Chinese with English abstract). doi: 10.3969/j.issn.0563-5020.2011.03.001
      Jia, C. Z., Ma, D. B., Yuan, J. Y., et al., 2021. Structural Characteristics, Formation & Evolution and Genetic Mechanisms of Strike-Slip Faults in the Tarim Basin. Natural Gas Industry, 41(8): 81-91(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.08.008
      Jiao, F. Z., Yang, Y., Ran, Q., et al., 2021. Distribution and Gas Exploration of the Strike-Slip Faults in the Central Sichuan Basin. Natural Gas Industry, 41(8): 92-101(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.08.009
      Li, C. Q., Chen, H. H., Liu, H. M., 2022. Fluid Inclusion Constrained Multiple Petroleum Chargings in the Lithologic Reservoirs of the Late Eocene Shahejie Formation in the Minfeng Sag, Bohai Bay Basin, East China. Energies, 15(10): 3682. https://doi.org/10.3390/en15103682
      Li, C. Q., Chen, H. H., Xiao, X. W., et al., 2022. Raman Spectroscopy of Bitumen from the Sinian Dengying Formation Reservoirs, Gaoshiti-Moxi Area, Central Sichuan Basin. Oil & Gas Geology, 43(2): 456-466(in Chinese with English abstract).
      Li, H. K., Li, Z. Q., Long, W., et al., 2019. Vertical Configuration of Sichuan Basin and Its Superimposed Characteristics of the Prototype Basin. Journal of Chengdu University of Technology (Science & Technology Edition), 46(3): 257-267(in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2019.03.01
      Luo, C. M., Liang, X. X., Huang, S. Y., et al., 2022. Three-Layer Structure Model of Strike-Slip Faults in the Tazhong Uplift and Its Formation Mechanism. Oil & Gas Geology, 43(1): 118-131, 148(in Chinese with English abstract). doi: 10.3969/j.issn.1007-3426.2022.01.019
      Ma, D. B., Wang, Z. C., Duan, S. F., et al., 2018. Strike-Slip Faults and Their Significance for Hydrocarbon Accumulation in Gaoshiti-Moxi Area, Sichuan Basin, SW China. Petroleum Exploration and Development, 45(5): 795-805(in Chinese with English abstract).
      Molchanov, A. E., 2000. Deformation Characteristics of Strike-Slip Fault Zones. Izvestiya-Physics of the Solid Earth, 36(11): 931-945.
      Qiu, Z. H., Zhou, L., Chen, X., et al., 2022. Identification of Strike-Slip Faults in Gaoshiti-Moxi Area of Sichuan Basin. Oil Geophysical Prospecting, 57(3): 647-655, 494(in Chinese with English abstract).
      Rotevatn, A., Peacock, D. C. P., 2018. Strike-Slip Reactivation of Segmented Normal Faults: Implications for Basin Structure and Fluid Flow. Basin Research, 30(6): 1264-1279. https://doi.org/10.1111/bre.12303
      Shi, S. Y., Hu, S. Y., Wang, Z. C., et al., 2022. Characteristics and Exploration Prospect of Dolograinstone Beach Reservoir in Xixiangchi Formation, Cambrian, Sichuan Basin. Petroleum Geology & Experiment, 44(3): 433-447, 475(in Chinese with English abstract).
      Su, J., Wang, X. M., Yang, H. J., et al., 2021. Hydrothermal Alteration and Hydrocarbon Accumulations in Ultra-Deep Carbonate Reservoirs along a Strike-Slip Fault System, Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 203: 108605. https://doi.org/10.1016/j.petrol.2021.108605
      Su, N., Yang, W., Yuan, B. G., et al., 2021. Structural Features and Deformation Mechanism of Transtensional Faults in Himalayan Period, Sichuan Basin. Earth Science, 46(7): 2362-2378(in Chinese with English abstract).
      Sylvester, A. G., 1988. Strike-Slip Faults. Geological Society of America Bulletin, 100(11): 1666-1703. https://doi.org/10.1130/0016-7606(1988)1001666:ssf>2.3.co;2 doi: 10.1130/0016-7606(1988)1001666:ssf>2.3.co;2
      Timurziev, A. I., 2009. A New Kinematic Model of Strike-Slip Faults. Doklady Earth Sciences, 428(1): 1237-1240. https://doi.org/10.1134/s1028334x09070435
      Wang, R. J., Wang, X., Deng, X. L., et al., 2021. Control Effect of Strike-Slip Faults on Carbonate Reservoirs and Hydrocarbon Accumulation: A Case Study of the Northern Depression in the Tarim Basin. Natural Gas Industry, 41(3): 10-20(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.03.002
      Wang, Y., Zhang, S. N., Liu, Y. L., 2022. Controls of Strike-Slip Fault Activities on Hydrocarbon Accumulation in Tahe Oilfield, Tarim Basin: A Case Study of TP 39 Fault Zone. Petroleum Geology & Experiment, 44(3): 394-401(in Chinese with English abstract).
