• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于大型物理模型试验的高位岩质滑坡碎屑流解体破碎效应

    贺旭荣 殷跃平 赵立明 胡卸文 王文沛 张仕林

    贺旭荣, 殷跃平, 赵立明, 胡卸文, 王文沛, 张仕林, 2024. 基于大型物理模型试验的高位岩质滑坡碎屑流解体破碎效应. 地球科学, 49(7): 2650-2661. doi: 10.3799/dqkx.2023.021
    引用本文: 贺旭荣, 殷跃平, 赵立明, 胡卸文, 王文沛, 张仕林, 2024. 基于大型物理模型试验的高位岩质滑坡碎屑流解体破碎效应. 地球科学, 49(7): 2650-2661. doi: 10.3799/dqkx.2023.021
    He Xurong, Yin Yueping, Zhao Liming, Hu Xiewen, Wang Wenpei, Zhang Shilin, 2024. Disintegration and Fragmentation Effect of High Position Rock Landslide Debris Flow Based on Large Scale Physical Model Test. Earth Science, 49(7): 2650-2661. doi: 10.3799/dqkx.2023.021
    Citation: He Xurong, Yin Yueping, Zhao Liming, Hu Xiewen, Wang Wenpei, Zhang Shilin, 2024. Disintegration and Fragmentation Effect of High Position Rock Landslide Debris Flow Based on Large Scale Physical Model Test. Earth Science, 49(7): 2650-2661. doi: 10.3799/dqkx.2023.021

    基于大型物理模型试验的高位岩质滑坡碎屑流解体破碎效应

    doi: 10.3799/dqkx.2023.021
    基金项目: 

    国家自然科学基金项目 U2244227

    国家重点研发计划资助项目 2018YFC1505404

    自然资源部地质环境监测工程技术创新中心开放课题 2022KFK1212005

    详细信息
      作者简介:

      贺旭荣(1996-),男,硕士研究生,主要从事高位远程地质灾害研究.ORCID:0000-0001-8204-2754. E-mail:hxr152043@163.com

      通讯作者:

      张仕林,E-mail:slzhang@my.swjtu.edu.cn

    • 中图分类号: P642.22

    Disintegration and Fragmentation Effect of High Position Rock Landslide Debris Flow Based on Large Scale Physical Model Test

    • 摘要: 解体破碎效应普遍存在于高位岩质滑坡运动过程中,能够使滑坡物质状态与运动状态发生转变,从而影响滑坡的能量分布和动力传递特征.为探讨高位岩质滑坡碎屑流解体破碎特征与能量耗散规律,揭示其动力传递机制,采用大型物理模型试验,重点研究滑源区块体强度、方量、厚度、节理发育程度和坡度等对岩体解体破碎的影响.结果表明:高位岩质滑坡碎屑流在动力传递过程中,前部速度损失较后部明显偏少,前缘具有明显的“二次加速”,大量细小颗粒堆积于远端.滑坡体后部向前部具有明显的速度与动力传递效应,且破碎程度越高,动力传递效应越显著.解体破碎过程伴随能量的转化、传递与损失,在破碎程度控制下,破碎耗能约占总势能的3.32%~21.03%.

       

    • 图  1  (a) 试验平台; (b)试验平台示意图; (c)试验平台模型图

      Fig.  1.  (a) Test platform; (b) schematic diagram of the test platform; (c) model diagram of the test platform

      图  2  块体运动情况

      Fig.  2.  Variation of vertical thickness along the slope

      图  3  块体垂直厚度变化

      Fig.  3.  Variation of vertical thickness of block

      图  4  块体速度变化

      Fig.  4.  Block velocity variations

      图  5  块体速度监测曲线

      Fig.  5.  Block velocity monitoring curves

      图  6  (a)相对破损比Br计算图示;(b)相对破损比Br

      Fig.  6.  (a) Illustration of the relative breakage ratio (Br) and (b) relative breakage ratio (Br)

      图  7  相对破损比(Br)与最远运动距离(L)的关系

      Fig.  7.  Relationship between relative breakage ratio (Br) and runout distance (L)

      图  8  堆积分布特征

      a.堆积体碎屑颗粒大小分布曲线;b.堆积体质量曲线;c.堆积体0~2 m级配曲线;d.堆积体2~4 m级配曲线;e.堆积体4~6 m级配曲线;f.堆积体6~8 m级配曲线;g.堆积体8~10 m级配曲线;h.堆积体10~12 m级配曲线;i.堆积体12~14 m级配曲线

      Fig.  8.  Distribution characteristics

      图  9  破碎机理模式

      Fig.  9.  Broken mechanism mode

      图  10  破碎能量损耗

      Fig.  10.  Breakage energy loss

      图  11  破碎耗能占比与相对破损比(Br)关系

      Fig.  11.  Relationship between crushing energy and relative breakage ratio (Br)

