Damage Failure Energy Evolution Mechanism of Jointed Sandstone Treaded with Dry-Wet Cycling Action under Triaxial Compression
-
摘要: 为探寻干湿循环下节理砂岩损伤破坏能量耗散机理,基于室内三轴压缩试验和岩石能量耗散理论,研究干湿循环下节理砂岩变形破坏过程中各能量指标转换规律和损伤破坏的能量驱动机制.研究发现轴向压力产生能量U1与弹性应变能Ue随着干湿循环次数增大逐渐减小,完整岩样和节理岩样分别呈对数递减和线性递减规律;依据耗散能演化规律将砂岩受荷能量损伤演化分为初始损伤、稳定损伤、损伤平稳、加速损伤及损伤破坏5个阶段;随着围压的增大,峰值点处能量U1和Ue呈线性增大趋势,而围压消耗能量U3和静水压力吸收能量U0分别呈负线性和正线性增大趋势;干湿损伤造成岩样内部微裂纹扩展的最低活化能降低,岩样储存弹性应变能能力弱化,这是造成干湿循环下节理砂岩强度弱化的本质原因.Abstract: In order to explore the energy dissipation mechanism of damage and failure of jointed sandstone under dry-wet cycling conditions, the triaxial compression test and rock energy dissipation theory were adopted to study the energy conversion law and the energy-driven mechanism during the deformation and failure process. The results show that the input energy U1 from the axial pressure and the elastic strain energy Ue decrease gradually with the increase of cycles of dry-wet cycling. Specifically, the logarithmic and the linear trends were observed for the intact rock sample and the jointed rock sample, respectively. According to the evolution law of dissipated energy, the energy damage process of jointed sandstone under the loading is divided into five stages: initial damage, stable damage, stationary damage, accelerated damage and damage failure according to evolution law of dissipated energy during the process of deformation. In addition, with the increase of confining pressure, U1 and Ue at the peak point increase linearly, the strain energy U3 done by confining pressure and the energy U0 absorbed by hydrostatic pressure decrease and increase linearly, respectively. The dry-wet cycling will reduce the minimum activation energy of microcrack propagation, weakening the elastic strain energy stored in the rock. This is the essential reason for the strength weakening of jointed sandstone under dry-wet cycling.
-
表 1 不同干湿循环次数下节理岩样三轴压缩试验结果
Table 1. The triaxial compression test results of rock sample under different dry-wet cycles
岩样 σ3(MPa) 循环次数n 偏应力σ1-σ3(MPa) 峰值强度σ1(MPa) 弹性模量E(GPa) 完整岩样 5 0 119.919 124.919 27.841 1 114.481 119.481 26.072 5 108.657 113.657 25.182 10 103.886 108.886 24.569 15 101.540 105.540 24.168 20 96.113 101.113 23.518 单节理 5 0 85.436 90.436 20.682 1 82.081 87.081 19.756 5 78.044 83.044 18.864 10 76.576 81.576 18.050 15 74.478 79.478 17.668 20 72.723 79.723 17.072 表 2 三轴压缩试验岩样峰值点能量指标
Table 2. The energy index of rock sample at peak strength point in triaxial compression tests
