• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地下水排泄河水过程中溶解态铁砷的协同迁移转化机制

    邓茜予 刘慧 黄瑶

    邓茜予, 刘慧, 黄瑶, 2024. 地下水排泄河水过程中溶解态铁砷的协同迁移转化机制. 地球科学, 49(7): 2627-2636. doi: 10.3799/dqkx.2023.022
    引用本文: 邓茜予, 刘慧, 黄瑶, 2024. 地下水排泄河水过程中溶解态铁砷的协同迁移转化机制. 地球科学, 49(7): 2627-2636. doi: 10.3799/dqkx.2023.022
    Deng Xiyu, Liu Hui, Huang Yao, 2024. Co-Migration and Transformation Mechanism of Dissolved Iron and Arsenic during Groundwater Discharge into River Water. Earth Science, 49(7): 2627-2636. doi: 10.3799/dqkx.2023.022
    Citation: Deng Xiyu, Liu Hui, Huang Yao, 2024. Co-Migration and Transformation Mechanism of Dissolved Iron and Arsenic during Groundwater Discharge into River Water. Earth Science, 49(7): 2627-2636. doi: 10.3799/dqkx.2023.022

    地下水排泄河水过程中溶解态铁砷的协同迁移转化机制

    doi: 10.3799/dqkx.2023.022
    基金项目: 

    国家自然科学基金重点项目 41830862

    详细信息
      作者简介:

      邓茜予(1997-),女,硕士研究生,主要研究方向为河水‒地下水交互带中铁砷的迁移机制. ORCID:0000-0002-7826-5979. E-mail:1419661781@qq.com

      通讯作者:

      刘慧,E-mail:hliu2009@cug.edu.cn

    • 中图分类号: P641.2

    Co-Migration and Transformation Mechanism of Dissolved Iron and Arsenic during Groundwater Discharge into River Water

    • 摘要: 地下水排泄河水过程中会将缺氧地下水中的Fe2+与As3+带入含氧的交互带中,本研究旨在探明该过程中Fe2+与As3+随地下水在实际沉积物介质中的协同迁移转化机制.通过室内柱实验和批实验研究地下水排泄河水时Fe2+、As3+的迁移转化规律并获取其在交互带不同部位向固相转化(固化)的速率.结果表明:沉积物对Fe2+、As3+具有较强的吸附作用,As3+加快了Fe2+的迁移;Fe2+在流经交互带时发生化学氧化沉淀,形成了Fe-As结合态矿物.从远河处至近河处河处,Fe2+、As3+的固化速率加快.在整个交互带区域Fe2+明显促进了As3+的固化,在离河较近的区域As3+略微抑制了Fe2+的固化.地下水排泄河水过程中,Fe2+、As3+在交互不同部位以不同的速率发生协同化学氧化和吸附固定,从而严重阻碍其向河水方向迁移.

       

    • 图  1  地下水排泄过程中Fe2+、As3+迁移规律

      Fe2+、As3+的单位为mM

      Fig.  1.  Migration of Fe2+ and As3+during groundwater discharge intoriverwater

      图  2  柱中不同部位沉积的Fe(Ⅱ)、Fe(Ⅲ) 和各形态As含量

      Fig.  2.  Contents of secondary Fe(Ⅱ)、Fe(Ⅲ), and each form of As in different parts of the column

      图  3  交互带不同部位孔隙水Fe2+、As3+消减曲线

      R表示河水比例,Fe2+、As3+单位为mM;图a、c为单独的Fe2+和As3+的消减曲线;图b、d为Fe2+和As3+共存时Fe2+和As3+的消减曲线

      Fig.  3.  Reduction curves of Fe2+ and As3+ in pore water in different parts of interaction zone

      图  4  交互带不同部位孔隙水Fe2+、As3+固化过程一级动力学拟合结果

      R表示河水比例,Fe2+、As3+单位为mM

      Fig.  4.  First-order kinetic fitting results of Fe2+ and As3+ solidification processes in pore water in different parts of the interaction zone

      图  5  交互带不同部位孔隙水Fe2+、As3+固化过程一级反应速率常数k变化趋势

      Fig.  5.  Variation trend of first-order reaction rate constant k during Fe2+ and As3+ solidification of pore water in different parts of the interaction zone

      表  1  供试沉积物理化指标

      Table  1.   Ion content in the sediments tested

      理化指标 单位 含量 理化指标 单位 含量
      CEC cmol/kg 11.69 含水率 % 18.63
      pH - 8.03 TOC % 10.13
      Fe mg/g 13.12 As mg/g 0.01
      Ca mg/g 10.13 Mn mg/g 0.53
      Mg mg/g 0.78 Al mg/g 2.23
      K mg/g 14.52 Na mg/g 13.12
      Ba mg/g 0.37 Si mg/g 105.19
      下载: 导出CSV