      图  12  速度传递与破碎

      Fig.  12.  Velocity transfer and breakage

      表  1  相似材料质量配比方案

      Table  1.   Mass proportions of similar materials

      单轴抗压强度类别 河砂 重晶石 石膏
      Ⅰ型 10.72 5.8 0.7 2.1
      Ⅱ型 10.22 5.6 1.4 2.1
      Ⅲ型 10.22 5.6 1.9 2.1
      下载: 导出CSV

      表  2  高位岩质滑坡碎屑流动力传递试验方案

      Table  2.   Dynamic transmission test scheme of high position rock landslide debris flow

      试验序号 变量
      单轴抗压强度类别 方量(m3 岩体厚度(m) 块体尺寸宽/高/长(m) 坡度
      T1 Ⅰ型 0.48 0.5 0.1/0.1/0.2 50°+30°
      T2 Ⅰ型 0.24 0.3 0.1/0.1/0.2 50°+30°
      T3 Ⅰ型 0.96 0.5 0.1/0.1/0.2 50°+30°
      T4 Ⅱ型 0.48 0.5 0.1/0.1/0.2 50°+30°
      T5 Ⅲ型 0.48 0.5 0.1/0.1/0.2 50°+30°
      T6 Ⅰ型 0.48 0.3 0.1/0.1/0.2 50°+30°
      T7 Ⅰ型 0.48 0.5 0.1/0.1/0.1 50°+30°
      T8 Ⅰ型 0.48 0.5 0.1/0.1/0.2 40°
      下载: 导出CSV
    • Bartali, R., Sarocchi, D., Nahmad-Molinari, Y., 2015. Stick-Slip Motion and High Speed Ejecta in Granular Avalanches Detected through a Multi-Sensors Flume. Engineering Geology, 195: 248-257. https://doi.org/10.1016/j.enggeo.2015.06.019
      Bowman, E. T., Take, W. A., Rait, K. L., et al., 2012. Physical Models of Rock Avalanche Spreading Behaviour with Dynamic Fragmentation. Canadian Geotechnical Journal, 49(4): 460-476. https://doi.org/10.1139/t2012-007
      Bowman, E. T., Take, W. A., 2015. The Runout of Chalk Cliff Collapses in England and France—Case Studies and Physical Model Experiments. Landslides, 12(2): 225-239. https://doi.org/10.1007/s10346-014-0472-2
      Bulmer, M. H., Glaze, L. S., Anderson, S., et al., 2005. Distinguishing between Primary and Secondary Emplacement Events of Blocky Volcanic Deposits Using Rock Size Distributions. Journal of Geophysical Research: Solid Earth, 110(B1): B01201. https://doi.org/10.1029/2003jb002841
      Cagnoli, B., Romano, G. P., 2010. Effect of Grain Size on Mobility of Dry Granular Flows of Angular Rock Fragments: An Experimental Determination. Journal of Volcanology and Geothermal Research, 193(1-2): 18-24. https://doi.org/10.1016/j.jvolgeores.2010.03.003
      Charrière, M., Humair, F., Froese, C., et al., 2016. From the Source Area to the Deposit: Collapse, Fragmentation, and Propagation of the Frank Slide. Geological Society of America Bulletin, 128(1-2): 332-352. https://doi.org/10.1130/B31243.1
      Crosta, G. B., Frattini, P., Fusi, N., 2007. Fragmentation in the Val Pola Rock Avalanche, Italian Alps. Journal of Geophysical Research: Earth Surface, 112(F1): F01006. https://doi.org/10.1029/2005jf000455
      Davies, T. R., McSaveney, M. J., 2009. The Role of Rock Fragmentation in the Motion of Large Landslides. Engineering Geology, 109(1-2): 67-79. https://doi.org/10.1016/j.enggeo.2008.11.004
      Davies, T. R., McSaveney, M. J., Hodgson, K. A., 1999. A Fragmentation-Spreading Model for Long-Runout Rock Avalanches. Canadian Geotechnical Journal, 36(6): 1096-1110. https://doi.org/10.1139/t99-067
      Evans, S., Mugnozza, G. S., Strom, A., et al., 2006. Landslides from Massive Rock Slope Failure and Associated Phenomena. Landslides, 49: 3-52. https://doi.org/10.1007/978-1-4020-4037-5_1
      Gao, Y., Yin, Y. P., Li, Z., et al., 2022. Study on the Dynamic Disintegration Effect of High Position and Long Runout Rock Landslide. Chinese Journal of Rock Mechanics and Engineering, 41(10): 1958-1970 (in Chinese with English abstract).
      Ge, Y. F., Zhou, T., Huo, S. L., et al., 2019. Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche. Earth Science, 44(11): 3939-3949 (in Chinese with English abstract).
      Hao, M. H., Xu, Q., Yang, X. G., et al., 2015. Physical Modeling Tests on Inverse Grading of Particles in High Speed Landslide Debris. Chinese Journal of Rock Mechanics and Engineering, 34(3): 472-479 (in Chinese with English abstract).