岩样 次数n U1(kJ·m‒3) U3(kJ·m‒3) U0(kJ·m‒3) Ue(kJ·m‒3) Ud(kJ·m‒3) 完整岩样 0 378.955 ‒48.459 0.808 271.725 59.579 1 359.832 ‒35.038 0.863 262.181 63.476 5 294.587 ‒33.478 0.893 237.213 24.790 10 293.838 ‒13.302 0.916 230.436 51.016 15 287.381 ‒38.671 0.931 222.393 27.249 20 255.042 ‒21.272 0.957 209.615 25.112 单节理岩样 0 265.542 ‒47.749 1.088 189.948 28.933 1 257.214 ‒14.619 1.139 182.797 60.937 5 253.858 ‒33.546 1.193 175.047 46.457 10 239.392 ‒11.144 1.247 174.199 55.296 15 224.234 ‒2.065 1.273 150.717 72.726 20 209.019 ‒16.413 1.318 165.451 28.473 表 3 不同围压下岩样峰值点能量指标
Table 3. The energy indexes at peak point for different confining pressures
岩样 围压σ3(MPa) U1(kJ·m‒3) U3(kJ·m‒3) U0(kJ·m‒3) Ue(kJ·m‒3) Ud(kJ·m‒3) 完整 5 378.955 ‒48.459 0.808 271.725 59.579 10 468.789 ‒104.101 2.806 332.045 35.431 15 627.935 ‒180.582 5.949 439.589 13.714 单节理 5 265.542 ‒47.749 1.088 189.948 28.933 10 501.743 ‒119.427 3.889 261.084 125.122 15 692.385 ‒243.551 7.629 297.727 158.736 双节理 5 194.843 ‒20.878 1.317 154.028 21.254 10 300.356 ‒78.171 4.924 208.989 18.120 15 430.045 ‒139.793 10.072 278.263 22.061 四节理 5 137.581 ‒20.381 1.574 109.758 9.016 10 194.596 ‒23.660 5.893 142.642 34.187 15 266.526 ‒30.012 12.655 180.529 68.640 -
Chai, S. B., Song, L., Liu, H., et al., 2023. Compression Characteristics of Filled Jointed Rock under Dry-Wet Cycles. Journal of Traffic and Transportation Engineering, 23(4): 142-153 (in Chinese with English abstract). Chen, G. Q., Wu, J. C., Jiang, W. Z., et al., 2020. An Evaluation Method of Rock Brittleness Based on the Whole Process of Elastic Energy Evolution. Chinese Journal of Rock Mechanics and Engineering, 39(5): 901-911 (in Chinese with English abstract). Chen, Z. F., Xiang, J., Fan, W. C., et al., 2019. Influence of Different Filling Degree on Failure Mechanism of Rock Joint. China Sciencepaper, 14(6): 614-619 (in Chinese with English abstract). doi: 10.3969/j.issn.2095-2783.2019.06.006 Chen, Z. Q., He, C., Ma, G. Y., et al., 2019. Energy Damage Evolution Mechanism of Rock and Its Application to Brittleness Evaluation. Rock Mechanics and Rock Engineering, 52(4): 1265-1274. https://doi.org/10.1007/s00603-018-1681-0 Dong, J. P., Yang, S. Q., Li, B., et al., 2020. Experimental Study on the Tensile Strength of Rock-like Materials Containing Two Pre-Existing Coplanar Fissures. Engineering Mechanics, 37(3): 188-201 (in Chinese with English abstract). Gong, F. Q., Yan, J. Y., Li, X. B., 2018. A New Criterion of Rock Burst Proneness Based on the Linear Energy Storage Law and the Residual Elastic Energy Index. Chinese Journal of Rock Mechanics and Engineering, 37(9): 1993-2014 (in Chinese with English abstract). Gong, F. Q., Yan, J. Y., Luo, S., et al., 2019. Investigation on the Linear Energy Storage and Dissipation Laws of Rock Materials under Uniaxial Compression. Rock Mechanics and Rock Engineering, 52(11): 4237-4255. https://doi.org/10.1007/s00603-019-01842-4 Guo, J. Q., Liu, X. L., Qiao, C. S., 2014. Experimental Study of Mechanical Properties and Energy Mechanism of Karst