      Wang, Z. C., Jiang, H., Wang, T. S., et al., 2014. Paleo-Geomorphology Formed during Tongwan Tectonization in Sichuan Basin and Its Significance for Hydrocarbon Accumulation. Petroleum Exploration and Development, 41(3): 305-312(in Chinese with English abstract).
      Wang, Z. C., Wang, T. S., Wen, L., et al., 2016. Basic Geological Characteristics and Accumulation Conditions of Anyue Giant Gas Field, Sichuan Basin. China Offshore Oil and Gas, 28(2): 45-52(in Chinese with English abstract).
      Wei, G. Q., Yang, W., Du J. H., et al., 2015. Tectonic Features of Gaoshiti-Moxi Paleo-Uplift and Its Controls on the Formation of a Giant Gas Field, Sichuan Basin, SW China. Petroleum Exploration and Development, 42(3): 257-265(in Chinese with English abstract). doi: 10.11698/PED.2015.03.01
      Wei, G. Q., Yang, W., Xie, W. R., et al., 2018. Accumulation Modes and Exploration Domains of Sinian-Cambrian Natural Gas in Sichuan Basin. Acta Petrolei Sinica, 39(12): 1317-1327(in Chinese with English abstract). doi: 10.7623/syxb201812001
      Xu, C. G., Jia, D. H., Wan, L. W., 2017. Control of the Strike-Slip Fault to the Source-to-Sink System of the Paleogene in Bohai Sea Area. Earth Science, 42(11): 1871-1882(in Chinese with English abstract).
      Xu, Z. Q., Zeng, L. S., Yang, J. S., et al., 2004. Role of Large-Scale Strike-Slip Faults in the Formation of Petroleum-Bearing Compressional Basin-Mountain Range Systems. Earth Science, 29(6): 631-643(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2004.06.001
      Xu, Z. X., Ma, Q. Y., 2022. Zonal Differential Deformation and Reservoir Control Model of Ordovician Strike-Slip Fault Zone in Tahe Oilfield. Marine Origin Petroleum Geology, 27(2): 124-134(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2022.02.002
      Yang, P., Ding, B. Z., Fan, C., et al., 2017. Distribution Pattern and Origin of the Columnar Pull-Down Anomalies in Gaoshiti Block of Central Sichuan Basin, SW China. Petroleum Exploration and Development, 44(3): 370-379(in Chinese with English abstract).
      Yun, L., Deng, S., 2022. Structural Styles of Deep Strike-Slip Faults in Tarim Basin and the Characteristics of Their Control on Reservoir Formation and Hydrocarbon Accumulation: A Case Study of Shunbei Oil and Gas Field. Acta Petrolei Sinica, 43(6): 770-787(in Chinese with English abstract).
      Zhang, X., Ran, Q., Chen, K., et al., 2022. The Controlling Effect of Strike-Slip Fault on Dengying Formation Reservoir and Gas Enrichment in Anyue Gas Field in Central Sichuan Basin. Natural Gas Geoscience, 33(6): 917-928(in Chinese with English abstract).
      Zou, C. N., Du, J. H., Xu, C. C., et al., 2014. Formation, Distribution, Resource Potential and Discovery of the Sinian-Cambrian Giant Gas Field, Sichuan Basin, SW China. Petroleum Exploration and Development, 41(3): 278-293(in Chinese with English abstract).
      邓尚, 刘雨晴, 刘军, 等, 2021. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例. 大地构造与成矿学, 45(6): 1111-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202106003.htm
      段金宝, 梅庆华, 李毕松, 等, 2019. 四川盆地震旦纪-早寒武世构造-沉积演化过程. 地球科学, 44(3): 738-755. doi: 10.3799/dqkx.2018.335
      高达, 胡明毅, 李安鹏, 等, 2021. 川中地区龙王庙组高频层序与沉积微相及其对有利储层的控制. 地球科学, 46(10): 3520-3534. doi: 10.3799/dqkx.2020.382
      葛肖虹, 任收麦, 刘永江, 等, 2006. 中国大型走滑断裂的复位研究与油气资源战略选区预测. 地质通报, 25(9): 1022-1027. doi: 10.3969/j.issn.1671-2552.2006.09.005
      管树巍, 姜华, 鲁雪松, 等, 2022. 四川盆地中部走滑断裂系统及其控油气作用. 石油学报, 43(11): 1542-1557. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202211002.htm