      Hardin, B. O., 1985. Crushing of Soil Particles. Journal of Geotechnical Engineering, 111(10): 1177-1192. https://doi.org/10.1061/(asce)0733-9410(1985)111:10(1177)
      Hewitt, K., Clague, J. J., Orwin, J. F., 2008. Legacies of Catastrophic Rock Slope Failures in Mountain Landscapes. Earth-Science Reviews, 87(1-2): 1-38. https://doi.org/10.1016/j.earscirev.2007.10.002
      Huang, R. Q., 2007. Large-Scale Landslides and Their Sliding Mechanisms in China since the 20th Century. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454 (in Chinese with English abstract).
      Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, an Update. Landslides, 11(2): 167-194. https://doi.org/10.1007/s10346-013-0436-y
      Jiang, J. J., Xu, Q., Zheng, G., et al., 2022. Chute Experimental Study on Effect of Particle Gradation on Movement Speed of Landslide-Debris Flow. Yangtze River, 53(5): 197-203 (in Chinese with English abstract).
      Knapp, S., Krautblatter, M., 2020. Conceptual Framework of Energy Dissipation during Disintegration in Rock Avalanches. Frontiers in Earth Science, 8: 263. https://doi.org/10.3389/feart.2020.00263
      Li, K., Cheng, Q. G., Lin, Q. W., et al., 2022. State of the Art on Rock Avalanche Dynamics from Granular Flow Mechanics. Earth Science, 47(3): 893-912 (in Chinese with English abstract).
      Lin, Q. W., Cheng, Q. G., Li, K., et al., 2020. Contributions of Rock Mass Structure to the Emplacement of Fragmenting Rockfalls and Rockslides: Insights from Laboratory Experiments. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB019296. https://doi.org/10.1029/2019JB019296
      Liu, Y. J., Hu, H. T., Zhao, X. Y., 2004. Experimental Study on Impact Effect of High-Speed Landslide. Rock and Soil Mechanics, 25(2): 255-260 (in Chinese with English abstract).
      Locat, P., Couture, R., Leroueil, S., et al., 2006. Fragmentation Energy in Rock Avalanches. Canadian Geotechnical Journal, 43(8): 830-851. https://doi.org/10.1139/t06-045
      Pollet, N., Schneider, J. L M., 2004. Dynamic Disintegration Processes Accompanying Transport of the Holocene Flims Sturzstrom (Swiss Alps). Earth and Planetary Science Letters, 221(1-4): 433-448. https://doi.org/10.1016/s0012-821x(04)00071-8
      Valentino, R., Barla, G., Montrasio, L., 2008. Experimental Analysis and Micromechanical Modelling of Dry Granular Flow and Impacts in Laboratory Flume Tests. Rock Mechanics and Rock Engineering, 41(1): 153-177. https://doi.org/10.1007/s00603-006-0126-3
      Wang, Y. F., Cheng, Q. G., Zhu, Q., 2015. Surface Microscopic Examination of Quartz Grains from Rock Avalanche Basal Facies. Canadian Geotechnical Journal, 52(2): 167-181. https://doi.org/10.1139/cgj-2013-0284
      Wang, Y. F., Xu, Q., Cheng, Q. G., et al., 2016. Experimental Study on the Propagation and Deposit Features of Rock Avalanche along 3D Complex Topography. Chinese Journal of Rock Mechanics and Engineering, 35(9): 1776-1791 (in Chinese with English abstract).
      Xu, Q., Li, W. L., Dong, X. J., et al., 2017. The Xinmocun Landslide on June 24, 2017 in Maoxian, Sichuan: Characteristics and Failure Mechanism. Chinese Journal of Rock Mechanics and Engineering, 36(11): 2612-2628 (in Chinese with English abstract).
      Yang, Q. Q., Zheng, X. Y., Su, Z. M., et al., 2022. Review on Rock-Ice Avalanches. Earth Science, 47(3): 935-949 (in Chinese with English abstract).
      Yin, Y. P., 2000. General Situation of Huge Landslide in Bomiyigong Expressway in Tibet. The Chinese Journal of Geological Hazard and Control, 11(2): 103 (in Chinese with English abstract).