Limestone under Natural and Saturated States. Chinese Journal of Rock Mechanics and Engineering, 33(2): 296-308 (in Chinese with English abstract). Guo, J. Q., Liu, X. R., Wang, J. B., et al., 2016. Strength Criterion of Rock Based on Elastic Strain Energy. Rock and Soil Mechanics, 37(S2): 129-136 (in Chinese with English abstract). Han, Z. M., Liu, Q. K., Wang, X., et al., 2021. Study on Numerical Manifold Method for Evolution Process of Multi-Crack Propagation in Rock Mass. Engineering Mechanics, 38(S1): 7-13 (in Chinese with English abstract). He, M. M., Chen, Y. S., Han, T. L., et al., 2015. Study of Energy Properties of Sandstone under Different Loading Paths. Chinese Journal of Rock Mechanics and Engineering, 34(S1): 2632-2638 (in Chinese). Huang, D., Li, Y. R., 2014. Conversion of Strain Energy in Triaxial Unloading Tests on Marble. International Journal of Rock Mechanics and Mining Sciences, 66: 160-168. https://doi.org/10.1016/j.ijrmms.2013.12.001 Lai, X. P., Zhang, S., Cui, F., et al., 2020. Energy Release Law during the Damage Evolution of Water-Bearing Coal and Rock and Pick-Up of AE Signals of Key Pregnancy Disasters. Chinese Journal of Rock Mechanics and Engineering, 39(3): 433-444 (in Chinese with English abstract). Li, D., Ren, G. F., Ke, B., et al., 2020. Loading Rate Effect and Energy Dissipation Mechanism of Dihydrate Gypsum under Confining Pressures. Chinese Journal of Rock Mechanics and Engineering, 39(9): 1883-1892 (in Chinese with English abstract). Li, D. Y., Sun, Z., Xie, T., et al., 2017. Energy Evolution Characteristics of Hard Rock during Triaxial Failure with Different Loading and Unloading Paths. Engineering Geology, 228: 270-281. https://doi.org/10.1016/j.enggeo.2017.08.006 Li, J. L., Zhu, Z. H., Yu, L. Y., et al., 2020. Dissipative Characteristics Investigation of Marble during Reloading Process Considering Pre-Peak Unloading Damage. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2429-2438 (in Chinese with English abstract). Li, Z. G., Ye, H. L., Dai, Y. Y., et al., 2024. Law and Mechanism of Shear Degradation of Mica Quartz Schist under Dry-Wet Cycles. Earth Science, 49(3): 1028-1038 (in Chinese with English abstract). Li, Z. Y., Wu, G., Huang, T. Z., et al., 2018. Variation of Energy and Criteria for Strength Failure of Shale under Traixial Cyclic Loading. Chinese Journal of Rock Mechanics and Engineering, 37(3): 662-670 (in Chinese with English abstract). Liang, C. Y., Li, X., Wu, S. R., 2016. Research on Energy Characteristics of Size Effect of Granite under Low/Intermediate Strain Rates. Rock and Soil Mechanics, 37(12): 3472-3480 (in Chinese with English abstract). Liu, W. L., Yan, E. C., Dai, H., et al., 2020. Study on Characteristic Strength and Energy Evolution