Disintegration and Fragmentation Effect of High Position Rock Landslide Debris Flow Based on Large Scale Physical Model Test
-
摘要: 解体破碎效应普遍存在于高位岩质滑坡运动过程中,能够使滑坡物质状态与运动状态发生转变,从而影响滑坡的能量分布和动力传递特征.为探讨高位岩质滑坡碎屑流解体破碎特征与能量耗散规律,揭示其动力传递机制,采用大型物理模型试验,重点研究滑源区块体强度、方量、厚度、节理发育程度和坡度等对岩体解体破碎的影响.结果表明:高位岩质滑坡碎屑流在动力传递过程中,前部速度损失较后部明显偏少,前缘具有明显的“二次加速”,大量细小颗粒堆积于远端.滑坡体后部向前部具有明显的速度与动力传递效应,且破碎程度越高,动力传递效应越显著.解体破碎过程伴随能量的转化、传递与损失,在破碎程度控制下,破碎耗能约占总势能的3.32%~21.03%.Abstract: Disintegration and fragmentation effect generally exists in the process of high position rock landslide movement, which can change the material state and motion state of landslide, thus affecting the energy distribution and dynamic transmission characteristics of landslide. By large scale physical model test, this paper deeply studies the slip source block body strength, volume, thickness and joint development degree and slope on the influence of rock disintegration and fragmentation, discusses the disintegration and fragmentation characteristics and the law of detrital energy dissipation of high position rock landslide debris flow, and reveals its momentum transfer mechanism. In the process of dynamic transmission of landslide debris flow, the velocity loss in the front is obviously less than that in the rear, the leading edge has obvious "secondary acceleration", and a large number of fine particles accumulate at the far end. The rear and forward parts of the landslide have obvious velocity and power transfer effect, and the higher the degree of fragmentation, the more significant the dynamic transfer effect. The process of disintegration and fragmentation is accompanied by the transformation, transfer and loss of energy. Under the control of the degree of breakage, the energy dissipation accounts for 3.32%-21.03% of the total potential energy.
-
表 1 相似材料质量配比方案
Table 1. Mass proportions of similar materials
单轴抗压强度类别 河砂 重晶石 石膏 水 Ⅰ型 10.72 5.8 0.7 2.1 Ⅱ型 10.22 5.6 1.4 2.1 Ⅲ型 10.22 5.6 1.9 2.1 表 2 高位岩质滑坡碎屑流动力传递试验方案
Table 2. Dynamic transmission test scheme of high position rock landslide debris flow
试验序号 变量 单轴抗压强度类别 方量(m3) 岩体厚度(m) 块体尺寸宽/高/长(m) 坡度 T1 Ⅰ型 0.48 0.5 0.1/0.1/0.2 50°+30° T2 Ⅰ型 0.24 0.3 0.1/0.1/0.2 50°+30° T3 Ⅰ型 0.96 0.5 0.1/0.1/0.2 50°+30° T4 Ⅱ型 0.48 0.5 0.1/0.1/0.2 50°+30° T5 Ⅲ型 0.48 0.5 0.1/0.1/0.2 50°+30° T6 Ⅰ型 0.48 0.3 0.1/0.1/0.2 50°+30° T7 Ⅰ型 0.48 0.5 0.1/0.1/0.1 50°+30° T8 Ⅰ型 0.48 0.5 0.1/0.1/0.2 40° -
Bartali, R., Sarocchi, D., Nahmad-Molinari, Y., 2015. Stick-Slip Motion and High Speed Ejecta in Granular Avalanches Detected through a Multi-Sensors Flume. Engineering Geology, 195: 248-257. https://doi.org/10.1016/j.enggeo.2015.06.019 Bowman, E. T., Take, W. A., Rait, K. L., et al., 2012. Physical Models of Rock Avalanche Spreading Behaviour with Dynamic Fragmentation. Canadian Geotechnical Journal, 49(4): 460-476. https://doi.org/10.1139/t2012-007 Bowman, E. T., Take, W. A., 2015. The Runout of Chalk Cliff Collapses in England and France—Case Studies and Physical Model Experiments. Landslides, 12(2): 225-239. https://doi.org/10.1007/s10346-014-0472-2 