      Yin, Y. P., Wang, W. P., 2020. A Dynamic Erosion Plowing Model of Long Run-Out Landslides Initialized at High Locations. Chinese Journal of Rock Mechanics and Engineering, 39(8): 1513-1521 (in Chinese with English abstract).
      Yin, Y. P., Wang, W. P., Zhang, N., et al., 2017. Long Runout Geological Disaster Initiated by the Ridge-Top Rockslide in a Strong Earthquake Area: A Case Study of the Xinmo Landslide in Maoxian County, Sichuan Province. Geology in China, 44(5): 827-841 (in Chinese with English abstract).
      Zhang, M., McSaveney, M. J., 2017. Rock Avalanche Deposits Store Quantitative Evidence on Internal Shear during Runout. Geophysical Research Letters, 44(17): 8814-8821. https://doi.org/10.1002/2017gl073774
      Zhang, S. L., Yin, Y. P., Li, H. B., et al., 2022. Transport Process and Mechanism of the Hongshiyan Rock Avalanche Triggered by the 2014 Ludian Earthquake, China. Landslides, 19(8): 1987-2004. https://doi.org/10.1007/s10346-022-01878-8
      Zhang, T., Yang, Z. H., Zhang, Y. S., et al., 2019. An Analysis of the Entrainment of the Xinmo High-Position Landslide in Maoxian County, Sichuan. Hydrogeology & Engineering Geology, 46(3): 138-145 (in Chinese with English abstract).
      Zhao, T., Crosta, G. B., Dattola, G., et al., 2018. Dynamic Fragmentation of Jointed Rock Blocks during Rockslide-Avalanches: Insights from Discrete Element Analyses. Journal of Geophysical Research: Solid Earth, 123(4): 3250-3269. https://doi.org/10.1002/2017JB015210
      Zhou, J. W., Cui, P., Fang, H., 2013. Dynamic Process Analysis for the Formation of Yangjiagou Landslide-Dammed Lake Triggered by the Wenchuan Earthquake, China. Landslides, 10(3): 331-342. https://doi.org/10.1007/s10346-013-0387-3
      高杨, 殷跃平, 李壮, 等, 2022. 高位远程岩质滑坡动力解体效应研究. 岩石力学与工程学报, 41(10): 1958-1970. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202210002.htm
      葛云峰, 周婷, 霍少磊, 等, 2019. 高速远程滑坡运动堆积过程中的能量传递机制. 地球科学, 44(11): 3939-3949. doi: 10.3799/dqkx.2017.589
      郝明辉, 许强, 杨兴国, 等, 2015. 高速滑坡‒碎屑流颗粒反序试验及其成因机制探讨. 岩石力学与工程学报, 34(3): 472-479. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503005.htm
      黄润秋, 2007.20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程学报, 26(3): 433-454. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703000.htm
      蒋金晶, 许强, 郑光, 等, 2022. 颗粒级配对碎屑流运动速度影响的滑槽试验研究. 人民长江, 53(5): 197-203. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202205031.htm
      李坤, 程谦恭, 林棋文, 等, 2022. 高速远程滑坡颗粒流研究进展. 地球科学, 47(3): 893-912. doi: 10.3799/dqkx.2021.169
      刘涌江, 胡厚田, 赵晓彦, 2004. 高速滑坡岩体碰撞效应的试验研究. 岩土力学, 25(2): 255-260. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200402021.htm
      王玉峰, 许强, 程谦恭, 等, 2016. 复杂三维地形条件下滑坡‒碎屑流运动与堆积特征物理模拟实验研究. 岩石力学与工程学报, 35(9): 1776-1791. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609007.htm
      许强, 李为乐, 董秀军, 等, 2017. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究. 岩石力学与工程学报, 36(11): 2612-2628. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711002.htm
      杨情情, 郑欣玉, 苏志满, 等, 2022. 高速远程冰‒岩碎屑流研究进展. 地球科学, 47(3): 935-949. doi: 10.3799/dqkx.2021.158
      殷跃平, 2000. 西藏波密易贡高速巨型滑坡概况. 中国地质灾害与防治学报, 11(2): 103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200002023.htm
      殷跃平, 王文沛, 2020. 高位远程滑坡动力侵蚀犁切计算模型研究. 岩石力学与工程学报, 39(8): 1513-1521. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008001.htm
      殷跃平, 王文沛, 张楠, 等, 2017. 强震区高位滑坡远程灾害特征研究: 以四川茂县新磨滑坡为例. 中国地质, 44(5): 827-841. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705002.htm
      张涛, 杨志华, 张永双, 等, 2019. 四川茂县新磨村高位滑坡铲刮作用分析. 水文地质工程地质, 46(3): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201903019.htm
    • 加载中
    图(12) / 表(2)
    计量
    • 文章访问数:  516
    • HTML全文浏览量:  201
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-06
    • 网络出版日期:  2024-08-03
    • 刊出日期:  2024-07-25

    目录

      /

      返回文章
      返回