Law of Badong Formation Mudstone under Water Effect. Chinese Journal of Rock Mechanics and Engineering, 39(2): 311-326 (in Chinese with English abstract). Liu, Y. S., He, C. S., Fu, H. L., et al., 2020. Study on Tensile Mechanical Properties and Energy Consumption Law of Saturated Slate under Impact Loads. Chinese Journal of Rock Mechanics and Engineering, 39(11): 2226-2233 (in Chinese with English abstract). Lu, Z. G., Ju, W. J., Gao, F. Q., et al., 2021. Bursting Liability Index of Coal Based on Nonlinear Storage and Release Characteristics of Elastic Energy. Chinese Journal of Rock Mechanics and Engineering, 40(8): 1559-1569 (in Chinese with English abstract). Meng, Q. B., Wang, C. K., Huang, B. X., et al., 2020. Rock Energy Evolution and Distribution Law under Triaxial Cyclic Loading and Unloading Conditions. Chinese Journal of Rock Mechanics and Engineering, 39(10): 2047-2059 (in Chinese with English abstract). Miao, S. J., Liu, Z. J., Zhao, X. G., et al., 2021. Energy Dissipation and Damage Characteristics of Beishan Granite under Cyclic Loading and Unloading. Chinese Journal of Rock Mechanics and Engineering, 40(5): 928-938 (in Chinese with English abstract). Peng, R. D., Ju, Y., Gao, F., et al., 2014. Energy Analysis on Damage of Coal under Cyclical Triaxial Loading and Unloading Conditions. Journal of China Coal Society, 39(2): 245-252 (in Chinese with English abstract). Song, H. Q., Zuo, J. P., Chen, Y., et al., 2019. Revised Energy Drop Coefficient Based on Energy Characteristics in Whole Process of Rock Failure. Rock and Soil Mechanics, 40(1): 91-98 (in Chinese with English abstract). Wang, G. L., Zhang, L., Xu, M., et al., 2019. Energy Damage Evolution Mechanism of Non-across Jointed Rock Mass under Uniaxial Compression. Chinese Journal of Geotechnical Engineering, 41(4): 639-647 (in Chinese with English abstract). Wu, R. J., Li, H. B., Li, X. F., et al., 2020. Broken Energy Dissipation and Fragmentation Characteristics of Layered Rock under Impact Loading. Journal of China Coal Society, 45(3): 1053-1060 (in Chinese with English abstract). Xie, H. P., Ju, Y., Li, L. Y., 2005. Criteria for Strength and Structural Failure of Rocks Based on Energy Dissipation and Energy Release Principles. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3003-3010 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.17.001 Xie, H. P., Ju, Y., Li, L. Y., et al., 2008. Energy Mechanism of Deformation and Failure of Rock Masses. Chinese Journal of Rock Mechanics and Engineering, 27(9): 1729-1740 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.09.001 Xie, H. P., Li, L. Y., Peng, R. D., et al., 2009. Energy Analysis and Criteria for Structural Failure of Rocks. Journal of Rock Mechanics and Geotechnical