      表  2  批次实验设计

      Table  2.   Batch experimental design

      实验组 河水比例(%) Fe2+浓度(mM/L) As3+浓度(mM/L)
      1 10 0.45 0
      2 30 0.35 0
      3 50 0.25 0
      4 70 0.15 0
      5 90 0.05 0
      6 10 0 0.009
      7 30 0 0.007
      8 50 0 0.005
      9 70 0 0.003
      10 90 0 0.001
      11 10 0.45 0.009
      12 30 0.35 0.007
      13 50 0.25 0.005
      14 70 0.15 0.003
      15 90 0.05 0.001
      下载: 导出CSV

      表  3  交互带不同部位孔隙水Fe2+、As3+固化过程一级动力学拟合方程显著性检验参数

      Table  3.   Significance test parameters of first-order kinetic fitting results of Fe2+ and As3+ solidification processes in pore water in different parts of the interaction zone

      实验组 河水比例(%) Fe2+浓度(mM/L) As3+浓度(mM/L) Fe2+拟合显著性检验参数R2 As3+拟合显著性检验参数R2
      1 10 0.45 0 0.918 0 -
      2 30 0.35 0 0.943 4 -
      3 50 0.25 0 0.873 8 -
      4 70 0.15 0 0.836 5 -
      5 90 0.05 0 0.871 5 -
      6 10 0 0.009 - 0.890 2
      7 30 0 0.007 - 0.902 7
      8 50 0 0.005 - 0.891 8
      9 70 0 0.003 - 0.949 5
      10 90 0 0.001 - 0.931 4
      11 10 0.45 0.009 0.872 4 0.889 3
      12 30 0.35 0.007 0.847 5 0.965 2
      13 50 0.25 0.005 0.873 5 0.962 5
      14 70 0.15 0.003 0.849 0 0.832 3
      15 90 0.05 0.001 0.890 0 0.858 1
      下载: 导出CSV
    • Berg, M., Trang, P. T. K., Stengel, C., et al., 2008. Hydrological and Sedimentary Controls Leading to Arsenic Contamination of Groundwater in the Hanoi Area, Vietnam: The Impact of Iron-Arsenic Ratios, Peat, River Bank Deposits, and Excessive Groundwater Abstraction. Chemical Geology, 249(1-2): 91-112. https://doi.org/10.1016/j.chemgeo.2007.12.007
      Boano, F., Harvey, J. W., Marion, A., et al., 2014. Hyporheic Flow and Transport Processes: Mechanisms, Models, and Biogeochemical Implications. Reviews of Geophysics, 52(4): 603-679. https://doi.org/10.1002/2012RG000417
      Brown, B. V., Valett, H. M., Schreiber, M. E., 2007. Arsenic Transport in Groundwater, Surface Water, and the Hyporheic Zone of a Mine‐Influenced Stream‐Aquifer System. Water Resources Research, 43(11): 1-44. https://doi.org/10.1029/2006WR005687
      Datta, S., Mailloux, B., Jung, H. B., et al., 2009. Redox Trapping of Arsenic during Groundwater Discharge in Sediments from the Meghna Riverbank in Bangladesh. Proceedings of the National Academy of Sciences of the United States of America, 106(40): 16930-16935. https://doi.org/10.1073/pnas.0908168106
      Duan, Y. H., Gan, Y. Q., Wang, Y. X., et al., 2015. Temporal Variation of Groundwater Level and Arsenic Concentration at Jianghan Plain, Central China. Journal of Geochemical Exploration, 149: 106-119. https://doi.org/10.1016/j.gexplo.2014.12.001
      Duan, Y. H., Gan, Y. Q., Wang, Y. X., et al., 2017. Arsenic Speciation in Aquifer Sediment under Varying Groundwater Regime and Redox Conditions at Jianghan Plain of Central China. Science of the Total Environment, 607-608: 992-1000. https://doi.org/10.1016/j.scitotenv.2017.07.011
      Fleckenstein, J. H., Krause, S., Hannah, D. M., et al., 2010. Groundwater-Surface Water Interactions: New Methods and Models to Improve Understanding of Processes and Dynamics. Advances in Water Resources, 33(11): 1291-1295. https://doi.org/10.1016/j.advwatres.2010.09.011
      Gan, Y. Q., Wang, Y. X., Duan, Y. H., et al., 2014. Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain, Central China. Journal of Geochemical Exploration, 138: 81-93. https://doi.org/10.1016/j.gexplo.2013.12.013
      Johnston, R. B., Singer, P. C., 2007. Redox Reactions in the Fe-As-O2 System. Chemosphere, 69(4): 517-525.10.1016/j. chemosphere. 2007.03.036 doi: 10.1016/j.chemosphere.2007.03.036
      Jung, H. B., Bostick, B. C., Zheng, Y., et al., 2012. Field, Experimental, and Modeling Study of Arsenic Partitioning across a Redox Transition in a Bangladesh Aquifer. Environmental Science & Technology, 46(3): 1388-1395. https://doi.org/10.1021/es2032967