Bulmer, M. H., Glaze, L. S., Anderson, S., et al., 2005. Distinguishing between Primary and Secondary Emplacement Events of Blocky Volcanic Deposits Using Rock Size Distributions. Journal of Geophysical Research: Solid Earth, 110(B1): B01201. https://doi.org/10.1029/2003jb002841 Cagnoli, B., Romano, G. P., 2010. Effect of Grain Size on Mobility of Dry Granular Flows of Angular Rock Fragments: An Experimental Determination. Journal of Volcanology and Geothermal Research, 193(1-2): 18-24. https://doi.org/10.1016/j.jvolgeores.2010.03.003 Charrière, M., Humair, F., Froese, C., et al., 2016. From the Source Area to the Deposit: Collapse, Fragmentation, and Propagation of the Frank Slide. Geological Society of America Bulletin, 128(1-2): 332-352. https://doi.org/10.1130/B31243.1 Crosta, G. B., Frattini, P., Fusi, N., 2007. Fragmentation in the Val Pola Rock Avalanche, Italian Alps. Journal of Geophysical Research: Earth Surface, 112(F1): F01006. https://doi.org/10.1029/2005jf000455 Davies, T. R., McSaveney, M. J., 2009. The Role of Rock Fragmentation in the Motion of Large Landslides. Engineering Geology, 109(1-2): 67-79. https://doi.org/10.1016/j.enggeo.2008.11.004 Davies, T. R., McSaveney, M. J., Hodgson, K. A., 1999. A Fragmentation-Spreading Model for Long-Runout Rock Avalanches. Canadian Geotechnical Journal, 36(6): 1096-1110. https://doi.org/10.1139/t99-067 Evans, S., Mugnozza, G. S., Strom, A., et al., 2006. Landslides from Massive Rock Slope Failure and Associated Phenomena. Landslides, 49: 3-52. https://doi.org/10.1007/978-1-4020-4037-5_1 Gao, Y., Yin, Y. P., Li, Z., et al., 2022. Study on the Dynamic Disintegration Effect of High Position and Long Runout Rock Landslide. Chinese Journal of Rock Mechanics and Engineering, 41(10): 1958-1970 (in Chinese with English abstract). Ge, Y. F., Zhou, T., Huo, S. L., et al., 2019. Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche. Earth Science, 44(11): 3939-3949 (in Chinese with English abstract). Hao, M. H., Xu, Q., Yang, X. G., et al., 2015. Physical Modeling Tests on Inverse Grading of Particles in High Speed Landslide Debris. Chinese Journal of Rock Mechanics and Engineering, 34(3): 472-479 (in Chinese with English abstract). Hardin, B. O., 1985. Crushing of Soil Particles. Journal of Geotechnical Engineering, 111(10): 1177-1192. https://doi.org/10.1061/(asce)0733-9410(1985)111:10(1177) Hewitt, K., Clague, J. J., Orwin, J. F., 2008. Legacies of Catastrophic Rock Slope Failures in Mountain Landscapes. Earth-Science Reviews, 87(1-2): 1-38. https://doi.org/10.1016/j.earscirev.2007.10.002 Huang, R. Q., 2007. Large-Scale Landslides and Their Sliding Mechanisms in China since the 20th Century. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454 (in Chinese with English abstract). Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, an Update. Landslides, 11(2): 167-194. https://doi.org/10.1007/s10346-013-0436-y Jiang, J. J., Xu, Q., Zheng, G., et al., 2022. Chute Experimental Study on Effect of Particle Gradation on Movement Speed of Landslide-Debris Flow. Yangtze River, 53(5): 197-203 (in Chinese with English abstract). Knapp, S., Krautblatter, M., 2020. Conceptual Framework of Energy Dissipation during Disintegration in Rock Avalanches. Frontiers in Earth Science, 8: 263. https://doi.org/10.3389/feart.2020.00263 Li, K., Cheng, Q. G., Lin, Q. W., et al., 2022. State of the Art on Rock Avalanche Dynamics from Granular Flow Mechanics. Earth Science, 47(3): 893-912 (in Chinese with English abstract). Lin, Q. W., Cheng, Q. G., Li, K., et al., 2020. Contributions of Rock Mass Structure to the Emplacement of Fragmenting Rockfalls and Rockslides: Insights from Laboratory Experiments. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB019296. https://doi.org/10.1029/2019JB019296 Liu, Y. J., Hu, H. T., Zhao, X. Y., 2004. Experimental Study on Impact Effect of High-Speed Landslide. Rock and Soil Mechanics, 25(2): 255-260 (in Chinese with English abstract). Locat, P., Couture, R., Leroueil, S., et al., 2006. Fragmentation Energy in Rock Avalanches. Canadian Geotechnical Journal, 43(8): 830-851. https://doi.org/10.1139/t06-045 Pollet, N., Schneider, J. L M., 2004. Dynamic Disintegration Processes Accompanying Transport of the Holocene Flims Sturzstrom (Swiss Alps). Earth and Planetary Science Letters, 221(1-4): 433-448. https://doi.org/10.1016/s0012-821x(04)00071-8 Valentino, R., Barla, G., Montrasio, L., 2008. Experimental Analysis and Micromechanical Modelling of Dry Granular Flow and Impacts in Laboratory Flume Tests. Rock Mechanics and Rock Engineering, 41(1): 153-177. https://doi.org/10.1007/s00603-006-0126-3 Wang, Y. F., Cheng, Q. G., Zhu, Q., 2015. Surface Microscopic Examination of Quartz Grains from Rock Avalanche Basal Facies. Canadian Geotechnical Journal, 52(2): 167-181. https://doi.org/10.1139/cgj-2013-0284 Wang, Y. F., Xu, Q., Cheng, Q. G., et al., 2016. Experimental Study on the Propagation and Deposit Features of Rock Avalanche along 3D Complex Topography. Chinese Journal of Rock Mechanics and Engineering, 35(9): 1776-1791 (in Chinese with English abstract). Xu, Q., Li, W. L., Dong, X. J., et al., 2017. The Xinmocun Landslide on June 24, 2017 in Maoxian, Sichuan: Characteristics and Failure Mechanism. Chinese Journal of Rock Mechanics and Engineering, 36(11): 2612-2628 (in Chinese with English abstract). Yang, Q. Q., Zheng, X. Y., Su, Z. M., et al., 2022. Review on Rock-Ice Avalanches. Earth Science, 47(3): 935-949 (in Chinese with English abstract). Yin, Y. P., 2000. General Situation of Huge Landslide in Bomiyigong Expressway in Tibet. The Chinese Journal of Geological Hazard and Control, 11(2): 103 (in Chinese with English abstract). Yin, Y. P., Wang, W. P., 2020. A Dynamic Erosion Plowing Model of Long Run-Out Landslides Initialized at High Locations. Chinese Journal of Rock Mechanics and Engineering, 39(8): 1513-1521 (in Chinese with English abstract). Yin, Y. P., Wang, W. P., Zhang, N., et al., 2017. Long Runout Geological Disaster Initiated by the Ridge-Top Rockslide in a Strong Earthquake Area: A Case Study of the Xinmo Landslide in Maoxian