Engineering, 1(1): 11-20. https://doi.org/10.3724/sp.j.1235.2009.00011 Xu, X. D., Sun, G. H., Yao, X. L., et al., 2020. A Cusp Catastrophe Warning Model for Instability of Backfill Based on Energy Dissipation and Release. Rock and Soil Mechanics, 41(9): 3003-3012 (in Chinese with English abstract). Yang, L., Gao, F. Q., Wang, X. Q., 2020. Mechanical Response and Energy Partition Evolution of Coal-Rock Combinations with Different Strength Ratios. Chinese Journal of Rock Mechanics and Engineering, 39(S2): 3297-3305 (in Chinese with English abstract). Yang, X. B., Cheng, H. M., Pei, Y. Y., 2020. Study on the Evolution Characteristics of Rock Deformation and Post-Peak Energy under Different Loading Methods. Chinese Journal of Rock Mechanics and Engineering, 39(S2): 3229-3236 (in Chinese with English abstract). Yang, Y. R., Xie, H. Q., Xiao, M. L., et al., 2017. Dilatancy and Energy Characteristics Analysis of Transverse-Isotropic Rock Mass under Triaxial Unloading Condition. Rock and Soil Mechanics, 38(6): 1589-1599 (in Chinese with English abstract). Yuan, W., Liu, X. R., Fu, Y., 2018. Study on Deterioration of Strength Parameters of Sandstone under the Action of Dry-Wet Cycles in Acid and Alkaline Environment. Arabian Journal for Science and Engineering, 43(1): 335-348. https://doi.org/10.1007/s13369-017-2870-y Zhang, L., Wang, G. L., Lei, R. D., et al., 2021. Energy Damage Evolution Mechanism of Single Jointed Rock Mass with Different Lengths under Uniaxial Compression. China Journal of Highway and Transport, 34(1): 24-34 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-7372.2021.01.003 Zhang, P. S., Zhao, C. Y., Li, T. H., et al., 2021. Experimental Study on Wave Velocity Variation and Energy Evolution of Red Sandstone during Triaxial Loading Process. Chinese Journal of Rock Mechanics and Engineering, 40(7): 1369-1382 (in Chinese with English abstract). Zhang, Y., Li, B. B., Xu, J., et al., 2021. Study on Triaxial Compression Damage Evolution Characteristics of Coal Based on Energy Dissipation. Chinese Journal of Rock Mechanics and Engineering, 40(8): 1614-1627 (in Chinese with English abstract). Zhang, Z. Z., Gao, F., 2015. Confining Pressure Effect on Rock Energy. Chinese Journal of Rock Mechanics and Engineering, 34(1): 1-11 (in Chinese with English abstract). Zhao, Y. X., Wang, X. L., Guo, Y. D., et al., 2021. Brittleness Index of Sandstones from Different Buried Depths Based on Energy Release Rate. Chinese Journal of Rock Mechanics and Engineering, 40(2): 248-262 (in Chinese with English abstract). Zhou, H., Li, Z., Zhu, G. J., et al., 2016. A Damage Model for Hard Rock Based on Unified Energy Yield Criterion of Rock. Rock and Soil Mechanics, 37(3): 609-615, 624 (in Chinese with English abstract). 