Co-Migration and Transformation Mechanism of Dissolved Iron and Arsenic during Groundwater Discharge into River Water
-
摘要: 地下水排泄河水过程中会将缺氧地下水中的Fe2+与As3+带入含氧的交互带中,本研究旨在探明该过程中Fe2+与As3+随地下水在实际沉积物介质中的协同迁移转化机制.通过室内柱实验和批实验研究地下水排泄河水时Fe2+、As3+的迁移转化规律并获取其在交互带不同部位向固相转化(固化)的速率.结果表明:沉积物对Fe2+、As3+具有较强的吸附作用,As3+加快了Fe2+的迁移;Fe2+在流经交互带时发生化学氧化沉淀,形成了Fe-As结合态矿物.从远河处至近河处河处,Fe2+、As3+的固化速率加快.在整个交互带区域Fe2+明显促进了As3+的固化,在离河较近的区域As3+略微抑制了Fe2+的固化.地下水排泄河水过程中,Fe2+、As3+在交互不同部位以不同的速率发生协同化学氧化和吸附固定,从而严重阻碍其向河水方向迁移.Abstract: During groundwater discharge into the river, Fe2+ and As3+ in anoxic groundwater are brought into the oxygen-containing interaction zone. This study explores the co-migration and transformation mechanism of Fe2+ and As3+with groundwater in the natural sediment medium.The migration and transformation rules of Fe2+ and As3+during groundwater discharge into river water and the transformation rate of Fe2+ and As3+ to solid phase (solidification) in different regions of the interaction zone are studied by laboratory column experiment and batch experiment.The results show that the sediment strongly adsorbs Fe2+ and As3+, and As3+ accelerates the migration of Fe2+. The chemical oxidation and precipitation of Fe2+ occur, and Fe-As bounding minerals are formed when it flows through the interaction zone.The solidification rate of Fe2+ and As3+ is accelerated from the area far from the river to that near the river. In the whole interaction zone, Fe2+ significantly promotes the solidification of As3+, while As3+ slightly inhibits the solidification of Fe2+ near the river bank.In short, during groundwater discharge into river water, the synergistic chemical oxidation and adsorption fixation of Fe2+ and As3+in groundwater occur at different rates in different regions of the interaction zone, which seriously hinders their migration to river water.
-
Key words:
- groundwater discharge /
- interaction zone /
- iron /
- arsenic /
- migration /
- hydrogeology
-
表 1 供试沉积物理化指标
Table 1. Ion content in the sediments tested
理化指标 单位 含量 理化指标 单位 含量 CEC cmol/kg 11.69 含水率 % 18.63 pH - 8.03 TOC % 10.13 Fe mg/g 13.12 As mg/g 0.01 Ca mg/g 10.13 Mn mg/g 0.53 Mg mg/g 0.78 Al mg/g 2.23 K mg/g 14.52 Na mg/g 13.12 Ba mg/g 0.37 Si mg/g 105.19 表 2 批次实验设计
Table 2. Batch experimental design
实验组 河水比例(%) Fe2+浓度(mM/L) As3+浓度(mM/L) 1 10 0.45 0 2 30 0.35 0 3 50 0.25 0 4 70 0.15 0 5 90 0.05 0 6 10 0 0.009 7 30 0 0.007 8 50 0 0.005 9 70 0 0.003 10 90 0 0.001 11 10 0.45 0.009 12 30 0.35 0.007 13 50 0.25 0.005 14 70 0.15 0.003 15 90 0.05 0.001 表 3 交互带不同部位孔隙水Fe2+、As3+固化过程一级动力学拟合方程显著性检验参数
Table 3. Significance test parameters of first-order kinetic fitting results of Fe2+ and As3+ solidification processes in pore water in different parts of the interaction zone
实验组 河水比例(%) Fe2+浓度(mM/L) As3+浓度(mM/L) Fe2+拟合显著性检验参数R2 As3+拟合显著性检验参数R2 1 10 0.45 0 0.918 0 - 2 30 0.35 0 0.943 4 - 3 50 0.25 0 0.873 8 - 4 70 0.15 0 0.836 5 - 5 90 0.05 0 0.871 5 - 6 10 0 0.009 - 0.890 2 7 30 0 0.007 - 0.902 7 8 50 0 0.005 - 0.891 8 9 70 0 0.003 - 0.949 5 10 90 0 0.001 - 0.931 4 11 10 0.45 0.009 0.872 4 0.889 3 12 30 0.35 0.007 0.847 5 0.965 2 13 50 0.25 0.005 0.873 5 0.962 5 14 70 0.15 0.003 0.849 0 0.832 3 15 90 0.05 0.001 0.890 0 0.858 1 -