County, Sichuan Province. Geology in China, 44(5): 827-841 (in Chinese with English abstract). Zhang, M., McSaveney, M. J., 2017. Rock Avalanche Deposits Store Quantitative Evidence on Internal Shear during Runout. Geophysical Research Letters, 44(17): 8814-8821. https://doi.org/10.1002/2017gl073774 Zhang, S. L., Yin, Y. P., Li, H. B., et al., 2022. Transport Process and Mechanism of the Hongshiyan Rock Avalanche Triggered by the 2014 Ludian Earthquake, China. Landslides, 19(8): 1987-2004. https://doi.org/10.1007/s10346-022-01878-8 Zhang, T., Yang, Z. H., Zhang, Y. S., et al., 2019. An Analysis of the Entrainment of the Xinmo High-Position Landslide in Maoxian County, Sichuan. Hydrogeology & Engineering Geology, 46(3): 138-145 (in Chinese with English abstract). Zhao, T., Crosta, G. B., Dattola, G., et al., 2018. Dynamic Fragmentation of Jointed Rock Blocks during Rockslide-Avalanches: Insights from Discrete Element Analyses. Journal of Geophysical Research: Solid Earth, 123(4): 3250-3269. https://doi.org/10.1002/2017JB015210 Zhou, J. W., Cui, P., Fang, H., 2013. Dynamic Process Analysis for the Formation of Yangjiagou Landslide-Dammed Lake Triggered by the Wenchuan Earthquake, China. Landslides, 10(3): 331-342. https://doi.org/10.1007/s10346-013-0387-3 高杨, 殷跃平, 李壮, 等, 2022. 高位远程岩质滑坡动力解体效应研究. 岩石力学与工程学报, 41(10): 1958-1970. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202210002.htm 葛云峰, 周婷, 霍少磊, 等, 2019. 高速远程滑坡运动堆积过程中的能量传递机制. 地球科学, 44(11): 3939-3949. doi: 10.3799/dqkx.2017.589 郝明辉, 许强, 杨兴国, 等, 2015. 高速滑坡‒碎屑流颗粒反序试验及其成因机制探讨. 岩石力学与工程学报, 34(3): 472-479. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503005.htm 黄润秋, 2007.20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程学报, 26(3): 433-454. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703000.htm 蒋金晶, 许强, 郑光, 等, 2022. 颗粒级配对碎屑流运动速度影响的滑槽试验研究. 人民长江, 53(5): 197-203. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202205031.htm 李坤, 程谦恭, 林棋文, 等, 2022. 高速远程滑坡颗粒流研究进展. 地球科学, 47(3): 893-912. doi: 10.3799/dqkx.2021.169 刘涌江, 胡厚田, 赵晓彦, 2004. 高速滑坡岩体碰撞效应的试验研究. 岩土力学, 25(2): 255-260. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200402021.htm 王玉峰, 许强, 程谦恭, 等, 2016. 复杂三维地形条件下滑坡‒碎屑流运动与堆积特征物理模拟实验研究. 岩石力学与工程学报, 35(9): 1776-1791. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609007.htm 许强, 李为乐, 董秀军, 等, 2017. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究. 岩石力学与工程学报, 36(11): 2612-2628. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711002.htm 杨情情, 郑欣玉, 苏志满, 等, 2022. 高速远程冰‒岩碎屑流研究进展. 地球科学, 47(3): 935-949. doi: 10.3799/dqkx.2021.158 殷跃平, 2000. 西藏波密易贡高速巨型滑坡概况. 中国地质灾害与防治学报, 11(2): 103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200002023.htm 殷跃平, 王文沛, 2020. 高位远程滑坡动力侵蚀犁切计算模型研究. 岩石力学与工程学报, 39(8): 1513-1521. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008001.htm 殷跃平, 王文沛, 张楠, 等, 2017. 强震区高位滑坡远程灾害特征研究: 以四川茂县新磨滑坡为例. 中国地质, 44(5): 827-841. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705002.htm 张涛, 杨志华, 张永双, 等, 2019. 四川茂县新磨村高位滑坡铲刮作用分析. 水文地质工程地质, 46(3): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201903019.htm -