      韩剑发, 苏洲, 陈利新, 等, 2019. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力. 石油学报, 40(11): 1296-1310. doi: 10.7623/syxb201911002
      郝彬, 赵文智, 胡素云, 等, 2017. 川中地区寒武系龙王庙组沥青成因与油气成藏史. 石油学报, 38(8): 863-875. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201708002.htm
      何登发, 李德生, 张国伟, 等, 2011. 四川多旋回叠合盆地的形成与演化. 地质科学, 46(3): 589-606. doi: 10.3969/j.issn.0563-5020.2011.03.001
      贾承造, 马德波, 袁敬一, 等, 2021. 塔里木盆地走滑断裂构造特征、形成演化与成因机制. 天然气工业, 41(8): 81-91. doi: 10.3787/j.issn.1000-0976.2021.08.008
      焦方正, 杨雨, 冉崎, 等, 2021. 四川盆地中部地区走滑断层的分布与天然气勘探. 天然气工业, 41(8): 92-101. doi: 10.3787/j.issn.1000-0976.2021.08.009
      李纯泉, 陈红汉, 肖雪薇, 等, 2022. 四川盆地中部高石梯-磨溪地区震旦系灯影组储层沥青拉曼光谱分析. 石油与天然气地质, 43(2): 456-466. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202202017.htm
      李洪奎, 李忠权, 龙伟, 等, 2019. 四川盆地纵向结构及原型盆地叠合特征. 成都理工大学学报(自然科学版), 46(3): 257-267. doi: 10.3969/j.issn.1671-9727.2019.03.01
      罗彩明, 梁鑫鑫, 黄少英, 等, 2022. 塔里木盆地塔中隆起走滑断裂的三层结构模型及其形成机制. 石油与天然气地质, 43(1): 118-131, 148. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202201009.htm
      马德波, 汪泽成, 段书府, 等, 2018. 四川盆地高石梯-磨溪地区走滑断层构造特征与天然气成藏意义. 石油勘探与开发, 45(5): 795-805. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805006.htm
      邱泽华, 周路, 陈骁, 等, 2022. 四川盆地高石梯-磨溪地区走滑断层识别. 石油地球物理勘探, 57(3): 647-655, 494. doi: 10.13810/j.cnki.issn.1000-7210.2022.03.015
      石书缘, 胡素云, 汪泽成, 等, 2022. 四川盆地寒武系洗象池组滩相白云岩规模储层发育特征及勘探意义. 石油实验地质, 44(3): 433-447, 475. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202203007.htm
      苏楠, 杨威, 苑保国, 等, 2021. 四川盆地喜马拉雅期张扭性断裂构造特征及形成机制. 地球科学, 46(7): 2362-2378. doi: 10.3799/dqkx.2020.202
      汪如军, 王轩, 邓兴梁, 等, 2021. 走滑断裂对碳酸盐岩储层和油气藏的控制作用: 以塔里木盆地北部坳陷为例. 天然气工业, 41(3): 10-20. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202103003.htm
      汪洋, 张哨楠, 刘永立, 2022. 塔里木盆地塔河油田走滑断裂活动对油气成藏的控制作用: 以托甫39断裂带为例. 石油实验地质, 44(3): 394-401. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202203003.htm
      汪泽成, 姜华, 王铜山, 等, 2014. 四川盆地桐湾期古地貌特征及成藏意义. 石油勘探与开发, 41(3): 305-312. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403008.htm
      汪泽成, 王铜山, 文龙, 等, 2016. 四川盆地安岳特大型气田基本地质特征与形成条件. 中国海上油气, 28(2): 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602005.htm
      魏国齐, 杨威, 杜金虎, 等, 2015. 四川盆地高石梯—磨溪古隆起构造特征及对特大型气田形成的控制作用. 石油勘探与开发, 42(3): 257-265. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201503002.htm
      魏国齐, 杨威, 谢武仁, 等, 2018. 四川盆地震旦系—寒武系天然气成藏模式与勘探领域. 石油学报, 39(12): 1317-1327. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201812001.htm
      徐长贵, 加东辉, 宛良伟, 2017. 渤海走滑断裂对古近系源—汇体系的控制作用. 地球科学, 42(11): 1871-1882. doi: 10.3799/dqkx.2017.118
      许志琴, 曾令森, 杨经绥, 等, 2004. 走滑断裂、"挤压性盆-山构造" 与油气资源关系的探讨. 地球科学, 29(6): 631-643. http://www.earth-science.net/article/id/1464
      徐中祥, 马庆佑, 2022. 塔河油田奥陶系走滑断裂带分区差异变形特征与控储模式. 海相油气地质, 27(2): 124-134. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202202002.htm
      杨平, 丁博钊, 范畅, 等, 2017. 四川盆地中部高石梯地区柱状下拉异常体分布特征及成因. 石油勘探与开发, 44(3): 370-379. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201703007.htm
      云露, 邓尚, 2022. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例. 石油学报, 43(6): 770-787. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206003.htm
      张旋, 冉崎, 陈康, 等, 2022. 川中地区安岳气田走滑断裂对灯影组储层及含气富集的控制作用. 天然气地球科学, 33(6): 917-928. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202206006.htm
      邹才能, 杜金虎, 徐春春, 等, 2014. 四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现. 石油勘探与开发, 41(3): 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htm
    • 加载中
    图(9)
    计量
    • 文章访问数:  637
    • HTML全文浏览量:  912
    • PDF下载量:  157
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-09-01
    • 刊出日期:  2023-06-25

    目录

      /

      返回文章
      返回