Berg, M., Trang, P. T. K., Stengel, C., et al., 2008. Hydrological and Sedimentary Controls Leading to Arsenic Contamination of Groundwater in the Hanoi Area, Vietnam: The Impact of Iron-Arsenic Ratios, Peat, River Bank Deposits, and Excessive Groundwater Abstraction. Chemical Geology, 249(1-2): 91-112. https://doi.org/10.1016/j.chemgeo.2007.12.007 Boano, F., Harvey, J. W., Marion, A., et al., 2014. Hyporheic Flow and Transport Processes: Mechanisms, Models, and Biogeochemical Implications. Reviews of Geophysics, 52(4): 603-679. https://doi.org/10.1002/2012RG000417 Brown, B. V., Valett, H. M., Schreiber, M. E., 2007. Arsenic Transport in Groundwater, Surface Water, and the Hyporheic Zone of a Mine‐Influenced Stream‐Aquifer System. Water Resources Research, 43(11): 1-44. https://doi.org/10.1029/2006WR005687 Datta, S., Mailloux, B., Jung, H. B., et al., 2009. Redox Trapping of Arsenic during Groundwater Discharge in Sediments from the Meghna Riverbank in Bangladesh. Proceedings of the National Academy of Sciences of the United States of America, 106(40): 16930-16935. https://doi.org/10.1073/pnas.0908168106 Duan, Y. H., Gan, Y. Q., Wang, Y. X., et al., 2015. Temporal Variation of Groundwater Level and Arsenic Concentration at Jianghan Plain, Central China. Journal of Geochemical Exploration, 149: 106-119. https://doi.org/10.1016/j.gexplo.2014.12.001 Duan, Y. H., Gan, Y. Q., Wang, Y. X., et al., 2017. Arsenic Speciation in Aquifer Sediment under Varying Groundwater Regime and Redox Conditions at Jianghan Plain of Central China. Science of the Total Environment, 607-608: 992-1000. https://doi.org/10.1016/j.scitotenv.2017.07.011 Fleckenstein, J. H., Krause, S., Hannah, D. M., et al., 2010. Groundwater-Surface Water Interactions: New Methods and Models to Improve Understanding of Processes and Dynamics. Advances in Water Resources, 33(11): 1291-1295. https://doi.org/10.1016/j.advwatres.2010.09.011 Gan, Y. Q., Wang, Y. X., Duan, Y. H., et al., 2014. Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain, Central China. Journal of Geochemical Exploration, 138: 81-93. https://doi.org/10.1016/j.gexplo.2013.12.013 Johnston, R. B., Singer, P. C., 2007. Redox Reactions in the Fe-As-O2 System. Chemosphere, 69(4): 517-525.10.1016/j. chemosphere. 2007.03.036 doi: 10.1016/j.chemosphere.2007.03.036 Jung, H. B., Bostick, B. C., Zheng, Y., et al., 2012. Field, Experimental, and Modeling Study of Arsenic Partitioning across a Redox Transition in a Bangladesh Aquifer. Environmental Science & Technology, 46(3): 1388-1395. https://doi.org/10.1021/es2032967 Jung, H. B., Charette, M. A., Zheng, Y., et al., 2009. Field, Laboratory, and Modeling Study of Reactive Transport of Groundwater Arsenic in a Coastal Aquifer. Environmental Science & Technology, 43(14): 5333-5338. https://doi.org/10.1021/es900080q Kiel, B. A., Cardenas, M. B., 2014. Lateral Hyporheic Exchange Throughout the Mississippi River Network. Nature Geoscience, 7(6): 413-417. https://doi.org/10.1038/ngeo2157 Krause, S., Hannah, D. M., Fleckenstein, J. H., et al., 2011. Inter-Disciplinary Perspectives on Processes in the Hyporheic Zone. Ecohydrology, 4(4): 481-499. https://doi.org/10.1002/eco.176 Liu, S., Liu, H., Wang, Z., et al., 2019. Benzene Promotes Microbial Fe(Ⅲ) Reduction and Flavins Secretion. Geochimica et Cosmochimica Acta, 264: 92-104. https://doi.org/10.1016/j.gca.2019.08.013 Ma, A. L., Liu, H., Mao, S. J., et al., 2022. Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River. Earth Science, 47(2): 729-741 (in Chinese with English abstract). Ma, J., Guo, H. M., Lei, M., et al., 2015. Arsenic Adsorption and Its Fractions on Aquifer Sediment: Effect of pH, Arsenic Species, and Iron/Manganese Minerals. Water, Air, & Soil Pollution, 226(8): 1-15. https://doi.org/10.1007/s11270-015-2524-1 Melton, E. D., Swanner, E. D., Behrens, S., et al., 2014. The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle. Nature Reviews Microbiology, 12: 797-808. https://doi.org/10.1038/nrmicro3347 Ona-Nguema, G., Morin, G., Wang, Y. H., et al., 2010. XANES Evidence for Rapid Arsenic(Ⅲ) Oxidation at Magnetite and Ferrihydrite Surfaces by Dissolved O2 via Fe2+-Mediated Reactions. Environmental Science & Technology, 44(14): 5416-5422. https://doi.org/10.1021/es1000616 Refait, P., Girault, P., Jeannin, M., et al., 2009. Influence of Arsenate Species on the Formation of Fe(Ⅲ) Oxyhydroxides and Fe(Ⅱ-Ⅲ) Hydroxychloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 332(1): 26-35. https://doi.org/10.1016/j.colsurfa.2008.08.020 Shabaga, J. A., Hill, A. R., 2010. Groundwater-Fed Surface Flow Path Hydrodynamics and Nitrate Removal in Three Riparian Zones in Southern Ontario, Canada. Journal of Hydrology, 388(1-2): 52-64. https://doi.org/10.1016/j.jhydrol.2010.04.028 Shen, J. H., Liu, H., Zhou, H. Z., et al., 2022. Specific Characteristics of the Microbial Community in the Groundwater Fluctuation Zone. Environmental Science and Pollution Research, 29(50): 76066-76077. https://doi.org/10.1007/s11356-022-21166-1 Shiowatana, J., McLaren, R. G., Chanmekha, N., et al., 2001. Fractionation of Arsenic in Soil by a Continuous-Flow Sequential Extraction Method. Journal of Environmental Quality, 30(6): 1940-1949. https://doi.org/10.2134/jeq2001.1940 Sophocleous, M., 2002. Interactions between Groundwater and Surface Water: The State of the Science. Hydrogeology Journal, 10(1): 52-67. https://doi.org/10.1007/s10040-001-0170-8 Stumm, W., Sulzberger, B., 1992. The Cycling of Iron in Natural Environments: Considerations Based on Laboratory Studies of Heterogeneous Redox Processes. Geochimica et Cosmochimica Acta, 56(8): 3233-3257. https://doi.org/10.1016/0016-7037(92)90301-x Sun, J., Prommer, H., Siade, A. J., et al., 2018. Model-Based Analysis of Arsenic Immobilization via Iron Mineral Transformation under Advective Flows. Environmental Science & Technology, 52(16): 9243-9253. https://doi.org/10.1021/acs.est.8b01762 Tong, M., Yuan, S. H., Zhang, P., et al., 2014. Electrochemically Induced Oxidative Precipitation of Fe(Ⅱ) for As(Ⅲ) Oxidation and Removal in Synthetic Groundwater. Environmental Science & Technology, 48(9): 5145-5153. https://doi.org/10.1021/es500409m Tong, J. R., 2020. The Mechanism of Arsenic Migration and Transformation Affected by Redox Dynamics of Mineral Transformation (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). Wang, J. Q., Ma, R., Sun, Z. Y., 2019. Reactive Transport and Model of Nitrogen Pollutants in the Surface Water-Ground Water Interaction Zones: A Review. Geological Science and Technology Information, 38(4): 270-280 (in Chinese with English abstract). Wenzel, W. W., Kirchbaumer, N., Prohaska, T., et al., 2001. Arsenic Fractionation in Soils Using an Improved Sequential Extraction Procedure. Analytica Chimica Acta, 436(2): 309-323. https://doi.org/10.1016/s0003-2670(01)00924-2 Westbrook, S. J., Rayner, J. L., Davis, G. B., et al., 2005. Interaction between Shallow Groundwater, Saline Surface Water and Contaminant Discharge at a Seasonally and Tidally Forced Estuarine Boundary. Journal of Hydrology, 302(1-4): 255-269. https://doi.org/10.1016/j.jhydrol.2004.07.007 Wu, X. H., Bowers, B., Kim, D., et al., 2019. Dissolved Organic Matter Affects Arsenic Mobility and Iron(Ⅲ) (Hydr)Oxide Formation: Implications for Managed Aquifer Recharge. Environmental Science & Technology, 53(24): 14357-14367. https://doi.org/10.1021/acs.est.9b04873 Xie, X. J., Johnson, T. M., Wang, Y. X., et al., 2014. Pathways of Arsenic from Sediments to Groundwater in the Hyporheic Zone: Evidence from an Iron Isotope Study. Journal of Hydrology, 511: 509-517. https://doi.org/10.1016/j.jhydrol.2014.02.006 Xin, P., Wang, S. S. J., Shen, C. J., et al., 2018. Predictability and Quantification of Complex Groundwater Table Dynamics Driven by Irregular Surface Water Fluctuations. Water Resources Research, 54(3): 2436-2451. https://doi.org/10.1002/2017wr021761 Xu, Y. X., Zheng, T. L., Gao, J., et al., 2021. Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain. Earth Science, 46(2): 652-660 (in Chinese with English abstract). Yamamura, S., Amachi, S., 2014. Microbiology of Inorganic Arsenic: From Metabolism to Bioremediation. Journal of Bioscience and Bioengineering, 118(1): 1-9. https://doi.org/10.1016/j.jbiosc.2013.12.011 Yuan, R. Q., Wang, M., Wang, S. Q., et al., 2020. Water Transfer Imposes Hydrochemical Impacts on Groundwater by Altering the Interaction of Groundwater and Surface Water. Journal of Hydrology, 583: 124617. https://doi.org/10.1016/j.jhydrol.2020.124617 Zhang, W. W., Yu, Y, Zhang, L. L., et al., 2017. Method for Determination of Total Arsenic in Surface Water. Resource Conservation and Environmental Protection, (8): 143-144 (in Chinese with English abstract). Zhao, S., Zhang, B. J., Sun, X. H., et al., 2020. Hot Spots and Hot Moments of Nitrogen Removal from Hyporheic and Riparian Zones: A Review. Science of the Total Environment, 762: 144168. https://doi.org/10.1016/j.scitotenv.2020.144168 马奥兰, 刘慧, 毛胜军, 等, 2022. 汉江下游河水‒地下水侧向交互带中溶解态锰的分布特征. 地球科学, 47(2): 729-741. doi: 10.3799/dqkx.2021.038 童佳荣, 2020. 矿物的氧化还原动力学转化过程对砷迁移转化的影响机理(博士学位论文). 武汉: 中国地质大学. 王佳琪, 马瑞, 孙自永, 2019. 地表水与地下水相互作用带中氮素污染物的反应迁移机理及模型研究进展. 地质科技情报, 38(4): 270-280. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904029.htm 徐雨潇, 郑天亮, 高杰, 等, 2021. 江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响. 地球科学, 46(2): 652-660. doi: 10.3799/dqkx.2020.063 张伟薇, 于洋, 张丽丽, 等, 2017. 地表水中总砷的测定方法. 资源节约与环保, (8): 143-144. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYJH201708082.htm -