      Jung, H. B., Charette, M. A., Zheng, Y., et al., 2009. Field, Laboratory, and Modeling Study of Reactive Transport of Groundwater Arsenic in a Coastal Aquifer. Environmental Science & Technology, 43(14): 5333-5338. https://doi.org/10.1021/es900080q
      Kiel, B. A., Cardenas, M. B., 2014. Lateral Hyporheic Exchange Throughout the Mississippi River Network. Nature Geoscience, 7(6): 413-417. https://doi.org/10.1038/ngeo2157
      Krause, S., Hannah, D. M., Fleckenstein, J. H., et al., 2011. Inter-Disciplinary Perspectives on Processes in the Hyporheic Zone. Ecohydrology, 4(4): 481-499. https://doi.org/10.1002/eco.176
      Liu, S., Liu, H., Wang, Z., et al., 2019. Benzene Promotes Microbial Fe(Ⅲ) Reduction and Flavins Secretion. Geochimica et Cosmochimica Acta, 264: 92-104. https://doi.org/10.1016/j.gca.2019.08.013
      Ma, A. L., Liu, H., Mao, S. J., et al., 2022. Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River. Earth Science, 47(2): 729-741 (in Chinese with English abstract).
      Ma, J., Guo, H. M., Lei, M., et al., 2015. Arsenic Adsorption and Its Fractions on Aquifer Sediment: Effect of pH, Arsenic Species, and Iron/Manganese Minerals. Water, Air, & Soil Pollution, 226(8): 1-15. https://doi.org/10.1007/s11270-015-2524-1
      Melton, E. D., Swanner, E. D., Behrens, S., et al., 2014. The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle. Nature Reviews Microbiology, 12: 797-808. https://doi.org/10.1038/nrmicro3347
      Ona-Nguema, G., Morin, G., Wang, Y. H., et al., 2010. XANES Evidence for Rapid Arsenic(Ⅲ) Oxidation at Magnetite and Ferrihydrite Surfaces by Dissolved O2 via Fe2+-Mediated Reactions. Environmental Science & Technology, 44(14): 5416-5422. https://doi.org/10.1021/es1000616
      Refait, P., Girault, P., Jeannin, M., et al., 2009. Influence of Arsenate Species on the Formation of Fe(Ⅲ) Oxyhydroxides and Fe(Ⅱ-Ⅲ) Hydroxychloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 332(1): 26-35. https://doi.org/10.1016/j.colsurfa.2008.08.020
      Shabaga, J. A., Hill, A. R., 2010. Groundwater-Fed Surface Flow Path Hydrodynamics and Nitrate Removal in Three Riparian Zones in Southern Ontario, Canada. Journal of Hydrology, 388(1-2): 52-64. https://doi.org/10.1016/j.jhydrol.2010.04.028
      Shen, J. H., Liu, H., Zhou, H. Z., et al., 2022. Specific Characteristics of the Microbial Community in the Groundwater Fluctuation Zone. Environmental Science and Pollution Research, 29(50): 76066-76077. https://doi.org/10.1007/s11356-022-21166-1
      Shiowatana, J., McLaren, R. G., Chanmekha, N., et al., 2001. Fractionation of Arsenic in Soil by a Continuous-Flow Sequential Extraction Method. Journal of Environmental Quality, 30(6): 1940-1949. https://doi.org/10.2134/jeq2001.1940
      Sophocleous, M., 2002. Interactions between Groundwater and Surface Water: The State of the Science. Hydrogeology Journal, 10(1): 52-67. https://doi.org/10.1007/s10040-001-0170-8
      Stumm, W., Sulzberger, B., 1992. The Cycling of Iron in Natural Environments: Considerations Based on Laboratory Studies of Heterogeneous Redox Processes. Geochimica et Cosmochimica Acta, 56(8): 3233-3257. https://doi.org/10.1016/0016-7037(92)90301-x
      Sun, J., Prommer, H., Siade, A. J., et al., 2018. Model-Based Analysis of Arsenic Immobilization via Iron Mineral Transformation under Advective Flows. Environmental Science & Technology, 52(16): 9243-9253. https://doi.org/10.1021/acs.est.8b01762
      Tong, M., Yuan, S. H., Zhang, P., et al., 2014. Electrochemically Induced Oxidative Precipitation of Fe(Ⅱ) for As(Ⅲ) Oxidation and Removal in Synthetic Groundwater. Environmental Science & Technology, 48(9): 5145-5153. https://doi.org/10.1021/es500409m