柴少波, 宋浪, 刘欢, 等, 2023. 干湿循环作用下充填节理岩石压缩特性. 交通运输工程学报, 23(4): 142-153. 陈国庆, 吴家尘, 蒋万增, 等, 2020. 基于弹性能演化全过程的岩石脆性评价方法. 岩石力学与工程学报, 39(5): 901-911. 陈占锋, 向娟, 范文臣, 等, 2019. 不同充填度对节理剪切破坏机理的影响. 中国科技论文, 14(6): 614-619. doi: 10.3969/j.issn.2095-2783.2019.06.006 董晋鹏, 杨圣奇, 李斌, 等, 2020. 共面双裂隙类岩石材料抗拉强度试验研究. 工程力学, 37(3): 188-201. 宫凤强, 闫景一, 李夕兵, 2018. 基于线性储能规律和剩余弹性能指数的岩爆倾向性判据. 岩石力学与工程学报, 37(9): 1993-2014. 郭佳奇, 刘希亮, 乔春生, 2014. 自然与饱水状态下岩溶灰岩力学性质及能量机制试验研究. 岩石力学与工程学报, 33(2): 296-308. 郭建强, 刘新荣, 王军保, 等, 2016. 基于弹性应变能的岩石强度准则. 岩土力学, 37(增刊2): 129-136. 韩智铭, 刘庆宽, 王雪, 等, 2021. 岩体多裂纹扩展演化过程数值流形方法研究. 工程力学, 38(增刊1): 7-13. 何明明, 陈蕴生, 韩铁林, 等, 2015. 不同应力路径下砂岩能耗特征的研究. 岩石力学与工程学报, 34(增刊1): 2632-2638. 来兴平, 张帅, 崔峰, 等, 2020. 含水承载煤岩损伤演化过程能量释放规律及关键孕灾声发射信号拾取. 岩石力学与工程学报, 39(3): 433-444. 李东, 任高峰, 柯波, 等, 2020. 二水石膏围压下轴向加载速率效应及能量耗散机制. 岩石力学与工程学报, 39(9): 1883-1892. 李景龙, 朱子涵, 蔚立元, 等, 2020. 大理岩峰前卸荷损伤表征及再承载破坏耗能特征. 岩石力学与工程学报, 39(12): 2429-2438. 李志刚, 叶宏林, 代云云, 等, 2024. 干湿循环作用下云母石英片岩抗剪性能劣化规律及机理. 地球科学, 49(3): 1028-1038. doi: 10.3799/dqkx.2022.211 李子运, 吴光, 黄天柱, 等, 2018. 三轴循环荷载作用下页岩能量演化规律及强度失效判据研究. 岩石力学与工程学报, 37(3): 662-670. 梁昌玉, 李晓, 吴树仁, 2016. 中低应变率加载条件下花岗岩尺寸效应的能量特征研究. 岩土力学, 37(12): 3472-3480. 柳万里, 晏鄂川, 戴航, 等, 2020. 巴东组泥岩水作用的特征强度及其能量演化规律研究. 岩石力学与工程学报, 39(2): 311-326. 刘运思, 何楚韶, 傅鹤林, 等, 2020. 冲击荷载下饱水板岩拉伸力学特性及能耗规律. 岩石力学与工程学报, 39(11): 2226-2233. 卢志国, 鞠文君, 高富强, 等, 2021. 基于非线性储能与释放特征的煤冲击倾向性指标. 岩石力学与工程学报, 40(8): 1559-1569. 孟庆彬, 王从凯, 黄炳香, 等, 2020. 三轴循环加卸载条件下岩石能量演化及分配规律. 岩石力学与工程学报, 39(10): 2047-2059. 苗胜军, 刘泽京, 赵星光, 等, 2021. 循环荷载下北山花岗岩能量耗散与损伤特征. 岩石力学与工程学报, 40(5): 928-938. 彭瑞东, 鞠杨, 高峰, 等, 2014. 三轴循环加卸载下煤岩损伤的能量机制分析. 煤炭学报, 39(2): 245-252. 宋洪强, 左建平, 陈岩, 等, 2019. 基于岩石破坏全过程能量特征改进的能量跌落系数. 岩土力学, 40(1): 91-98. 王桂林, 张亮, 许明, 等, 2019. 单轴压缩下非贯通节理岩体损伤破坏能量演化机制研究. 岩土工程学报, 41(4): 639-647. 武仁杰, 李海波, 李晓锋, 等, 2020. 冲击载荷作用下层状岩石破碎能耗及块度特征. 煤炭学报, 45(3): 1053-1060. 谢和平, 鞠杨, 黎立云, 2005. 基于能量耗散与释放原理的岩石强度与整体破坏准则. 岩石力学与工程学报, 24(17): 3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001 谢和平, 鞠杨, 黎立云, 等, 2008. 岩体变形破坏过程的能量机制. 岩石力学与工程学报, 27(9): 1729-1740. doi: 10.3321/j.issn:1000-6915.2008.09.001 徐晓冬, 孙光华, 姚旭龙, 等, 2020. 基于能量耗散与释放的充填体失稳尖点突变预警模型. 岩土力学, 41(9): 3003-3012. 杨磊, 高富强, 王晓卿, 2020. 不同强度比组合煤岩的力学响应与能量分区演化规律. 岩石力学与工程学报, 39(增刊2): 3297-3305. 杨小彬, 程虹铭, 裴艳宇, 2020. 不同加载方式下岩石变形及峰后能量演化特征研究. 岩石力学与工程学报, 39(增刊2): 3229-3236. 杨以荣, 谢红强, 肖明砾, 等, 2017. 卸荷条件下横观各向同性岩体扩容与能量特性分析. 岩土力学, 38(6): 1589-1599. 张亮, 王桂林, 雷瑞德, 等, 2021. 单轴压缩下不同长度单裂隙岩体能量损伤演化机制. 中国公路学报, 34(1): 24-34. 张培森, 赵成业, 李腾辉, 等, 2021. 红砂岩三轴加载过程中波速变化及能量演化规律试验研究. 岩石力学与工程学报, 40(7): 1369-1382. 张尧, 李波波, 许江, 等, 2021. 基于能量耗散的煤岩三轴受压损伤演化特征研究. 岩石力学与工程学报, 40(8): 1614-1627. 张志镇, 高峰, 2015. 受载岩石能量演化的围压效应研究. 岩石力学与工程学报, 34(1): 1-11. 赵毅鑫, 王小良, 郭延定, 等, 2021. 基于能量释放率的不同赋存深度砂岩脆性指数研究. 岩石力学与工程学报, 40(2): 248-262. 周辉, 李震, 朱国金, 等, 2016. 基于岩石统一能量屈服准则的硬岩损伤模型. 岩土力学, 37(3): 609-615, 624. -