      Tong, J. R., 2020. The Mechanism of Arsenic Migration and Transformation Affected by Redox Dynamics of Mineral Transformation (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Wang, J. Q., Ma, R., Sun, Z. Y., 2019. Reactive Transport and Model of Nitrogen Pollutants in the Surface Water-Ground Water Interaction Zones: A Review. Geological Science and Technology Information, 38(4): 270-280 (in Chinese with English abstract).
      Wenzel, W. W., Kirchbaumer, N., Prohaska, T., et al., 2001. Arsenic Fractionation in Soils Using an Improved Sequential Extraction Procedure. Analytica Chimica Acta, 436(2): 309-323. https://doi.org/10.1016/s0003-2670(01)00924-2
      Westbrook, S. J., Rayner, J. L., Davis, G. B., et al., 2005. Interaction between Shallow Groundwater, Saline Surface Water and Contaminant Discharge at a Seasonally and Tidally Forced Estuarine Boundary. Journal of Hydrology, 302(1-4): 255-269. https://doi.org/10.1016/j.jhydrol.2004.07.007
      Wu, X. H., Bowers, B., Kim, D., et al., 2019. Dissolved Organic Matter Affects Arsenic Mobility and Iron(Ⅲ) (Hydr)Oxide Formation: Implications for Managed Aquifer Recharge. Environmental Science & Technology, 53(24): 14357-14367. https://doi.org/10.1021/acs.est.9b04873
      Xie, X. J., Johnson, T. M., Wang, Y. X., et al., 2014. Pathways of Arsenic from Sediments to Groundwater in the Hyporheic Zone: Evidence from an Iron Isotope Study. Journal of Hydrology, 511: 509-517. https://doi.org/10.1016/j.jhydrol.2014.02.006
      Xin, P., Wang, S. S. J., Shen, C. J., et al., 2018. Predictability and Quantification of Complex Groundwater Table Dynamics Driven by Irregular Surface Water Fluctuations. Water Resources Research, 54(3): 2436-2451. https://doi.org/10.1002/2017wr021761
      Xu, Y. X., Zheng, T. L., Gao, J., et al., 2021. Effect of Indigenous Sulfate Reducing Bacteria on Arsenic Migration in Shallow Aquifer of Jianghan Plain. Earth Science, 46(2): 652-660 (in Chinese with English abstract).
      Yamamura, S., Amachi, S., 2014. Microbiology of Inorganic Arsenic: From Metabolism to Bioremediation. Journal of Bioscience and Bioengineering, 118(1): 1-9. https://doi.org/10.1016/j.jbiosc.2013.12.011
      Yuan, R. Q., Wang, M., Wang, S. Q., et al., 2020. Water Transfer Imposes Hydrochemical Impacts on Groundwater by Altering the Interaction of Groundwater and Surface Water. Journal of Hydrology, 583: 124617. https://doi.org/10.1016/j.jhydrol.2020.124617
      Zhang, W. W., Yu, Y, Zhang, L. L., et al., 2017. Method for Determination of Total Arsenic in Surface Water. Resource Conservation and Environmental Protection, (8): 143-144 (in Chinese with English abstract).
      Zhao, S., Zhang, B. J., Sun, X. H., et al., 2020. Hot Spots and Hot Moments of Nitrogen Removal from Hyporheic and Riparian Zones: A Review. Science of the Total Environment, 762: 144168. https://doi.org/10.1016/j.scitotenv.2020.144168
      马奥兰, 刘慧, 毛胜军, 等, 2022. 汉江下游河水‒地下水侧向交互带中溶解态锰的分布特征. 地球科学, 47(2): 729-741. doi: 10.3799/dqkx.2021.038
      童佳荣, 2020. 矿物的氧化还原动力学转化过程对砷迁移转化的影响机理(博士学位论文). 武汉: 中国地质大学.
      王佳琪, 马瑞, 孙自永, 2019. 地表水与地下水相互作用带中氮素污染物的反应迁移机理及模型研究进展. 地质科技情报, 38(4): 270-280. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904029.htm
      徐雨潇, 郑天亮, 高杰, 等, 2021. 江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响. 地球科学, 46(2): 652-660. doi: 10.3799/dqkx.2020.063
      张伟薇, 于洋, 张丽丽, 等, 2017. 地表水中总砷的测定方法. 资源节约与环保, (8): 143-144. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYJH201708082.htm
    • 加载中
    图(5) / 表(3)
    计量
    • 文章访问数:  297
    • HTML全文浏览量:  133
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-11-01
    • 网络出版日期:  2024-08-03
    • 刊出日期:  2024-07-25

    目录

      /

      返回文章
      返回